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Abstract

We describe the simulation of a layered cortex model based on the cortical column as a generic local processor. It simulates the signal

flow in the layers I–IV of a set of model columns across three hierarchical cortical areas. It demonstrates the fast formation of an initial

stimulus hypothesis, and its subsequent refinement by inter-columnar communication. In this prototype simulation, we implement word

recognition from a string of characters. The three cortical areas represent letters, syllables, and words, used as a metaphor for visual

stimuli. Focusing on the intra- and inter-columnar dynamics, we show how the different processing subsystems interact in order to switch

off expected signals and accomplish symbolic recognition of words, and how representations for new words can be constructed based on

old representations (self-reference).

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

How does the brain, most notably the visual system,
manage to process and ultimately ‘‘understand’’ the
immense amount of data, that is picked up by our sensors
in each second of everyday life? What strategies, what
neural algorithms does it use to interpret the sensory input
in terms of what it ‘‘knows’’, and how does it decide when
to learn and memorize new content?

In [6] we have put forward a hypothesis of computation in
neocortical architecture, that bridges the gap between
processing of signals at the single-neuron level, and the
processing of cognitive symbols at the level of knowledge
representation: this model proposes the cortical column as
the basic, generic building block of the cortex. At each point
on the cortical surface, the column vertically connects
neurons across the six cortical layers, with a distinct
circuitry. The column is a module in a two-fold sense: it is
a sub-unit in the architectural sense [3], and it is a sub-process

in the algorithmic sense. Our model gives a detailed
functional interpretation of the six-layered columnar cortical
architecture (Fig. 1). It hypothesizes three intercommunicat-
ing processing systems in the columns at each stage of the

cortical hierarchy: in the ‘‘A-system’’ (middle cortical layers
IV and lower III), the first wave of spikes traveling upwards
in the cortical hierarchy can activate a coarse initial ‘‘local
hypothesis’’ on the contents present in the stimulus. In the
‘‘B-system’’ (superficial layers II and upper III), this initial
hypothesis is refined by slower processes. Finally, the ‘‘C-
system’’ (deep layers V and VI) represents the local
interpretation of the input signals that results from the
local integration of bottom-up and top-down signals.
Subsequently, input signals that match the local prediction
are suppressed, and only differences between predicted and
actual signals can reach the next higher cortical level [7].
Thus, stimulus content is effectively expressed in terms of
previously acquired knowledge (self-reference).
In this article, we describe the COREtext model, a

layered cortical model that demonstrates the formation of
a fast initial stimulus hypothesis in the columns, and its
subsequent refinement by inter-columnar communication.
We simulate the signal flow in the A- and B-systems of a set
of model columns across three hierarchical cortical areas.

2. Model

The COREtext model consists of three areas, ‘‘IT’’,
‘‘V2’’, and ‘‘V1’’. Each area is composed of three layers,
each of which is a linear array of h neural subsystems
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(Fig. 2). A neuronal subsystem is an aggregation of m

neurons. The number m is referred to as the number of

minicolumns in the area. The number h is referred to as the

number of hypercolumns in the area. The COREtext model
uses a graded-response neuron model. In each time-step, a
neuron accumulates its stimulation s and its modulation m.
The resulting activation a is given by a ¼ Yðs � ½1þm�Þ.
Here, Y is a piecewise linear sigmoidal transfer function. Y
is zero below a firing threshold of 0.3, and then rises
linearly up to a maximal activation value of a ¼ 3,
Yð1Þ ¼ 1. The neurons in each subsystem participate in a
‘‘winners-take-all’’ competition, and all but the maximal
activations in a subsystem are set to 0.

Synaptic connections between the neurons in the
COREtext model are specified separately between pairs
of layers. Weights between the neurons of given source and
target layers take binary values, multiplied by a constant
factor w: ðwijklÞ ¼ w � ðbijklÞ; bijkl 2 f0; 1g, with i the source
subsystem, j the source neuron in the subsystem, k the
target subsystem, and l the target neuron in the subsystem.
When subsystem and neuron indexes are not of explicit
interest, we can shorten this notation to ðwijÞ ¼ w � ðbijÞ.
A set of synaptic connections can either be driving or
modulating. Inhibitory connections are realized by nega-
tive driving weights.
The COREtext model uses a synchronous update of

neuronal states. In each simulation time-step, the activity
of all neurons is propagated to the postsynaptic neurons,
according to the connection matrix. From the resulting
activation values, the ‘‘winners-take-all’’ competition is
computed inside the neural subsystems. The result is stored
as the new activation of the neurons. This update cycle
repeats in every simulation time-step.
For conceptual simplicity, we choose an abstracted

stimulus environment that shows a clear hierarchical
structure of how complex objects are composed from
smaller parts. We implement word recognition from a
string of characters. Stimuli have the form of strings of
lower-case characters, arranged on a one-dimensional grid.
In our setup of the COREtext model, all layers have the
same number h of subsystems (hypercolumns), and are
aligned with the input array (Fig. 2). We choose a number
of three COREtext areas that form a hierarchy, similar to
sensory processing pathways in the neocortex. The areas
are labeled ‘‘V1’’, ‘‘V2’’ and ‘‘IT’’ for convenience, where
these labels are metaphors taken from the domain of visual
processing. Fig. 3 (right) relates features processed in the
visual domain to the features processed in the COREtext

ARTICLE IN PRESS

Fig. 1. Layered model of a cortical column as proposed in [6]. Three

different subsystems at different vertical locations (layers) are intertwined

within each cortical column.

Fig. 2. Hierarchy of areas, layers and subsystems. The subsystems are

‘‘retinotopically’’ aligned with the stimulus array.

Fig. 3. Left: connectivity scheme between the COREtext layers. Right:

example for the construction of a cognitive object (word) from its

constituents (syllables and letters) in the local alphabets.

R. Kupper et al. / Neurocomputing 70 (2007) 1711–17161712
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model. We derived the set of features represented in the
three areas from the analysis of three pages of classical
German literature [4]. We decomposed the text into
syllables according to usual German spelling rules. After
removal of duplicates the text analysis yielded a set of 386
different words, a set of 418 syllables, and a set of 30
characters. We call these sets of features the local alphabets

LIT;LV2; and LV1. The sizes of the local alphabets
determine the number m of minicolumns in the three areas.
Each hypercolumn in ‘‘IT’’, ‘‘V2’’, and ‘‘V1’’ represents the
full local alphabet. I.e., each subsystem in ‘‘V2’’ is an
aggregation of mV2 ¼ 418 neurons, with each neuron nl;s;i

representing the ith element of LV2.
Knowledge about the composition of cognitive objects

(words) is generated from German spelling rules. From the
local alphabets we derive two binary knowledge matrices,
B1 and B2. We initialize the knowledge matrices in a
process that imitates supervised one-shot-learning. It is
similar to training all words in LIT by presenting them at
position 0 in the input array, while giving their correct
decompositions into syllables and characters. For each
word in LIT we derive its constituting syllables and
characters, as well as their starting position in the word.
We store these decompositions in the binary knowledge
matrices B1 and B2. For example, the word ‘‘mutter’’
decomposes in the way shown in Fig. 3 (right).

We designed the connectivity scheme between the nine
COREtext layers to reflect the main functional projections
that are known to exist between the layers of cortical areas
[8,1,3,2]. We aimed to create a reduced model of the
functional connectivity that is at the core of the cortical
columnar processing. The connectivity scheme is shown in
Fig. 3, left panel. Layers of the same COREtext area are
linked by 1:1-connections (single arrows). These are
connections between neurons in the same minicolumn.
(E.g., a neuron representing the syllable ‘‘mut’’ in V2–A1
projects to the neuron representing the same syllable and at
the same position in V2–A2.) Stimulation enters the system
at layer V1–A1. This layer is linked to the input array (Fig.
2) by 1:1-connections.

Layers of different COREtext areas are linked by
connection matrices proportional to the two knowledge
matrices B1 and B2 (double arrows). These are connections
that span mini- and hypercolumns, and that implement the
knowledge about the hierarchical composition of cognitive
objects (words) in the network. Backward arrows ending in
circles indicate modulatory connections. The modulatory
backward connections between the B-systems are reverse to
the forward connections. I.e., a neuron in IT–B projects
back to exactly the same neurons in V2–B that it receives
from. The matrices ~B1 and ~B2 denote these reverse
connections. The exact connection values including scaling
factors are shown beside the arrows in Fig. 3.

The connection scheme can be categorized into several
pathways. The strong A1! A2) A1 forward pathway
reflects the strong driving synapses that are found between
layers IV and III of cortical areas. The weaker A1! B)

B pathway and the top-down modulatory BOB pathway
reflect the reciprocal connections between the neurons in
upper layers II and III of cortical areas. The inhibitory
B a A2 pathway reflects local inhibition via inter-neurons
in upper and middle layers of a column.

3. Results: response modes

Simulation runs consisted of a constant stimulation by a
string of lower-case characters in the input array, and
subsequent iteration of the update cycle. The signal flow in
the COREtext system, based on the distinct connectivity
and the knowledge imprinted in the synaptic connections,
takes different response modes.
Fig. 4 shows a stimulation example using a string of

characters that is identical to a known word. The word
‘‘mutter’’ was part of the analyzed text, and knowledge
about its decomposition into syllables (mut, ter) and
characters is imprinted into the connections between the
COREtext areas. The stimulus activates the corresponding
single-character-detectors at each hypercolumn in ‘‘V1’’.
Form here, a fast wave of activation spreads via the A1!
A2) A1 path and the A1! B) B path (cf. Fig. 3).
Syllable-detectors in ‘‘V2’’ and word-detectors in ‘‘IT’’ get
active according to the forward connection matrices.
Starting from these first activations in the B-systems,
activity propagates backwards via two pathways. Along
the modulatory top-down BOB pathway, an active word
detector in ‘‘IT’’ supports activations in all detectors in
‘‘V2’’ that are compatible with the word’s decomposition
into syllables. Similarly, each active syllable detector
supports activations in all compatible detectors in ‘‘V1’’.
At the same time, active neurons in the B-systems inhibit
neurons in the A2-systems in the same minicolumn of the
same area. (E.g., an active detector for syllable mut in
V2–B inhibits the detector for the same syllable mut and at
the same position in V2–A2.)
The state shown in Fig. 4 is the static pattern of

activations in response to the stimulus ‘‘mutter’’, that is

ARTICLE IN PRESS

t=10
-----
IT-A1: 0: IT-A2: 0: IT-B : 0: mut-ter(1.3)
IT-A1: 1: IT-A2: 1: IT-B : 1:
IT-A1: 2: IT-A2: 2: IT-B : 2:
IT-A1: 3: IT-A2: 3: IT-B : 3:
IT-A1: 4: IT-A2: 4: IT-B : 4:
IT-A1: 5: IT-A2: 5: IT-B : 5:

V2-A1: 0: V2-A2: 0: V2-B : 0: mut(3.0)
V2-A1: 1: V2-A2: 1: V2-B : 1:
V2-A1: 2: V2-A2: 2: V2-B : 2: sten(0.4) ste(0.4)
V2-A1: 3: V2-A2: 3: V2-B : 3: ter(3.0)
V2-A1: 4: V2-A2: 4: V2-B : 4: er(0.4)
V2-A1: 5: V2-A2: 5: V2-B : 5:

V1-A1: 0: m(1.0) V1-A2: 0: V1-B : 0: m(3.0)
V1-A1: 1: u(1.0) V1-A2: 1: V1-B : 1: u(3.0)
V1-A1: 2: t(1.0) V1-A2: 2: V1-B : 2: t(3.0)
V1-A1: 3: t(1.0) V1-A2: 3: V1-B : 3: t(3.0)
V1-A1: 4: e(1.0) V1-A2: 4: V1-B : 4: e(3.0)
V1-A1: 5: r(1.0) V1-A2: 5: V1-B : 5: r(3.0)

Fig. 4. Stimulation example using a known word ‘‘mutter’’. Neural

activations are given in parentheses behind the corresponding symbols.

Activations of 0 are not shown.

R. Kupper et al. / Neurocomputing 70 (2007) 1711–1716 1713
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reached after 10 update cycles. In IT–B, the correct symbol
mutter is active. In V2–B and V1–B compatible constituting
syllables and characters are active. The activations in the B-
systems support each other via the forward B) B and
backward BOB pathways. At the same time, via the
inhibitory B a A2 pathway, they ‘‘switch off’’ the accord-
ing signals in the A2-systems of the same minicolumn.
After 10 update cycles, activations in the A2-systems have
completely vanished, and activations in the B-systems are
mutually supportive.

Fig. 5 shows a stimulation example using a string of
characters that is similar, but not identical to a known
word. The stimulus ‘‘vatxrx’’ is a distorted version of the
words ‘‘vater’’ and ‘‘vaters’’ that were part of the analyzed
text. The state shown in Fig. 5 is the static pattern of
activations reached after eight update cycles. The bottom-
up/top-down dynamics activates the symbols vater and
vaters in IT–B, showing that the system was able to
compensate for the distortions. In V2–B and V1–B
compatible constituting syllables and characters are active.
The activations in the B-systems support each other via the
forward B) B and backward BOB pathways. Note that
the two distorted characters x in V1–B are only weakly
active, since they do not receive modulatory support from
any syllable in V2–B. This means, they can exert only weak
inhibition on their V1–A2 counterparts via the inhibitory
B a A2 pathway. After eight update cycles, all activations
in the A2-systems have vanished, except for the two
distorted characters in V1–A2.

Fig. 6 shows a stimulation example using the stimulus
‘‘rüdiger’’ that is largely dissimilar to all words that were
part of the analyzed text. A variety of symbols in ‘‘IT’’ and
‘‘V2’’ get weakly active, and via the top-down modulatory
BOB pathway support all compatible syllables and
characters in V2–B and V1–B. At the same time, they
inhibit the according signals in the A2-systems of the same
minicolumn. This changed distribution of activations in the
A2 and B systems changes the activations in the B-systems
via the forward pathways. The mutual dependence of the

two systems leads to a constantly changing pattern of weak
activations. The state shown in Fig. 6 is the pattern of
activations reached after 15 update cycles. This state is not
stable, but activations in the A- and B-systems of all areas
keep changing between reappearing patterns. As a con-
sequence, the response to the unknown stimulus ‘‘rüdiger’’
is not a stable active symbol in ‘‘IT’’, but a whole set of
alternating symbols.

3.1. Randomized update

In order to rule out that the third response mode
(iteration of a set of symbols) is an epiphenomenon caused
by the synchronous update of all model neurons, we
implemented a randomized update scheme. In this scheme,
only a fixed fraction of randomly chosen neurons is
updated in a time-step, while all other neurons keep their
activations. We could confirm, that the phenomenon
reproduces independently of the fraction of updated
neurons. Area IT iterates the same set of symbols in all
cases. Typical set sizes are 2–10, depending on the input
string. The size of the iterated set, and thus the frequency
of occurrence of the individual symbols, depends on the
number of known symbols that overlap with the input
string. (For example, the iterated words tend to start with
the same letter as the input string, making the iterated sets
larger for frequent German starting letters.)
The large invariance with respect to the fraction of

updated neurons shows that symbol iteration in response
to unknown stimuli is a robust propagation phenomenon
in our network. It is rooted in the mutual dependence of
feed-forward excitation and inhibitory feedback, which
cannot be congruent for an unknown stimulus: the winning
symbols in the B-systems support the inhibition of their
constituting parts via the top-down BOB a A2 pathway
(Fig. 3). However, an unknown stimulus activates a set of
parts that is different from the constituting parts of any one
known symbol at the next hierarchic level (otherwise, it
would be known). The remaining, non-inhibited parts will
consequently cause another symbol to win the competition
at the next hierarchic level, causing an iteration of symbols
that overlap with the stimulus.

ARTICLE IN PRESS

t=8
-----
IT-A1: 0: IT-A2: 0: IT-B : 0: va-ter(1.5) va-ters
IT-A1: 1: IT-A2: 1: IT-B : 1:
IT-A1: 2: IT-A2: 2: IT-B : 2:
IT-A1: 3: IT-A2: 3: IT-B : 3:
IT-A1: 4: IT-A2: 4: IT-B : 4:
IT-A1: 5: IT-A2: 5: IT-B : 5:

V2-A1: 0: V2-A2: 0: V2-B : 0: va(3.0) hat(3.0) ta
V2-A1: 1: V2-A2: 1: V2-B : 1:
V2-A1: 2: V2-A2: 2: V2-B : 2: ter(3.0) ters(3.0)
V2-A1: 3: V2-A2: 3: V2-B : 3:
V2-A1: 4: V2-A2: 4: V2-B : 4:
V2-A1: 5: V2-A2: 5: V2-B : 5:

V1-A1: 0: v(1.0) V1-A2: 0: V1-B : 0: v(3.0)
V1-A1: 1: a(1.0) V1-A2: 1: V1-B : 1: a(3.0)
V1-A1: 2: t(1.0) V1-A2: 2: V1-B : 2: t(3.0)
V1-A1: 3: x(1.0) V1-A2: 3: x(0.9) V1-B : 3: x(0.3)
V1-A1: 4: r(1.0) V1-A2: 4: V1-B : 4: r(3.0)
V1-A1: 5: x(1.0) V1-A2: 5: x(0.9) V1-B : 5: x(0.3)

Fig. 5. Stimulation example using a distorted word ‘‘vatxrx’’. The best

matching symbols have been found in IT–B, and the two distorted

characters remain active in V1–A2, indicating parts of the stimulus that

could not be explained from knowledge.

Fig. 6. Stimulation example using an unknown word ‘‘rüdiger’’. Activa-

tions in the A- and B-systems of all areas keep oscillating through a set of

alternatives.

R. Kupper et al. / Neurocomputing 70 (2007) 1711–17161714
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4. Discussion

After a stimulus is applied, a fast wave of bottom-up
activation spreads via the forward pathways. Symbols in
the upper cortical areas get active after only a few
monosynaptic propagations of activity. In this part of the
activity spread, the whole system acts as a multilayered
perceptron. This fast forward activation of a first hypoth-
esis about the stimulus content is compatible with findings
on the speed of processing of categoric information in the
human visual system [9]. After the formation of a fast
initial hypothesis, it is consolidated with the evident
stimulation via the inter-areal top-down modulatory path-
way. All stimulus parts that could be confirmed get
‘‘switched off’’ in the A2 systems (middle cortical layers),
indicating that the active symbols in upper cortical areas
correctly predict these parts of the stimulus [7]. Finally, the
B-systems maintain a self-consistent explanation of the
stimulus from ‘‘pure knowledge’’.

In the case of a stimulus with variations or distortions
(second example), a self-consistent explanation can also be
established. The ‘‘switching off’’ of activity in the A2-
systems must, however, leave residuals, since parts of the
stimulus establish a bottom-up evidence that cannot be
confirmed by top-down consolidation. The B-systems
represent an abstracted or corrected version of the
stimulus, as would be expected from ‘‘pure knowledge’’.
Still, information on the unexpected details is not lost:
residuals in the A2-system clearly identify the parts of the
stimulus that cannot be explained from knowledge. This
residual activity in the A2-system can be used in several
ways. First of all, its pure existence is an indication, that
the recognized symbols do not entirely represent the
stimulus. Second, the residual activity is specific in the
position (the hypercolumn) it appears in. It indicates the
exact position of the unexplained parts in the stimulus, and
can thus guide a motor action, e.g., a saccade, to gather
additional information on the yet unexplained parts. We
show simulations of this function in a companion article
(this issue) [5]. Third, the residual activity is specific in the
exact symbol from the local alphabet (the minicolumn) it
appears in. The residual activity in the A2-system thus
fulfills the necessary prerequisites to enable incremental
learning in the cortical hierarchy: it indicates when to learn,
what to learn, and also where to learn it.

Our third example showed that an ‘‘unknown’’ stimulus
cannot be represented across the hierarchy of areas in a
self-consistent way. Instead, at all hierarchical levels, the
system keeps ‘‘associating’’ possible symbols that are
locally compatible both with the momentary bottom-up-
stream of signals, and the momentary top-down-stream of
hypothesized symbols. This state of activation is clearly
different from the case of stable activation with residuals. It
indicates that the knowledge does not suffice to explain the
stimulus. It is important that the neural system has a means
to indicate this conflict, instead of converging into some
stable, but necessarily inappropriate state of activation that

would ultimately deceive the individual into taking wrong
actions and drawing wrong conclusions. Still, this type of
activation is more than a pure ‘‘error-state’’: activations
tend to converge towards sets of repeating symbols. The
exact sets of alternating symbols are determined by the
interaction between the evident signal, and the system’s
knowledge imprinted in the synapses. Thus, they are
specific to the stimulus: the system starts to paraphrase
the stimulus in its own terms. The human drive to make
sense from everything could actually be rooted in the core
circuitry of our brains. It is also an ideal basis for the
formation of new stimulus concepts. The repeating set of
cognitive symbols itself can be learned as a description of
the new stimulus. We think, that the hippocampus is the
instance on top of the cortical hierarchy that performs this
transformation [6].

5. Conclusion

Realistic stimuli occurring in a rich environment will
almost never match a known symbol. Moreover, stimuli
that are ‘‘beyond knowledge’’, (be it at a lower or at a
higher level of cognitive symbols), will occur frequently. It
is thus a lesson to be learned from the COREtext model,
that a stable pattern of activation will almost never be
reached, and that this is not a limitation, but a meaningful
state of the system. Iterating patterns of activation is the
rule, not the exception in this setup of intercommunicating
subsystems. The conceptually reduced connectivity of the
COREtext model was derived from a thorough review of
physiological findings over many years. We see this as a
strong hint, that the typical, neurophysiologically observed
cortical oscillations represent a natural mode of processing
in the cortex, and are inherent from the unique kind of
information flow inside and between cortical layers and
columns. Constant iteration of compatible alternatives at all
levels of detail may simply be the key to cortical processing,
and ultimately, understanding.
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