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A Probabilistic Method for Motion Pattern Segmentation

Daniel Weiler, Volker Willert, Julian Eggert, Edgar Körner

Abstract— In this paper we present an approach for prob-
abilistic motion pattern segmentation. We combine level-set
methods for image segmentation with motion estimations based
on probability distribution functions (pdf’s) calculated at each
image position. To this end, we extend a region based level-
set framework to exploit the motion pdf’s. We then compare
segmentation results of the pdf-based with those of optical-
flow-based motion segmentation approaches. We found that the
straightforward way of characterizing the segmented region
by spatially averaging the motion measurement pdf’s does
not yield satisfactory results. However, describing the spatial
characteristics of the motion pdf’s with nonparametric den-
sity estimates enables to solve complex motion segmentation
problems. In particular for situations with demanding moti on
patterns like partly overlapping objects and transparent motion,
we show that the probabilistic approach yields better results.
This confirms the idea that for motion processing it is beneficial
to consistently retain the uncertainty and ambiguity of the
measurement process right up to the final integration stage,
instead of directly processing optical flow vectors.

I. I NTRODUCTION

In the field of image segmentation, two major approaches
can be distinguished:multi region segmentationand figure-
background segregation. While the former tries to group
similar (by their image featuresf ) and related (by their spatial
properties like location, etc.) pixels of an image into separate
regions, the latter attempts to find a few salient regions of
an image considering them as a foreground “figure”, label-
ing all the reminder without any further differentiation as
background. In this paper we address the problem of figure-
background segregation based on motion measurements, with
a special focus on the segmentation of objects that are charac-
terized by complex motion patterns that include transparency
and partial overlaps with other objects.

The segmentation occurs by means of level-set methods
[1], which separate all image pixels into two disjoint regions
by favoring homogeneous image properties for pixels within
the same region and distinct image properties for pixels
belonging to different regions. The level-set formalism de-
scribes the region properties using an energy functional that
implicitly contains the region description and that has to be
minimized. The formulation of the energy functional dates
back to e.g. Mumford and Shah [2] and to Zhu and Yuille [3].
Later on, the functionals were reformulated and minimized
using the level-set framework by e.g. [4] and [5].
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Fig. 1. a) Segmentation of an image into 2 disjoint regionsΩ1 andΩ2 as
used in level-set methods. b) Region descriptors of increasing complexity.
Top row: Simple description via region averages, like the mean grey value.
Middle: Description using parameterized feature distributions, like e.g. a
Gaussian based on feature mean and variance. Bottom: Nonparameterized
feature distributions as used in here for motion-based segmentation. f
denotes the image feature.

A number of variations and extensions to the original
region-based level-set methods were proposed in recent
years. These went along with an increased refinement in the
description of the region properties. Fig. 1 shows schemat-
ically a) a two-region separation as provided by standard
level-set methods with b) different region descriptors. The
early level-set formulations provided very reduced region
characterizations, based e.g. on the mean valuesµ [4] of the
entire outer and inner regionsΩ1 andΩ2, as shown in the top
row of Fig. 1b). Since this allows only a very poor represen-
tation of the properties of a spatially extended region, density
functionsρ were introduced. These are commonly modeled
by Gaussian approximations [6], see Fig. 1b) middle. In
more complex cases, to be able to cope with multimodal
distributions, nonparametric density estimates (see e.g.[7])
are used [5], see Fig. 1b), bottom row. All these region
descriptors can of course be applied on scalar (e.g. pixel
grey level) as well as vectorial image feature data (e.g. color,
texture, motion vector gained from optical flow estimation,
or even the combination of several cues, etc.).



Among all segmentation algorithms from computer vision,
level-set methods provide perhaps the closest link with the
biologically motivated, connectionist models as e.g. repre-
sented by [8]. Similar to neural models, level-set methods
work on a grid of nodes located in image/retinotopic space,
interpreting the grid as having local connectivity, and using
local rules for the propagation of activity in the grid. Time
is included explicitly into the model by a formulation of the
dynamics of the nodes activity. Furthermore, the external in-
fluence from other sources (larger network effects, feedback
from other areas, inclusion of prior knowledge) can be read-
ily integrated on a node-per-node basis, which makes level-
sets appealing for the integration into biologically motivated
system frameworks.

In this paper we compare the representation of region
characteristics by mean values and density functions for the
special case of motion pattern segmentation and show the
advantage of using nonparametric density functions which
allow to represent multimodal distributions. Section II intro-
duces the level-set method we used for image segmentation,
its extension to vector-valued inputs and its coupling with
motion probability distribution functions (pdf’s). In section
III we present the results. First, we show exemplary cases
which use spatial averages of the motion pdf’s but fail to
find the right regions. We then extend the level-set formalism
to make use of nonparametric density functions for the
representation of region properties, and show how we can use
this to distinguish a moving object in the presence of another
moving object (with a different velocity) and a background,
even in the case of object transparency. A short discussion
finalizes the paper.

II. OBJECT SEGMENTATION FRAMEWORK

A. Level-set based region segmentation

The object segmentation framework is based on a two-
region level-set method [5], [9]. In a level-set framework,a
level-set functionφ ∈ Ω 7→ R is used to divide the image
planeΩ into two disjoint regions,Ω1 andΩ2, whereφ(x) >
0 if x ∈ Ω1 and φ(x) < 0 if x ∈ Ω2. Here we adopt
the convention thatΩ1 indicates the background andΩ2 the
segmented object. A functional of the level-set functionφ can
be formulated that incorporates the following constraints:

• The data within the two regions should be as similar as
possible.

• The data between the two regions should be as dissim-
ilar as possible.

• The length of the contour separating the two regions
should be as short as possible.

This leads to the expression:

E(φ) = ν

∫

Ω

|∇H(φ)|dx −
2

∑

i=1

∫

Ω

χi(φ) log pi dx (1)

with the Heaviside functionH(φ) and χ1 = H(φ) and
χ2 = 1−H(φ). The first term favors small region boundary
contours, whereas the second term contains assignment prob-
abilitiesp1(x) andp2(x) that a pixel at positionx belongs to

the inner and outer regionsΩ1 andΩ2, respectively, favoring
a unique region assignment.

Minimization of this functional with respect to the level-
set functionφ using gradient descent leads to

∂φ

∂t
= δ(φ)

[

ν div

(

∇φ

|∇φ|

)

+ log
p1

p2

]

(2)

A region descriptorρi(f) that depends on the image
feature vectorf serves to describe the characteristic prop-
erties of the outer vs. the inner regions. The assignment
probabilitiespi(x) for each image position are calculated
based on an image feature vector viapi(x) := ρi(f(x)). For
standard images, there may be only a single feature vector
component like the pixel grey values. The case with several
image features can be covered by assuming independent
contributions from each feature vector channelfj using
assignment probabilitiesp1 =

∏

j p1j and p2 =
∏

j p2j .
In many cases, thepij ’s are modeled by unimodal Gaussian
region descriptor distributions so thatpij(x) = Nfj

(µij , σij)
[6], with meanµij and varianceσij . Furthermore,µij and
σij may act as locally calculated parameters that depend on
the pixel positionx. Remark that if we assume a singleµij

andσij for the entire region, Eq. 1 reduces to the standard
Mumford-Shah functional as used in [4].

There are also approaches where the distributions are
approximated in a multimodal way [5] e.g. by Gaussian
mixture models or nonparametric Parzen density estimates
[7]. For motion-based segmentation as presented in this
paper, we propose to use nonparametric region descriptor
functions, i.e., representing them extensively in a grid-based
way. To this end, we calculate for each feature channelj
inside the regioni a normalized histogramhij ,

hijk =

∫

Ω

χi(φ)ĥijk(x)dx

∫

Ω

χi(φ)dx

with

ĥijk(x) = H(fj(x) − bk) − H(fj(x) − bk+1)

with bins indexed byk and bordersbk of the histogram
bin intervals.1 Here, the histogramhij takes the role of
the feature-dependent region descriptorρi(f). The region
assignment probability is then calculated by

pij(x) = ĥij(x)hij :=
∑

k

ĥijk(x)hijk

i.e., by extracting the histogram entry ofhij that corresponds
to the bin index indicated byfj(x). In this way, both the
region descriptor function as well as the computation of
the region assignment become computationally inexpensive,
since they amount to calculating and extracting single entries
from normalized histograms.

1Smoothed versions of the histogram can be gained by convolving
Kh ∗hij , but in our applications smoothing this did not change the results
substantially.



B. Probabilistic motion information

In level-set-based figure-background segregation using
motion information our aim is to find the most discriminative
motion representation that enables a separation of the figure
from the background, e.g., that most precisely describes the
motion pattern of an object. In the ideal case this includes
not only the local pixel movements but also the consideration
of spatial motion coherence and the existence of multiple
motion hypotheses. Spatial relations are usually incorporated
to constrain the object movement to some limited class, most
often by assuming affine motion [10]. In this paper we take
spatial relations into account but only at the segmentation
level where we consider the degree of spatial occurrence
of coexisting pixel-motion hypotheses to discriminate object
movements from the rest.

The characteristic motion pattern of an object in an image
sequenceI1:t at timet is given by the optical flowV within
the region that shapes the object. The optical flowV = {vx}
is the set of the velocity vectorsvx of all pixels at every
location x in the imageI, meaning that the movement of
each pixel is represented with one velocity hypothesis. This
representation neglects the fact that in most cases the pixel
movement cannot be unambiguously detected because of
different kinds of motion-specific correspondence problems,
like e.g. the well-known aperture problem [11], and noisy
data the measurement is based on. Especially for the case
of transparent moving objects that overlap or partly occlude
each other several motion hypotheses are needed to fully
describe the image movement within the overlapping regions.

As has been suggested and discussed by several authors
[12], [13], [14], velocity pdf’s are well suited to handle
several kinds of motion ambiguities. Following these ideas
we model the uncertainty for the optical flowV like the
following:

P (V|Y t) =
∏

x

P (vx|Y
t) with Y t = {It, It−1} , (3)

where the probability for the optical flowP (V|Y t) is com-
posed of locally independent velocity pdf’sP (vx|Y t) for
every image locationx. P (vx|Y t) can be calculated using
several standard methods, for details refer e.g. to [13], [14].
These pdf’s fully describe the motion estimations available
for each positionx, taking along (un)certainties and serving
as a basis for the motion segmentation in the sections that
follow.

C. Coupling probabilistic motion estimation with object seg-
mentation

For the coupling of motion estimation and region based
image segmentation methods, two major approaches can be
found. A first approach treats motion estimation and image
segmentation as a single, combined problem, which can be
solved by minimizing a common functional that estimates
the motion and segments the image simultaneously [10],
[15]. A second approach treats motion estimation and image
segmentation as two independent processes. In the second

case, the motion estimation acts only as a preprocessing step
for the segmentation [16].

The first approach is able to incorporate spatial consider-
ations provided by the segmentation process into the motion
estimation, therefore reducing ambiguities that occur during
the motion measurement. To the contrary, in the second
approach the segmentation stage has to rely on a sufficiently
good motion estimation. As motivated in the previous sec-
tion, optical flow estimations deteriorate under conditions
where ambiguous solutions exist. Therefore, in this paper
we use the full motion probability distribution function
P (vx|Y t) as the input to the level-set-based segmentation
stage, since this allows to carry along the uncertainties and
resolve them later implicitly during the spatial integration of
the segmentation process.

The straightforward approach for vector-based level-sets
would be to consider the pdf from motion preprocessing as
a feature vectorf(x) at each image position. We can do
this by taking into account a discrete set of possible velocity
vectorsvj , so that

fj(x) = P (vx = v
j |Y t) (4)

i.e., the j-th feature channel corresponds to the locally
measured probabilities at thej-th velocity.

Let us consider that we now take the approach of a uni-
modal Gaussian region descriptor as introduced in Fig. 1b),
middle and in section II-A. This is then equivalent to
representing the level-set region using a “mean” motion pdf,
gained by simple spatial averaging of the pixelwise motion
pdf’s over the region. Region assignment then occurs by
checking if the locally measured motion pdf is similar to
the mean motion pdf of a region. An alternative is to use the
nonparametric region descriptor functions as introduced in
section II-A. These two ways of coupling the motion pdf’s
to the level-set-based segmentation will be examined in the
next section.

III. M AIN RESULTS

Contrary to the velocity pdf’s introduced in sections II-B,
II-C, standard approaches for motion-based pattern segmen-
tation that use level-set methods usually work directly on
the two-dimensional optical flow vectorsvx [6], [9] instead
of the velocity probabilitiesP (vx|Y t). These vectorsvx

are then coupled with the level-set segmentation framework
by considering the two vector components as segmentation
features. For cases of nontransparent, translational motion
and homogeneous velocity fields the segmentation methods
describing the regions with mean values or on the basis of
a normal distribution as discussed in the introduction (see
Fig. 1b) top and middle row) produce reasonable results.

But cases of motion with high level of ambiguities lead
to large errors for methods based on optical flow field
estimation, since they are not able to represent more than one
velocity at a specific image position. Therefore, for transpar-
ent motion, nontranslational motion (e.g. rotation) or in the
presence of objects with different velocities, these methods



are likely to fail. Nevertheless, using both motion pdf’s and
region descriptors that are able to capture the information
provided by the pdf’s we may be able to circumvent some
of the problems of complex motion patterns.

In the following section, we use the framework introduced
in section II that makes use of motion pdf’s and histogram-
based level-sets and show how we can do motion-based
object segmentation for the case of transparency.

A. Segmentation on velocity distributions

In Fig. 2 the first example is shown, with two objects
moving on a static background2. The upper object is moving
from left to right and the lower object moves in the opposite
direction. The background pattern as well as the patterns
for the two objects are generated by creating random gray
values with a uniform distribution. Thus no separation of
objects and background is possible without motion of the
objects because other features, like e.g. colour or texture, of
figures and background do not provide any information that
can contribute to the segmentation process.

+

Fig. 2. Assembly of the first artificial motion sequence. The sequence is
composed by a background pattern (left) superimposed with two patterns,
simulating moving objects (right), that translate from left to right and vice
versa.

The aim would be that only the object which is favored by
the initialization of the level-set contour is cut out as figure
and the object moving in the opposite direction should be
assigned as part of the background.

Applying the commonly used level-set segmentation
method for vector valued data proposed by [9] to the motion
pdf’s obtained as described in II-B leads to the results
depicted in Fig. 3 middle. The method from [9] describes the
regions by their mean values, as illustrated in Fig. 1b) top.In
our case of motion pdf’s the mean value of the features within
a region corresponds to the spatially averaged pdf’s within
that region. The Mumford-Shah level-set functional then
segments an object for which the distance of the distribution
for each position inside the object to the mean distribution
inside the object gets minimized (and analogous for the
outside region). Since we are already working with velocity
distributions one might assume that the method should be

2Our method also produces competitive segmentation resultson real-
world examples, but in this paper we concentrate on artificially generated
examples for the sake of the argument and because it is easierto show
transparency effects.

Fig. 3. Level-set contours (black) delimiting the two regions Ω1 andΩ2

superimposed with the flow-field’s ground truth data (gray),depicting the
real object position. Left: Initial level-set contour for the gradient descent of
Eq. 2. Middle: Final level-set contour gained with a segmentation method
with mean values of features as region descriptors. Right: final level-set
contour achieved with the proposed segmentation method with a region
descriptor exploiting a nonparametric spatial distribution of the feature
vector.

able to distinguish the two objects from another, but this is
not the case. Fig. 3 middle shows that not only the object,
focused by the initial level-set contour (see Fig. 3 left) is
segmented, but also the second object, which moves in the
opposite direction.

For the case of distributions modelled by their mean values
only (see Fig. 1b) top) the last term of Eq. 2,log(p1/p2),
leads to an equation that compares the Euclidean distances
from f to the region descriptor parametersµ1 andµ2 for the
outside and inside region, respectively. For a specific image
positionx0 this leads to

||µ2 − f(x0)||
2 − ||µ1 − f(x0)||

2

which can be rewritten as
∑

j

(

(µ2j − fj(x0))
2 − (µ1j − fj(x0))

2
)

=
∑

j

dj

with dj = dj(fj(x0), µ1, µ2) giving an evaluation for each
feature channelfj(x0) concerning its assignment to the
inside or outside region, i.e., the sign ofdj describes the
assignment to the corresponding region and the value its
discrimination power.

As it can be seen in Fig. 3 middle, the method is not
able to segment only one of the moving objects, i.e. to
discriminate between the two moving objects, even if they
exhibit motion in contrary directions. The reason for that
becomes clear when evaluating thedj ’s in Fig. 4 bottom.
The motion estimation pdf is represented by 25 supporting
points, that span a discrete velocity vector space of 5×5
velocities, where the origin, the zero-velocity, is located in
the middle. The features 11, 13, and 14 are of particular
interest, as they correspond to the velocity of the upper
object, the background and the lower object, respectively.
All other features correspond to velocity measurements with
only minor impact on the segmentation result. Evaluating
the dj ’s in Fig. 4 bottom, feature 13 (background) holds the
most discriminative power, which is even larger than the joint
discriminative power of features 11 (velocity of the objectthe
image locationx0 belongs to) and 14 (velocity of the other,
i.e., the favored object). Thus the background, which in fact
is the largest “object” in the scene dominates the solution
and supresses the differences between the two objects.
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Fig. 4. Analysis of the level-set method using mean values asregion
descriptors for a specific image positionx0 that belongs to the upper
object in the first test sequence, which is wrongly segmented. Top: Region
descriptors, i.e. mean values of the motion pdf’s for the regions Ω1 (gray)
andΩ2 (white) and the motion pdf at the image positionx0 (black). Bottom:
Contributionsdj(fj(x0), µ1j , µ2j) for each element of the feature vector
to the overall gradient descent equation. Values taken at the beginning of
the level-set relaxation. See text for the detailed explanation why this leads
to a wrong solution.

To overcome these problems we use nonparameterized
distribution based region descriptors (see Fig. 1b) bottom).
In our case with motion estimation pdf’s as features (see
Eq. 4) this leads to a two dimensional distribution over
discrete velocities and the values of velocity probabilities
P (vx|Y t) (see Fig. 5 top). Applying the proposed method
to the motion sequence from Fig. 2 succeeds in completing
the segmentation of the object selected by the initial level-set
contour (see Fig. 3 left) not only from the background but
also from the second moving object (see Fig. 3 right).

For the case of region descriptors based on a nonparam-
eterized distribution (see. Fig. 1b) bottom) the last term of
Eq. 2, log(p1/p2) leads to

∑

j

(log p1j − log p2j) =
∑

j

Dj

whereDj = Dj(fj(x0), ρ1, ρ2) gives an evaluation for each
featurefj(x0) concerning its assignment to the inside or
outside region as for the previous case.

Evaluating again theDj ’s (see Fig. 5 bottom right) clar-
ifies the advantage of using a multimodal distribution of
the features instead of the mean feature vector as region
descriptors. Looking at features 11, 13, and 14 (velocity
of upper object, background and lower object, respectively)
and their contributions to the overall gradient descent Eq.2
shows that the discriminative power of the opposed velocities
of the two objects exceeds the discriminative power of the
background.

The reason for the higher discriminative power is that
with the two-dimensional region descriptors we are better
able to assign pixel features to single peaks of a multimodal

ρ1 ρ2

fj(x0) Dj

jjP (vj) P (vj)

j j

Fig. 5. Analysis of the level-set method using nonparameterized distribution
based region descriptors for a specific image positionx0 that belongs to
the upper object in the first test sequence, which now gets segmented as
expected. Top row: Two-dimensional region descriptor for regionΩ1 (left)
andΩ2 (right). Bottom: The velocity distribution at a specific image position
x0 (left) and the contributionsDj(fj(x0), ρ1, ρ2) for each element of the
feature vector to the overall gradient descent from Eq. 2. Values again taken
from the beginning of the level-set relaxation.

distribution.

B. Segmentation on velocity distributions with transparent
motion

To show the advantages of the proposed method a second
example was created. This time we incorporated transparent
motion, which leads to multimodal distributions. Again, two
objects are moving on a static background. The objects
and the background are as in the first example created by
uniformly distributed random gray values. In the artificial
sequence one object moves from top to bottom and the other
one from left to right, overlapping each other (see Fig. 6).
The transparency of the objects is achieved by a zero-mean
additive superposition of the objects and the background,
leading again to an image where the objects can be best
identified by motion cue.

For the artificial image sequence the level-set function
was initialized with a “signed distance” circle, covering half

+

Fig. 6. Assembly of the second artificial motion sequence. The sequence is
composed by a background pattern (left) superimposed with two transparent
patterns, simulating transparent moving objects translating from left to right
and from top to bottom (right), overlapping each other.



Fig. 7. Final level-set contour for region based level-set methods working
on transparent motion. Left: Initial level-set contour forthe gradient descent
of Eq. 2. Middle: Assuming unimodally distributed data. Right: Using the
pdf of the motion estimates instead of the velocity field and assuming
multimodally distributed data.

the object to segment and half the background. In Fig. 7
we show the segmentation result for the same methods as
compared in the previous section. Fig. 7 middle shows the
result obtained when assuming unimodally distributed data,
where the method is not able to distinguish the two objects
from each other and only a separation of the moving objects
from the background is achieved. On Fig. 7 right one can
see that the method that assumes multimodally distributed
data and uses the pdf of the motion estimates instead of the
velocity field, is able to distinguish the favored object both
from the background and the other object, even under the
condition of transparent overlap.

IV. CONCLUSIONS

We have presented an approach for motion pattern seg-
mentation as a two-stage model that makes use of velocity
probability distribution functions as a first step and then
incorporates the motion pdfs into a level-set-based segmen-
tation framework that uses nonparametric density estimates
as region descriptors.

Contrary to standard motion segmentation approaches
which directly use velocityvectorsvx, the incorporation of
the full motion pdfsallows to handle situations which require
the representation of motion uncertainty resp. ambiguity.
With artificial test sequences we have shown that for these
cases the nonparametric density estimation for the descrip-
tion of the segmented region becomes essential. We also
obtained good results for segmentation problems from real-
world scenes, nevertheless the question to what extent the
pdf and histogram based processing of motion information
provides an advantage in real-world conditions still has tobe
evaluated.

In all examples, a single two-phase level-set method was
used foreachobject, which allows for the separation of a
single object from a background. For the simultaneously

segmentation of several objects, multiphase level-sets are
often used. This was not an option here, since they do
not allow an overlapping of the objects as needed for the
transparent case.

Further work will include the evaluation of the method for
real-world scenes and the integration of additional segmen-
tation cues.
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