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Abstract Neuroscience increasingly uses computational
models to assist in the exploration and interpretation of
complex phenomena. As a result, considerable effort is in-

vested in the development of software tools and technologies
for numerical simulations and for the creation and publication
of models. The diversity of related tools leads to the
duplication of effort and hinders model reuse. Development
practices and technologies that support interoperability
between software systems therefore play an important role
in making the modeling process more efficient and in
ensuring that published models can be reliably and easily
reused. Various forms of interoperability are possible
including the development of portable model description
standards, the adoption of common simulation languages or
the use of standardized middleware. Each of these
approaches finds applications within the broad range of
current modeling activity. However more effort is required
in many areas to enable new scientific questions to be
addressed. Here we present the conclusions of the “Neuro-
IT Interoperability of Simulators” workshop, held at the
11th computational neuroscience meeting in Edinburgh
(July 19–20 2006; http://www.cnsorg.org). We assess the
current state of interoperability of neural simulation software
and explore the future directions that will enable the field to
advance.

Keywords Neural simulation software . Simulation
language . Standards . XML .Model publication

Introduction

Computational neuroscience tries to understand or reverse-
engineer neural systems using mathematical or algorithmic
models. Most of these are too complex to be treated
analytically and must be evaluated numerically on a com-
puter. However writing the appropriate simulation software
presents a formidable challenge, because it requires knowl-
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edge from many disciplines, ranging from neuroscience, over
mathematics, to computer science and simulation theory.

The driving force for most simulator development comes
from scientific questions that can be addressed with a single
modeling system. Over time, different simulation systems
have evolved and in some areas, such as the construction of
morphologically detailed neurons models, a small number
of programs have even emerged as de-facto standards.
Here, Neuron (Hines and Carnevale 1997; Carnevale and
Hines 2006) and Genesis (Bower and Beeman 1998) have
by far the largest user base for whole-cell and small
network modeling, and MCell (Stiles and Bartoll 2001) is
the tool of choice for stochastic modeling of individual
particles in complex geometries. In other domains where
concepts and terminology are not as well developed,
researchers still write new simulation programs from
scratch. Examples are large networks of point neurons,
large networks of detailed model neurons (e.g. , Brunel and
Wang 2001; Traub et al. 2005) or fine-scale simulation of
synapses (Roth et al. 2000).

The plethora of simulation programs (e.g. see Brette et al.
2007 for a recent review of eight systems for simulating
networks of spiking neurons) poses a number of problems to
the scientific community. First, when models are published,
only a specification of the model, rather than the complete
implementation is presented. As with many applications of
computational modeling, such specifications are frequently
incomplete (Schwab et al. 2000), so the reader of the
publication may be unable to access particular details of the
model. Second, even if the simulation code is published, it
can still be tedious and error-prone to extract the model.
Most new implementations of models are the result of
incremental exploratory development and consequently mix
model description, data analysis, visualization, and other
peripheral code, causing the model description to be
hopelessly obfuscated by a much larger body of ancillary
material. The result is that the scientific value of publications
with results from simulations is often questionable. Stan-
dardization on a single well-supported simulation system
might solve some of the problems, but it is not a practical
solution for most applications, since research inevitably
involves frequent modification of models that require changes
to the implementation. A more realistic approach is to
encourage and facilitate interoperability between different
simulators of the same domain, and maybe even across
domains. Interoperability comprises all mechanisms that
allow two or more simulators to use the same model
description or to collaborate by evaluating different parts of
a large neural model.

More generally, the interest in interoperability arises
from the expectation that various tasks in modeling and
software development can be made more efficient and
productive by a relatively modest investment in interoper-

ability work. Given the existing investment in disparate
software systems, some form of interoperability may yield a
valuable return at modest cost. One extreme case where the
return is clear would be the possibility to take a complex
whole-cell model developed within one system and run it as
is, within another system that provides additional features
such as large-scale parallelization or parameter searching.
However, as discussed later, effortless gains of this nature
are rarely achievable. This shifts the focus onto questions of
what is technically feasible and what the real benefits
would be of different possible strategies. The main goals
are that interoperability work should either enable new
scientific questions to be addressed or should reduce the
time and effort required to develop a system to the level
where a particular problem can be tackled.

Here we present the conclusions of the “Neuro-IT
Interoperability of Simulators” workshop, held at the 15th
computational neuroscience meeting in Edinburgh (July
19–20 2006; http://www.cnsorg.org). The aim of the
workshop was to assess the current state of interoperability
of neural simulation software and to explore the future
directions that will enable the field to advance.

Interoperability can be achieved in a variety of ways that
fall into two broad categories. These categories are
addressed in turn in the following two sections. The first
case corresponds to the example above, where different
systems support the same portable model format, so that
models built for one simulator can be run on another. In the
second flavor, different simulators, working on different
domains, interoperate at run-time. Here, we discuss two
sub-cases. In the first, a model stays within the simulator
for which it was built, but structures are provided to build a
‘super-model’ where different components running in
separate systems can be made to interact. The second case
involves a much tighter integration where separate software
components no longer need to cover all the functions of a
stand-alone system and only work within an enclosing
environment that provides the necessary infrastructure for
them to do their specific task. The third section summarizes
open issues, and the final section discusses where further
effort can most effectively be applied.

Standardizing Model Descriptions

What is a Model Description Anyway?

Most simulators start out as a monolithic program where
the model is defined in the same programming language as
the simulator and is interwoven with a large body of code
that supports the simulation but is not part of the actual
model. As a consequence, each change of the simulation or
a parameter requires recompilation of the entire simulator.
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The second step of maturation introduces a simple interface to
set and inspect parameters. This can be a light-weight
graphical interface, or may be text-based using a simple
configuration language. The third step of maturation intro-
duces a domain-specific programming language that is usually
hand-written, but in some sense complete. These languages
are usually interpreted and can, in most cases, be used
interactively. In the fourth and final step of maturation,
developers encapsulate their model implementations within
well-defined interfaces and make them accessible from an
existing programming language like Matlab, Python, or Java.
This shifts responsibility for the development and maintenance
of the language front-end, that most users will work with, onto
a strong specialized community. It also brings the additional
benefit of a large body of libraries that is often provided by the
community (Python calls this “batteries included”).

This maturation process separates the code that is specific
to a model from the code that is needed to execute it. To date
almost all publicly available simulation systems provide an
interpreted language interface to set up a simulation. Neuron
even supports two different specification languages (Hoc and
Modl) (Hines and Carnevale 2000). Conversely, with the
continued development of interpreted high-level languages
like Matlab, IDL and Python, it is increasingly possible to
tackle some modeling problems in these languages alone,
possibly with the addition of compiled modules to improve
performance in core parts of the simulation. Examples of the
scripting languages used by Neuron and Genesis are shown
in Fig. 1. Although the concepts are the same, the language
details are quite different.

Separating model specific code from peripheral simula-
tor code offers the possibility of agreeing on a standard for
model descriptions whose appeal is easy to appreciate: the
same model will run without modification on a number of
different simulators. The standardized model description
would give researchers a simple tool to reproduce and
validate models published by others. Models are then no
longer tied to a particular software system and they gain a
degree of durability and universality that models tied to
specific systems cannot hope to achieve. In the best cases it
would enable truly incremental science (rather than the
widespread “rebuild-from-scratch” methodology currently
practiced) where reference models can be reused at will,
independent of the user’s and original author’s preferred
modeling systems. The current situation, however, is rather
disenchanting as the examples of Genesis and Neuron
illustrate. Although these simulators have an extensive
overlap in their application domain, they differ greatly in
their specification languages.

There are two main routes towards a standardized model
description. The first tries to replace the many different
scripting languages by a single standard language that
should be supported by all simulators. The second tries to
introduce a new portable model description format that is
distinct from the scripting languages currently used by any
of the simulators. Although at first, the two routes may
appear rather similar, they are in fact complementary. While
the first tries to introduce a common description language
in which users formulate their models, the second intro-
duces a machine readable model exchange format in

Fig. 1 Examples of script files to create a simple single compartment
model neuron in NEURON and GENESIS. Although the commands to
create the compartment and set the parameters are similar, there are
subtle differences in the way the elements of the model are created and
addressed, and in the naming of internal variables. The set of units

used in each simulator is different also (many GENESIS models use SI
units as opposed to the physiological units used here). It is clear
though that there is scope to define a standard for describing the
elements of such models which can then be mapped to the script
particular for a given simulator
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addition to the scripting languages used by any of the
simulators. To date, most activities follow the second route.

Imperative and Declarative Model Specifications

Both Neuron and Genesis use imperative model descrip-
tions, where the definition consists of a precise sequence of
instructions specifying how to create and combine the parts
of a model. Although imperative model descriptions require
a full-featured programming language, they have the
obvious advantage that the user can choose the algorithms
that create the model. But, because imperative model
descriptions specify how models should be constructed
using the internal data structures of a simulator, they tend to
be simulator-specific. Even where two simulators operate
on exactly the same problem domain, they are unlikely to

use similar internal structures and the procedures required
for setting up a model may be quite different.

The second, declarative, approach is to describe the
model that is required and let the simulator determine how
it is actually created and mapped to the simulator’s data
structures. Such descriptions should be as compact as
possible, for example by specifying a parameterized
projection pattern for a large network rather than actual
connections of each cell. The latter is also declarative, but is
typically not something a user would create by hand. The
focus here is on declarative descriptions of comparable
scale and complexity to the more familiar imperative
methods used for setting up models.

An example of the distinction is shown in Fig. 2 where
distinct imperative scripts used for setting up a section of
cable in Neuron and Genesis have both been derived from a

Fig. 2 Examples of declarative and imperative model descriptions.
The fragment of a NeuroML file above describes two cables, each
with a single segment. This declarative specification does not detail
the method of creating these, just contains information on the

parameters describing them, in a structured format. The NEURON
and GENESIS script files, on the other hand, outline the steps needed
to create the model, in the native language of the simulator
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single, declarative, fragment of NeuroML as described
below.

Declarative descriptions encapsulate the simulator de-
pendent mapping between model and data structures and
are, thus, promising candidates for a standard model
description format. In computer science, declarative
programming is of interest for its readability, because it
defines what a program is doing instead of how it is doing it
(Lloyd 1994), leaving the problem of how the desired
function is achieved to the implementation of the language.
For a certain class of declarative languages the correctness
of algorithms can be proven mathematically. But, for the
case of general purpose declarative languages, readability
and formal correctness come at the price that such
languages are notoriously inefficient and difficult to
implement. This motivates the development of domain-
specific declarative specification languages that cover only
the constructional parts of a model (such as which channels
are present on which compartments) and assume that
functional knowledge (such as how channels affect mem-
brane potential) is built into the simulator. The distinction is
clearly exemplified by the approaches used with CellML
(Cuellar et al. 2003) and SBML (Systems Biology Marup
Language) (Hucka et al. 2003). The CellML specification
aims to allow complete declarative specification of a model.
It uses MathML for specifying equations and the Resource
Description Format (RDF, (http://www.w3.org/RDF/). for
relations. But the focus of CellML is on docum ent creation
and validation, where the document is a complete, portable
electronic specification of the model. However in general
simulation systems working with CellML only support a
small subset of what can be expressed. With SBML, there
is a stronger interest in runnable models and the specifica-
tion assumes that a lot of domain specific knowledge is
built into the simulation environment. Nevertheless, most
SBML-aware software systems still only support part of the
specification. In neuroscience, the main interest to date has
been on even higher levels where declarative specifications
are only developed to encapsulate models for which
implementations already exist.

XML Based Standards

In the domain of data formats, eXtensible Markup
Language (XML) is a successful example of a declarative
format that was developed to meet the challenges of large-
scale electronic publishing (http://www.w3.org/XML/). The
big appeal of XML based languages is their combination of
a standardized low-level structure, with easily extended
domain-specific structures. The low-level standardization
allows XML documents to be processed automatically
without domain-specific knowledge while the extensions
allow complex structures to be cleanly represented. XML

provides a powerful framework for creating declarative
model description formats and the XML community has
created a wide range of tools that help in creating domain
specific XML variants. Thus, it is not surprising that
numerous projects in computational neuroscience and
bioinformatics use XML based description formats (e.g.
NeuroML (Goddard et al. 2002; Crook et al. 2005),
CellML (Cuellar et al. 2003), ChannelML (http://www.
neuroconstruct.org/), MorphML (Crook et al. 2007), and
SBML (Hucka et al. 2003). It is somewhat ironic that
XML is the most successful representative of declarative
languages as it misses out on the initial goal of human
readability. XML was designed as a machine readable
format to be processed automatically and even though it is
declarative, in most production applications it is too
verbose to be read or written by humans. This gives it a
good chance as portable model exchange format, but
writing standards-compliant XML directly is not a serious
contender to replace the use of imperative scripting
languages that researchers currently rely on to formulate
their models in the first place. Likewise, RDF provides an
XML based ontology system for the semantic web, but the
need to create RDF documents has motivated the
development of more compact and readable notations
such as N3 (http://www.w3.org/DesignIssues/Notation3).

How Much Can a Standardized Model Description Cover?

It is almost inevitable that a complete declarative specifi-
cation standard for models that are themselves the objects
of active research cannot be laid down (with the exception
of complete, but impractical specifications as discussed
above). The focus here is, instead on highly domain-
specific specifications where exact meanings and parame-
terizations are attached to terms already used in the
modeling literature (Ion Channel, Hodgkin–Huxley gate,
Spine etc). For models at the level of networks or larger
systems, the range of possible models is much broader and
no suitable set of terms and concepts is currently in sight.
The situation is similar at much smaller scales although
standards for sub-cellular morphology specifications are
being developed.

A natural starting point for any standardization effort of
this nature is the set of declarative specifications already
supported by different software systems. Where two
systems address the same class of models, this immediately
raises the question of whether the standard should cover the
intersection, only the parameterizations common to both
systems; the union, everything that either of them can
express; or something else entirely, based on some new
notion of what ought to be modelable, as illustrated in
Fig. 3. To date, different emerging standards have adopted
different positions on the matter. For example, within the
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NeuroML framework MorphML (Crook et al. 2007)
combines the second and third courses, driven partly by
the desire of modelers to be able to use the same
morphology specifications with different simulators and
partly by the desire of experimental neuroscientists to
accurately represent the structures they are tracing. But
ChannelML tends towards an intersection of what Neuron
and Genesis can support, although it is also under pressure
to support some specification styles, such as channel
specifications via kinetic schemes that only one of the two
supports. At present, the main application of ChannelML is
within NeuroConstruct (http://www.neuroconstruct.org)
which facilitates the creation of declarative models that
can subsequently be converted to input scripts both for
Neuron and for Genesis. This leads to a natural tendency
towards intersection based specifications and also to an
inevitable tension between the desires to be able to
represent as many existing models as possible while still
being able to export to both systems.

The case of ChannelML is also instructive from the
perspective of channel modeling systems for which it was
not originally defined. For example, can models built by
biophysicists be represented in ChannelML as is? The
answer, in general, is that they cannot, for two main
reasons: first, biophysicists prefer to use kinetic schemes
(e.g. Chen and Hess 1990; Vandenberg and Bezanilla 1991)
for channels rather than Hodgkin–Huxley style models, and
second they are concerned with single-channel conductance
rather than conductance densities as in ChannelML. Al-
though the specification could readily be extended to support
these cases, the result would be that channels could be
specified that could not be run in either Neuron or Genesis.
T h i s ex am pl e i s b y n o m ea ns an is ol at ed ca se . In many
respects, since they have been so well studied, ion channels
could be expected to be one of the easier cases for the
creation of a comprehensive specification language.

The channel example illustrates the core issue with the
standardization of model descriptions: intersection standards
are valuable and initially increase in value as their scope

grows, but at some point the extension should be stopped
and the remaining cases should be tackled by a different
approach. For different levels of maturity and different
types of problems the cutoff point can be expected to vary
widely, from getting the majority of models within the
standard with just a few edge cases to areas, like network
specification, where almost everything is an edge case.
Here, the default strategy is to use high-level languages like
Matlab or Python as the modeling system.

Declarative standards development therefore breaks
down into two distinct problems: the development of core
standards and the handling of edge cases. The first is well
understood and well supported by a wide range of tools and
technologies. The second is relatively new area of research
and one where neuroscience, with its tendency for almost
everything to be an edge case, has great potential to drive
the development of new approaches to the handling of
deeply heterogeneous models. If computational neurosci-
ence is to exploit this potential, it must come up with a
modeling approach which is more attractive than the current
de-facto standard of NEURON/HOC or GENESIS/SLI and
Matlab for off-line analysis.

Models That Do Not Fit Within a Standard

Even where no specification standard has been laid out,
declarative model specifications promise significant benefits
in terms of their readability and at least partial system
independence. They are also an excellent starting point for
any rationalization of models with overlapping domains.
Freed from the constraints of existing standards, such models
are also at liberty to use recent ideas and technologies for
achieving the most readable and expressive formats.

Where independent specifications have been used for
separate models that occupy the same domain and could
usefully be interconverted, a range of options are open to
the researcher wishing to port a model. It can be done by
hand, benefiting from the readability of declarative speci-
fication languages and avoiding the need to learn the

Fig. 3 Different options for the
concepts to be included in stan-
dardized specifications when
two simulators already support
some of the concepts in the
domain. Restricting the scope to
the intersection ensures that new
models defined using the speci-
fication can be run in either
simulator. Covering the union
ensures that models already de-
fined for the simulators can be
converted to the standard. A
third option is to focus on the
domain itself, without regard to
existing software support
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independent scripting languages. In some cases relatively
straightforward approaches such as XSL transforms (http://
www.w3.org/TR/xslt) may work for systematizing at least
part of the process. But in general model reuse will require
the injection of additional knowledge about both the
biological system being modeled and about the software
systems to be used. A relatively simple case would be the
mapping of a Hodgkin–Huxley ion channel model onto an
equivalent kinetic scheme (Hille 2001) for use within a
biophysical modeling package. A slightly more complex
example is the replacement of an enzymatic reaction
expressed with a reduced approximate equation such as the
Michaelis Menten rule by two separate mass-action reactions
(Bhalla 2001). The more detailed reactions require quantities
to be supplied that are not derivable from the original model.
In this case an exact equivalent is not possible, but one which
is functionally equivalent to within the original experimental
error bounds almost certainly is. A similar problem arises in
mapping ion channels onto a system that only supports a few
possible parameterizations of transition rates. Again, exact
equivalents may not exist, but functional ones are likely to
exist and can be found by a combination of model screening
and model fitting within the new system.

These examples, where mathematically exact equivalents
do not exist in the target system, but where the original
modeler could nevertheless perfectly well have achieved their
scientific objectives within that system, are likely to make up
the majority of cases, rather than being rare exceptions. They
call for novel and imaginative approaches to model trans-
formations and knowledge representation. The observation
that existing model implementations force the modeler to go
beyond their initial intentions and specify quantities that the
system needs but that the data does not supply, also hints at the
possibility of further levels of model specification that lie
somewhere between the empirical observations or hypotheses
and the very precise specifications needed to make a working
model within a particular system. Whether such forms of
specification are achievable, and how they might prove useful
remains an open question.

Comparison with Systems Biology Markup Language

In the context of the previous section, SBML takes the
approach that for the domain of biochemical reaction systems
in a single mixed pool, everything should fit within the
standard and there should be no edge cases. The standard has
therefore grown with every new version (despite occasional
pruning such as the elimination of Fahrenheit as a unit of
temperature). This has several notable consequences: no
software system supports all of SBML; the conversion of
models between systems is inevitably lossy; many systems
support SBML in write-only mode. Despite these apparent
disadvantages, the SBML movement brings the huge benefit

that now the large majority of systems biology models can be
represented within a well defined, tightly controlled specifi-
cation. Although it does not make model portability simple, it
certainly facilitates it, and most importantly, it enables the
community tomove towards a situation inwhich the provision
of a standardized SBML version of a model can be made a
condition of publication.

Do the same costs and benefits apply in neuroinfor-
matics, or is the balance subtly different in such a way that
we should not aim for the same goals? The most striking
difference is in the breadth of the domain to be covered:
neuroinformatics increasingly touches on systems biology
as one small subset, but approaches it from a direction
where detailed 3-D geometry is an essential prerequisite
(Stiles and Bartol 2001). This immediately makes any
hypothetical catch-all standard substantially larger before
even considering the many layers above through neurons
and networks to large-scale connectivity. As such, and
given the effort already required for the domain covered by
SBML, the prospects of a similar program for the whole of
neuroinformatics seem at best very remote. However, it
may be possible to standardize specifications for models in
certain more restricted areas. For example, considerable
effort is currently devoted to modeling single neurons and
there is a broad consensus about what is needed. Although
a standard that catches all cases is unlikely, one that
catches a large majority of them should be achievable. For
other areas, the benefits of moving towards a system of
complete and correct model publication still apply just
as much in neuroinformatics as in systems biology, and
raises the question of what alternative strategies can be
adopted to achieve the same goal. This is considered further
in “Discussion and Open Issues.”

Run-time Interoperability

The second approach to interoperability abandons the
requirement that a model specification alone should be
portable and requires instead that the specification plus a
specific implementation should interoperate with other
systems. This loses out on the hypothetical benefits of
durability and universality that come with standardized and
purely declarative model specifications, but it has the large
pragmatic advantage of being achievable in many cases.

Examples where run-time communication has an obvious
benefit come from cases where there is a big investment in
complex, simulator specific models, such as the De Schutter
Purkinje cell model running in Genesis (De Schutter and
Bower 1994) or Traub’s CA3 pyramidal cell models running
in a proprietary system (Traub et al. 1994). Re-implementing
the Purkinje cell model in Neuron with the goal of
quantitative identity proved very difficult (Arnd Roth, private
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communication), so for non-Genesis users who nevertheless
wish to study the model or include it within a network
simulation, the natural solution is to take both the model and
Genesis itself and connect that to whatever system they are
using. In practical terms, the biology makes this rather easier
than it might seem because the communication can often be
reduced to sending and receiving discrete spikes with
relatively large (several ms) latencies (although, gap junctions,
spillover or other local spatial interactions, if present, turn it
back into a very hard problem).

The implementation of run-time interoperability can be
subdivided into horizontal communication, between simula-
tors operating at the same level, and vertical communication,
where they address different levels of detail or different spatial
scales. The two cases present rather different challenges. The
first is primarily a technical and engineering problem. The
second has similar technical requirements but also introduces
new conceptual and scientific problems as to how
different spatial and temporal scales can be successfully
combined within a single system.

Multi-level Interaction

The potential for multi-level modeling has been extensively
discussed (Kötter at al. 2002; De Schutter et al. 2005) but
there are still very few concrete examples of such approaches
in practice. On a technical level, Python based “glue” or its
equivalent should be adequate to connect, for example a
detailed biophysical model of a synapse run in MCell with a
whole cell model run in Neuron or Genesis. The bigger
question is how this capability can be scientifically
exploited, or, put another way, “who really wants to do
multi-level modeling anyway?” Even if it were computa-
tionally tractable to model every synapse in a large cell with
a detailed biophysical model, the problem would be
seriously under-constrained because of the lack of detailed
morphology. However, this difficulty rarely arises because of
computational limits on what can be modeled. The greater
challenge, therefore, and indeed the “multi-level” buzzword
itself, come from the need to be very selective about which
parts of a model are tackled at the finest scale and how the
results of such models can be exploited. The situation can be
contrasted with astrophysics where numerical techniques
have been developed to compute behavior simultaneously
across a wide range of scales, such as collisions between
stars with diameters differing by a factor of a million or
more. The key difference is that in the astrophysical case, it
is a priori clear that the finest scales only matter in very
restricted areas. In biology, however, it is rarely so clear that
fine-scale behavior in some region is more important than
fine-scale behavior in another.

These considerations effectively preclude the simplest
interpretation of multi-level modeling (“let’s just replace this

synapse by a biophysical model and leave all the rest as they
are”) and shift the focus towards the use of representative cases
and statistical applications of behavior at different scales.

Technology for Run-time Interoperability

Technically, run-time interoperability between simulators
can be achieved in different ways that fall into three broad
categories. The first two can be used to couple independent
simulators during run-time. The third category introduces a
general simulation kernel that orchestrates different simu-
lator modules that are no longer independent.

Dir ect Cou pling

The first category directly connects two or more simulators
using the devices of the operating system. Instead of
designing a dedicated communication protocol, it is often
possible to exploit the extensive scripting interfaces that
most simulators have. For two simulators, A and B, each one
only needs to be able to generate, rather than understand, the
language used by the other. Simulator A talks to simulator B
in B’s native language and simulator B responds by sending
commands in A’s language. Thus, communication can be
established with no more than a few functions on each side.
This approach is taken by PyNEST, which connects the
NEST (Diesmann and Gewaltig 2002) simulator to extension
modules written in Python and has the big pragmatic
advantage that it is quick and easy to implement.

Indir ect Coupling V i a Interpr eted La nguages

The second category uses an interpreted high-level lan-
guage to couple different simulators. Popular choices are
languages with strong development communities, like
Python, Perl, or Guile, that provide powerful mechanisms
to glue applications together. Python has a number of
features that make it an interesting candidate. First, Python
has a clear and concise syntax that supports declarative and
functional programming styles. Second, Python’s support
for data analysis and visualization is almost on a par with
Matlab. Indeed there is now a broad consensus that Python
is a good choice for use with neuroscience simulators, the
debate being almost completely free from the style of
dogmatic language preferences that have surfaced in the
past. This may reflect the growing familiarity of software
engineers with many different languages and the fact that
most imperative interpreted languages look much the same
anyway. It may also reflect the recognition that Python is
already the de-facto communication standard in several
areas, with NEST and Topographica (Bednar et al. 2003)
already providing Python interfaces, and Neuron rapidly
catching up. The PyNN project (Brette et al. 2007) is
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developing an API (Application Programming Interface) to
unify many of these interfaces so that the same Python code
can be used with different systems. Simulator-specific
bindings translate the API calls into the appropriate
instructions for the system that the model is to be run on.

Coupli ng V i a Object Orient ed Frame works

The final form of interoperability provides an object
oriented framework that consists of a general simulation
kernel, which handles the overall management of a
simulation and delegates specific tasks to modules, plus
an open set of modules, that correspond to entities in the
neural model. The modules must conform to a carefully
designed interface, which supports common operations on
the modules including creation and communication. An
example of this type of interface for the case of kinetic
scheme ion channels is shown in Fig. 4.

This modularization enables the subdivision of tasks into
smaller modules, such as the solution of the voltage
diffusion equation over a branched structure or the update
of the state of a single group of ion channels. It has the
benefit that the many smaller modules are easier for human
engineers to work on. An efficiency advantage of this
approach is that the existence of a strictly defined interface
makes it possible to design highly optimized numerical
engines that can invisibly ‘take over’ calculations nfrom
many smaller modules (De Schutter and Beeman 1998).
Furthermore, different numerical engines can be written for
the same set of modules, allowing different kinds of
calculations to be done on a given model description as
embodied in the simulation entities. For example, the same
model could be simulated using adaptive or fixed time-step
algorithms provided both numerical engines were available.
It is hoped that careful development to strictly-defined
interfaces allows such a system to work efficiently at higher
inter-module communication requirements than would be
the case for a looser assembly of components linked by an
interpreted language like Python. This approach is exem-
plified by a number of object oriented simulation systems,
including the Messaging Object Oriented Simulation
Environment (MOOSE, http://sourceforge.net/projects/
moose-g3) being developed as a successor to the Genesis
framework, Catacomb2 (Cannon et al. 2003), or the
discontinued Neosim project (Goddard et al. 2001; http://
www.neosim.org).

From a development perspective, however, modular ar-
chitectures impose much stricter constraints on the imple-
mentation of models than simply the need to provide an
interface in a specified scripting language such as Python.
A module must implement the interfaces specified by the
framework for its particular functionality. And if the
module is to be developed for simultaneous use in other

environments, the interface requirements are likely to
propagate through and exert architectural constraints on
those environments too. For these reasons, the software
interfaces are subject to many of the same pressures and
requirements as the development of cross-systems model
specification formats, and it is just as important that they
achieve community buy-in if they are to be widely adopted.
The big advantage for the framework developer over the
standards developer, however, is that they have a great deal
to offer up-front. Whereas supporting a standard typically
involves extra work for a developer, using an existing
domain-specific framework dramatically reduces the effort
involved in developing a usable implementation of a novel
algorithm compared with building a stand-alone applica-
tion. Even with extensive use of existing libraries, the
peripheral code necessary to provide persistence, error
reporting, visualization, etc. can substantially outweigh the

Fig. 4 Software interfaces for constructing and using kinetic scheme
ion channel models. A channel implementation that supports these
interfaces can be used from an object orientated framework without
the internal model of either being exposed to the other. Channel
construction is performed by a builder object that must keep track of
channels and states as they are mentioned. The “channel” and “state”
arguments can be any identifiers convenient to the framework. When
requested, the builder returns an object that is able to compute the
behavior of a collection of channels (e.g. for an isopotential
compartment). The “advance” and getter methods here are specific
to single step calculation: further methods would be required to
support more complicated numerical algorithms in the container
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code required to actually implement the core algorithm. By
writing within an existing framework, much, if not all, this
ancillary work can be eliminated. Experience will show
whether it is possible to design object frameworks that are
universal enough to embrace all modeling domains (with-
out coming to the point that it is as general as the operating
system kernel) or whether we need different frameworks for
the various domains in computational neuroscience.

Discussion and Open Issues

The increasing use of computational models in neuroscience
research calls for significant improvements in both technology
and in modeling practice in order for the field to progress
effectively. The key requirement is for the transferability of
models so that new work can build on prior results. Except for
the simplest models, paper publication alone is rarely
adequate to communicate a model since it gives only
description of the model and its behavior, not the model itself.
To turn a model into a durable electronic entity that has the
same permanence and accessibility as the paper published
about it is a very challenging task, but solutions are gradually
emerging. Our focus has been on the technical approaches that
can improve accessibility of models within an environment
where many different simulations systems are in use. All the
approaches considered are under active development and it is
too early to say which will be most fruitful. Indeed, no one
approach is able to solve all the problems, so a flexible
combination of techniques is called for according to the needs
of different modeling problems.

Beyond the mainly technical concerns of interaction
between software systems, the effective use of models also
requires changes to the way they are used and published.
Certain problems can be solved relatively easily by the
adoption of tools and practices that are already routine among
software developers (Baxter et al. 2006). In particular the use
of version control systems, and the extensive support for
documentation standards are as necessary for effective model
development as for software development and exactly the
same tools can be used. Other problems are more specific to
neuroscience and to the decentralized way in which the
modeling community operates where changes that could
benefit the community at large are still in the hands of
individual researchers. We first consider the problem of how
to motivate the adoption of standards, followed by issues of
model publication and we finally explore the next step of
making not just the model itself, but the data on which the
model is based readily available for reanalysis and reuse.

Adoption of Proposed Standards

Whatever the solutions to the problems of simulator
interoperability may be, it is crucial that they are accepted

and used by the prospective users as early as possible. From
a technical perspective, the minimal criteria for acceptance
are clear. A standard (whether it is a model description
language, software interfaces, or a policy on the use of
common languages) must be clear and concise, since
otherwise prospective users cannot easily decide whether
their model is covered by the standard or not and may be
put-off by its complexity. In addition, the software
implementing the standard must be stable, light-weight,
and easy to use. Without this, researchers may fear the work
involved in installing and using it, and may prefer to write
their own simulator over which they have control.

The sociological aspects are far more difficult. Science is
a competitive business and experience tells us that research
is driven by tight schedules, scarce resources, and corre-
spondingly pragmatic approaches and decisions. Thus,
adhering to standards with the only benefit of helping
others may not be at the top of the research agenda. Where
the use of standards is primarily a technical issue to be
resolved between the developers of different simulators, the
benefits to the user comes at little extra cost so there are
few barriers to adoption. But in most cases, the use of
standards requires changes in the way researchers build
models, whether in writing new software or using existing
simulators. To be accepted, standards for interoperability
must first help the users in their daily modeling work.

Both developing the standards themselves and persuad-
ing users to adopt them are slow iterative processes during
which the benefits are not fully realizable. It is therefore
important to find other possible drivers for the process. One
promising route towards this end arises from the strong user
preference for developing models using graphical user
interface tools rather than by writing code. Graphical tools
fit most easily on a declarative data model which is a good
starting point for standardization. Another clear motivation
would be a standardized notation which is so concise,
expressive, and clear that models can be set up and
simulated with much less effort than today. Such a notation
would both serve interoperability and be a direct advantage
for the researchers who use it. Unfortunately, research in
this area has hardly started. Although current work on XML
based standards will address many of the technical and
conceptual issues of such a format, the difficulty of
working directly with XML calls for an extra layer between
the standard and the user. The notational problems could be
addressed by using more readable equivalents of XML such
as N3 or YAML, but the conceptual issues remain.

Another possibility is to change the environment in which
the individual works so as to promote outcomes, such as
portable models, that benefit the community. Obligatory
model publication, as discussed below, is one such strategy.
Others could include conditions on the award of grants,
analogous to existing data sharing requirements (Koslow
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2002; Gardner et al. 2003; Insel et al. 2003), or a shift of
funding emphasis to reward technologies that allow the easy
reuse of existing models as well as the creation of new ones.

Model Publication

Despite significant progress on XML formats and Python
interfaces in certain areas, at present no complete standards
for model descriptions or simulation middle-ware are in
sight and there may be considerable work required to reach a
solution that meets all the criteria mentioned here. Until then
pragmatic intermediate solutions have to be found. One
approach that would bring significant short-term benefits
would be to require the publication of source code of a
model along with its description in a journal. This at least
would ensure that there is a complete and correct, although
often hard to read, version of the system described in the
paper. A first and encouraging project in this direction is the
SenseLab’s ModelDB database (http://senselab.med.yale.
edu/senselab/modeldb/) (Migliore et al. 2003) where
researchers can submit their models once the publication
is accepted. ModelDB already hosts a large number of
models and is becoming a valued resource for researchers.
Placing source code in ModelDB is actively promoted by
the Journal of Computational Neuroscience (JCNS) where
the review process involves specifying whether the authors
should be asked to make their code available. Although not
a strict requirement, this strategy proves quite effective in
having source code made available where appropriate.

Inclusive repositories, such as ModelDB are well placed
to support emerging standards as they develop. Although a
model can be deposited in any format, it is easy to envisage
views of the repository that provide better access to and
information about models that use recognized standards.

Data Sources

Many models are based primarily on empirical data. Even in
the ideal case of a widely used portable standard for model
specification, and successful data sharing infrastructure
making the data easily available, the process whereby a
model was created could still remain something of a black art.
Increased compatibility and interoperability between simu-
lators could even exacerbate the problem by allowing more
diverse processes to be used in building models and more
eclectic mixtures of software to be hooked up together. This
goes well beyond issues of model specification, but in
principle many of the same concepts are applicable. Instead
of specifying only the structure of a final model, the
specification could include references to the sources on
which the model is based and how each one has been
incorporated. The biomodels database (Le Novère et al.
2006) provides examples of how this could work,

although these documents are typically created after the
model has been published rather than as an integral part of
the modeling process itself.

Conclusion

The workshop on which this discussion is based provided a
valuable opportunity for developers of a range of neurosci-
ence simulation systems to discuss their problems, objec-
tives, and how their varied projects relate to one another. It
was characterized by an unexpected degree of agreement on
many key issues: certainly in terms of what the important
issues are, and even in many cases on how they should be
addressed. Given the scope and scale of the modeling work
already undertaken in neuroscience, and the ever-increasing
demand for new and better software tools, any activity that
increases the productivity of the development community is
to be welcomed. In particular, events such as this workshop
that bring active developers together provide a very valuable
forum for the synchronization and planning of future work,
and should certainly be repeated in the future.
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