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A Probabilistic Method for Motion Pattern Segmentation
Daniel Weiler, Volker Willert, Julian Eggert, Edgar Kdme

Abstract—In this paper we present an approach for prob-
abilistic motion pattern segmentation. We combine levelet
methods for image segmentation with motion estimations basl
on probability distribution functions (pdf’s) calculated at each
image position. To this end, we extend a region based level-
set framework to exploit the motion pdf's. We then compare
segmentation results of the pdf-based with those of optical
flow-based motion segmentation approaches. We found that ¢h
straightforward way of characterizing the segmented regio
by spatially averaging the motion measurement pdf's does
not yield satisfactory results. However, describing the satial
characteristics of the motion pdf's with nonparametric den
sity estimates enables to solve complex motion segmentatio
problems. In particular for situations with demanding motion
patterns like partly overlapping objects and transparent motion,
we show that the probabilistic approach yields better resuk.
This confirms the idea that for motion processing it is benefial
to consistently retain the uncertainty and ambiguity of the
measurement process right up to the final integration stage,
instead of directly processing optical flow vectors.
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I. INTRODUCTION

In the field of image segmentation, two major approaches
can be distinguishednulti region segmentatioand figure-
background segregationWhile the former tries to group
similar (by their image feature and related (by their spatial Fig- 1. @) Segmentation of an image into 2 disjoint regihsand(2; as

. . : . . . used in level-set methods. b) Region descriptors of ingrgasomplexity.
properties like location, etc.) pixels of an image into sefa Top row: Simple description via region averages, like themgrey value.
regions, the latter attempts to find a few salient regions ofiddle: Description using parameterized feature distidns, like e.g. a
an image considering them as a foreground “figure”, labe aussian based on feature mean and variance. Bottom: Nonetarized
. . . . - eature distributions as used in here for motion-based eatation. f
ing all the reminder without any further differentiation asyenqtes the image feature.
background. In this paper we address the problem of figure-
background segregation based on motion measurements, with
a special focus on the segmentation of objects that arechara
terized by complex motion patterns that include transparen A number of variations and extensions to the original
and partial overlaps with other objects. region-based level-set methods were proposed in recent

The segmentation occurs by means of level-set methogears. These went along with an increased refinement in the
[1], which separate all image pixels into two disjoint reggo description of the region properties. Fig. 1 shows schemat-
by favoring homogeneous image properties for pixels withiically a) a two-region separation as provided by standard
the same region and distinct image properties for pixelgvel-set methods with b) different region descriptorseTh
belonging to different regions. The level-set formalism deearly level-set formulations provided very reduced region
scribes the region properties using an energy functioral thcharacterizations, based e.g. on the mean valud$ of the
implicitly contains the region description and that has € bentire outer and inner regiofiy and(2,, as shown in the top
minimized. The formulation of the energy functional datesow of Fig. 1b). Since this allows only a very poor represen-
back to e.g. Mumford and Shah [2] and to Zhu and VYuille [3]tation of the properties of a spatially extended region sitgn
Later on, the functionals were reformulated and minimizetlinctionsp were introduced. These are commonly modeled
using the level-set framework by e.g. [4] and [5]. by Gaussian approximations [6], see Fig. 1b) middle. In
more complex cases, to be able to cope with multimodal
distributions, nonparametric density estimates (see[&]y.
are used [5], see Fig. 1b), bottom row. All these region
descriptors can of course be applied on scalar (e.g. pixel
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grey level) as well as vectorial image feature data (e.greol
texture, motion vector gained from optical flow estimation,
or even the combination of several cues, etc.).



Among all segmentation algorithms from computer visionthe inner and outer regiori¥; and(2,, respectively, favoring
level-set methods provide perhaps the closest link with thee unique region assignment.
biologically motivated, connectionist models as e.g. @epr Minimization of this functional with respect to the level-
sented by [8]. Similar to neural models, level-set methodset functiong using gradient descent leads to
work on a grid of nodes located in image/retinotopic space,
interpreting the grid as having local connectivity, andngsi % =4(9) |:]/ div (V_Qs) + log Ii] 2
local rules for the propagation of activity in the grid. Time ot Vol P2
is included explicitly into the model by a formulation of the A" region descriptorp; (f) that depends on the image
dynamics of the nodes activity. Furthermore, the extemal i feature vectorf serves to describe the characteristic prop-
fluence from other sources (larger network effects, feekibagrties of the outer vs. the inner regions. The assignment
from other areas, inclusion of prior knowledge) can be reaghobabilities p; () for each image position are calculated
ily integrated on a node-per-node basis, which makes lev§jased on an image feature vector wiéz) := p;(f(z)). For
sets appealing for the integration into biologically mated  standard images, there may be only a single feature vector
system frameworks. component like the pixel grey values. The case with several
In this paper we compare the representation of regigmage features can be covered by assuming independent
characteristics by mean values and density functions ®r thgntributions from each feature vector channfel using
special case of motion pattern segmentation and show thgsignment probabilities; = 1. p1; andpy = [, pa;-
advantage of using nonparametric density functions whighy many cases, the;,'s are modeled by unimodal CGaussian
allow to represent multimodal distributions. Section r@®  egion descriptor distributions so that (z) = N7, (1ij, 0i;)
duces the level-set method we used for image segmentatigs), with mean;; and variancer;;. Furthermo]remj and
its extension to vector-valued inputs and its coupling Wit@ij may act as locally calculated parameters that depend on
motion probability distribution functions (pdf's). In san  the pixel positionz. Remark that if we assume a single;

Il we present the results. First, we show exemplary casggd,; for the entire region, Eq. 1 reduces to the standard
which use spatial averages of the motion pdf's but fail tqymford-Shah functional as used in [4].

find the right regions. We then extend the level-set formalis  There are also approaches where the distributions are
to make use of nonparametric density functions for thﬁpproximated in a multimodal way [5] e.g. by Gaussian

representation of region properties, and show how we can Usgxture models or nonparametric Parzen density estimates
this to distinguish a moving object in the presence of anothﬁ]. For motion-based segmentation as presented in this
moving object (with a different velocity) and a backgroundpaper, we propose to use nonparametric region descriptor

even in the case of object transparency. A short discussiqjqqctionsy i.e., representing them extensively in a gagds
finalizes the paper. way. To this end, we calculate for each feature channel

Il. OBJECT SEGMENTATION FRAMEWORK inside the region a normalized histograrh;;,
A. Level-set based region segmentation [ Xi(¢)ilijk(x)dx

The object segmentation framework is based on a two- hijk = Q
region level-set method [5], [9]. In a level-set framewaak, [ xi(¢)dx
level-set functiony € Q — R is used to divide the image @
plane( into two disjoint regions§); andQs, whereg(z) >  with
0if x € Q and ¢(z) < 0 if =z € Qy. Here we adopt .
the convention thaf); indicates the background arth the hije(x) = H(fj(x) = br) = H(f;(z) = brya)
segmented object. A functional of the level-set functioten | .t bins indexed byk and bordersh, of the histogram
be formulated that incorporates the following constraints .. intervals. Here, the histogranh;; takes the role of

possible. _ ~_assignment probability is then calculated by
« The data between the two regions should be as dissim- R .

ilar as pOSSible. Dij (SC) = hij (I) hij = Z hijk (x)hijk
« The length of the contour separating the two regions k

~ should be as short as possible. i.e., by extracting the histogram entrylf; that corresponds
This leads to the expression: to the bin index indicated by;(z). In this way, both the
2 region descriptor function as well as the computation of
E(¢) = V/ |VH(¢)|dx — Z/Xi((b) logpidz (1) the region assignment become computationally inexpensive
Q i=1¢ since they amount to calculating and extracting singleientr

with the Heaviside function/(¢) and y; = H(¢) and from normalized histograms.

X2 = 1 — H(¢). The first term favors small region boundary , : _ . .
h the second term contains assianment or Smoothed_versmns _of the hlstogram can bg gained by comeplvi
contours, whereas g p RJ% +h,;, but in our applications smoothing this did not change tieilte

abilities p; (x) andp2(z) that a pixel at position: belongs to  substantially.



B. Probabilistic motion information case, the motion estimation acts only as a preprocessipg ste

In level-set-based figure-background segregation usir@" the segmentation [16]. _ _ _
motion information our aim is to find the most discriminative _1he first approach is able to incorporate spatial consider-
motion representation that enables a separation of theefigtions provided by the segmentation process into the motion
from the background, e.g., that most precisely describes tfStimation, therefore reducing ambiguities that occuirgur
motion pattern of an object. In the ideal case this includd§® motion measurement. To the contrary, in the second
not only the local pixel movements but also the considenatidPProach the segmentation stage has to rely on a sufficiently
of spatial motion coherence and the existence of multipl@°°d motion estimation. As motivated in the previous sec-
motion hypotheses. Spatial relations are usually incargor tion, optlcal_ flow est|ma_\t|ons d.etenorate undgr co_ndﬂ;|0n
to constrain the object movement to some limited class, mo&1ere ambiguous solutions exist. Therefore, in this paper
often by assuming affine motion [10]. In this paper we tak&'€ uset the full motion probability distribution functlor_1
spatial relations into account but only at the segmentation(V=Y") as the input to the level-set-based segmentation
level where we consider the degree of spatial occurrenSf9€; since this allows to carry along the uncertainties an
of coexisting pixel-motion hypotheses to discriminateeabj resolve them Iqter implicitly during the spatial integoatiof
movements from the rest. the segmentation process.

The characteristic motion pattern of an object in an image 1€ straightforward approach for vector-based level-sets
sequencd'™ at timet is given by the optical floiV within would be to consider the pdf from motion preprocessing as
the region that shapes the object. The optical flow= {v,} & feature vectoff(x) at each image position. We can do
is the set of the velocity vectore, of all pixels at every this by ta_klng into account a discrete set of possible vgloci
location z in the imagel, meaning that the movement of VECtOrsv/, so that
each pixel is represented with one velocity hypothesiss Thi ()
representation neglects the fact that in most cases thé pixe !
movement cannot be unambiguously detected becauseief, the j-th feature channel corresponds to the locally
different kinds of motion-specific correspondence proldemmeasured probabilities at theth velocity.
like e.g. the well-known aperture problem [11], and noisy Let us consider that we now take the approach of a uni-
data the measurement is based on. Especially for the camedal Gaussian region descriptor as introduced in Fig. 1b),
of transparent moving objects that overlap or partly oceludmiddle and in section 1l-A. This is then equivalent to
each other several motion hypotheses are needed to futypresenting the level-set region using a “mean” motion pdf
describe the image movement within the overlapping regiongained by simple spatial averaging of the pixelwise motion

As has been suggested and discussed by several authmifs over the region. Region assignment then occurs by
[12], [13], [14], velocity pdf's are well suited to handle checking if the locally measured motion pdf is similar to
several kinds of motion ambiguities. Following these ideathe mean motion pdf of a region. An alternative is to use the
we model the uncertainty for the optical floW like the nonparametric region descriptor functions as introduced i
following: section 1I-A. These two ways of coupling the motion pdf’s

. o . i to the level-set-based segmentation will be examined in the
P(VIY") = [[ P(vaY") with Y* ={T", T}, (3) pnext section.

= P(v, = VI|Y?) (4)

where the probability for the optical flo?(V|Y*) is com- HI. MAIN RESULTS
posed of locally independent velocity pdfB(v,|Y") for Contrary to the velocity pdf’s introduced in sections 1I-B,
every image locatiorx. P(v,|Y") can be calculated using |I-C, standard approaches for motion-based pattern segmen
several standard methods, for details refer e.g. to [13]. [1 tation that use level-set methods usually work directly on
These pdf’s fully describe the motion estimations avaéablthe two-dimensional optical flow vectoss, [6], [9] instead
for each positionz, taking along (un)certainties and servingof the velocity probabilitiesP(v,|Y*). These vectorsv,
as a basis for the motion segmentation in the sections thafe then coupled with the level-set segmentation framework
follow. by considering the two vector components as segmentation
features. For cases of nontransparent, translationalomoti
and homogeneous velocity fields the segmentation methods
describing the regions with mean values or on the basis of
For the coupling of motion estimation and region based normal distribution as discussed in the introduction (see
image segmentation methods, two major approaches can fig. 1b) top and middle row) produce reasonable results.
found. A first approach treats motion estimation and image But cases of motion with high level of ambiguities lead
segmentation as a single, combined problem, which can b® large errors for methods based on optical flow field
solved by minimizing a common functional that estimategstimation, since they are not able to represent more than on
the motion and segments the image simultaneously [10}elocity at a specific image position. Therefore, for trarsp
[15]. A second approach treats motion estimation and imagmt motion, nontranslational motion (e.g. rotation) or he t
segmentation as two independent processes. In the sec@ndsence of objects with different velocities, these masho

C. Coupling probabilistic motion estimation with objecyse
mentation



are likely to fail. Nevertheless, using both motion pdf’slan

region descriptors that are able to capture the informatio

provided by the pdf’'s we may be able to circumvent somg D

of the problems of complex motion patterns. O D D
In the following section, we use the framework introduced

in section Il that makes use of motion pdf's and histogram

based level-sets and show how we can do motion-based

object segmentation for the case of transparency. Fig. 3. Level-set contours (black) delimiting the two regid2; and Qs
superimposed with the flow-field’s ground truth data (gralgpicting the
A. Segmentation on velocity distributions real object position. Left: Initial level-set contour fdret gradient descent of

Eq. 2. Middle: Final level-set contour gained with a segratoh method
In Fig. 2 the first example is shown, with two objectsWith mean values of features as region descriptors. Righal fievel-set
: : : : - contour achieved with the proposed segmentation methold aitegion
moving on a_StatIC baCkgrOUﬁdTh_e upper ObJ_eCt IS movmg descriptor exploiting a nonparametric spatial distribatiof the feature
from left to right and the lower object moves in the oppositector.
direction. The background pattern as well as the patterns

for the two objects are generated by creating random gra)é o ] o
values with a uniform distribution. Thus no separation ofiPl€ to distinguish the two objects from another, but this is

objects and background is possible without motion of thBOt the case. Fig. 3 middle shows that not only the object,
objects because other features, like e.g. colour or texaire focused by the initial level-set contour (see Fig. 3 left) is

figures and background do not provide any information th&egmented, but also the second object, which moves in the

can contribute to the segmentation process. opposite direction. _
For the case of distributions modelled by their mean values

only (see Fig. 1b) top) the last term of Eq. 12g(p1/p2),

leads to an equation that compares the Euclidean distances
from f to the region descriptor parameters and . for the
outside and inside region, respectively. For a specific anag
positionzq this leads to

|2 — £(x0)l|* — [|p1 — £(zo)|?
which can be rewritten as

> (25 — £3(0))* = (115 — f3(20))?) = Zdj

J

Fig. 2. Assembly of the first artificial motion sequence. Teeuence is \yith d. = d.(f.:(z iving an evaluation for each
composed by a background pattern (left) superimposed withpatterns, J i(fi(wo), i1, p2) Qiving

simulating moving objects (right), that translate front lef right and vice Tea_ture Chann_elfj (xO)_ Conceming iFS assignme_nt to the
versa. inside or outside region, i.e., the sign @f describes the

assignment to the corresponding region and the value its

The aim would be that only the object which is favored bydiscrimination power.
the initialization of the level-set contour is cut out as f|gu  As it can be seen in Fig. 3 middle, the method is not
and the object moving in the opposite direction should bgble to segment only one of the moving objects, i.e. to
assigned as part of the background. discriminate between the two moving objects, even if they

Applying the commonly used level-set segmentatiomxhibit motion in contrary directions. The reason for that
method for vector valued data proposed by [9] to the motiobecomes clear when evaluating thgs in Fig. 4 bottom.
pdf’s obtained as described in 1I-B leads to the resultfhe motion estimation pdf is represented by 25 supporting
depicted in Fig. 3 middle. The method from [9] describes thpoints, that span a discrete velocity vector space »65
regions by their mean values, as illustrated in Fig. 1b) bep. velocities, where the origin, the zero-velocity, is lochia
our case of motion pdf’s the mean value of the features withithe middle. The features 11, 13, and 14 are of particular
a region corresponds to the spatially averaged pdf’s withimterest, as they correspond to the velocity of the upper
that region. The Mumford-Shah level-set functional thembject, the background and the lower object, respectively.
segments an object for which the distance of the distributioAll other features correspond to velocity measurements wit
for each position inside the object to the mean distributioonly minor impact on the segmentation result. Evaluating
inside the object gets minimized (and analogous for thghed;’s in Fig. 4 bottom, feature 13 (background) holds the
outside region). Since we are already working with velocitynost discriminative power, which is even larger than thetjoi
distributions one might assume that the method should hiiscriminative power of features 11 (velocity of the objet

image locationzy belongs to) and 14 (velocity of the other,

20ur method also produces competitive segmentation resultseal- i.e., the favored object). Thus the background, which in fac
world examples, but in this paper we concentrate on artificigenerated . A . .
examples for the sake of the argument and because it is eas&row is the largest “object” in the scene dominates the solution
transparency effects. and supresses the differences between the two objects.
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! 1 5 10 15 20 25 J Fig. 5. Analysis of the level-set method using nonparanesgérdistribution

based region descriptors for a specific image positignthat belongs to
the upper object in the first test sequence, which now getmeegd as
expected. Top row: Two-dimensional region descriptor fgion 2; (left)
and2s (right). Bottom: The velocity distribution at a specific igeposition
xo (left) and the contributiond; (f;(xo0), p1, p2) for each element of the
feature vector to the overall gradient descent from Eg. Biédagain taken
from the beginning of the level-set relaxation.

Fig. 4. Analysis of the level-set method using mean valueseg®n
descriptors for a specific image positiary that belongs to the upper
object in the first test sequence, which is wrongly segmerifegd: Region
descriptors, i.e. mean values of the motion pdf’s for thaorg2; (gray)
and(22 (white) and the motion pdf at the image positiog (black). Bottom:
Contributionsd;; (f;(xo), 115, 12j) for each element of the feature vector
to the overall gradient descent equation. Values takeneab#ginning of
the level-set relaxation. See text for the detailed expianavhy this leads

to a wrong solution. distribution

_ B. Segmentation on velocity distributions with transpéren
To overcome these problems we use nonparameterizgfhiion

distribution based region descriptors (see Fig. 1b) bottom
In our case with motion estimation pdf's as features (see 10 Show the advantages of the proposed method a second

Eq. 4) this leads to a two dimensional distribution Ovepxample was created. This _time we _inc_orpprated tra_nsparent
discrete velocities and the values of velocity probabiiti motion, which leads to multimodal distributions. Againotw

P(v,|Y") (see Fig. 5 top). Applying the proposed methodbiects are moving on a st_atic bapkground. The objects
to the motion sequence from Fig. 2 succeeds in completidf'd the background are as in the first example created by

the segmentation of the object selected by the initial leet| uniformly distribu_ted random gray values. In the artificial
contour (see Fig. 3 left) not only from the background bu$€duence one object moves from top to bottom and the other

also from the second moving object (see Fig. 3 right). one from left to right, overlgppin_g each other (see Fig. 6).
For the case of region descriptors based on a nonparaffl€ transparency of the objects is achieved by a zero-mean

eterized distribution (see. Fig. 1b) bottom) the last tefim idditive superposition of the objects and the background,
Eq. 2,log(p1/p2) leads to leading again to an image where the objects can be best

identified by motion cue.
Z(logplj —logpaj) = ZDJ- For the artificial image sequence the level-set function
J J was initialized with a “signed distance” circle, coveringlfh
whereD; = D;(f;(x0), p1,p2) gives an evaluation for each
feature f;(zo) concerning its assignment to the inside or
outside region as for the previous case.

Evaluating again theD;’s (see Fig. 5 bottom right) clar-
ifies the advantage of using a multimodal distribution of
the features instead of the mean feature vector as regi
descriptors. Looking at features 11, 13, and 14 (veloci
of upper object, background and lower object, respectjvel
and their contributions to the overall gradient descentZq.
shows that the discriminative power of the opposed vekesiti
of the two objects exceeds the discriminative power of th
background. ) - . _

‘The reason for the higher discriminative power is thaf%, . ASsemi of e second i noton seducnce seuerce &
with the two-dimensional region descriptors we are bettgfaterns, simulating transparent moving objects traingdtom left to right
able to assign pixel features to single peaks of a multimodatd from top to bottom (right), overlapping each other.
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segmentation of several objects, multiphase level-sets ar
often used. This was not an option here, since they do
not allow an overlapping of the objects as needed for the
transparent case.

Further work will include the evaluation of the method for
real-world scenes and the integration of additional segmen

Fig. 7. Final level-set contour for region based level-sethnds working
on transparent motion. Left: Initial level-set contour fbe gradient descent
of Eq. 2. Middle: Assuming unimodally distributed data. RigUsing the
pdf of the motion estimates instead of the velocity field asguaing
multimodally distributed data.

(1]

(2]
the object to segment and half the background. In Fig. 73
we show the segmentation result for the same methods évsl
compared in the previous section. Fig. 7 middle shows the
result obtained when assuming unimodally distributed ,dat
where the method is not able to distinguish the two object
from each other and only a separation of the moving objectf]
from the background is achieved. On Fig. 7 right one can
see that the method that assumes multimodally distributed
data and uses the pdf of the motion estimates instead of tHé]
velocity field, is able to distinguish the favored objecttbot
from the background and the other object, even under they
condition of transparent overlap.

4]

(8]

We have presented an approach for motion pattern seg-
mentation as a two-stage model that makes use of velocitlfl
probability distribution functions as a first step and then
incorporates the motion pdfs into a level-set-based segmgio)
tation framework that uses nonparametric density estisnate
as region descriptors.

Contrary to standard motion segmentation approachgs)
which directly use velocityectorsv,, the incorporation of
thefull motion pdfsallows to handle situations which require[lz]
the representation of motion uncertainty resp. ambiguity.
With artificial test sequences we have shown that for these
cases the nonparametric density estimation for the descr{ﬂ)?’]
tion of the segmented region becomes essential. We also
obtained good results for segmentation problems from redl4]
world scenes, nevertheless the question to what extent the
pdf and histogram based processing of motion informatiofs)
provides an advantage in real-world conditions still habeo
evaluated.

In all examples, a single two-phase level-set method wags)
used foreachobject, which allows for the separation of a
single object from a background. For the simultaneously

IV. CONCLUSIONS

tation cues.
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