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Sparse coding is an important approach for the unsupervised learning of
sensory features. In this contribution, we present two new methods that
extend the traditional sparse coding approach with supervised compo-
nents. Our goal is to increase the suitability of the learned features for
classification tasks while keeping most of their general representation
capability. We analyze the effect of the new methods using visualization
on artificial data and discuss the results on two object test sets with regard
to the properties of the found feature representation.

1 Introduction

Most approaches to object recognition employ two kinds of methods: meth-
ods that learn features and methods that learn object representations. While
the second group of methods can be used directly for classification by com-
paring a test image with the learned representation, the first group has a
supporting function in finding subspaces in the data in which more robust
object representations can be obtained.

For the object representation learning methods, there is a further dis-
tinction between probabilistic generative and discriminative approaches,
depending on whether they model the distribution of samples in the data
space (Ulusoy & Bishop, 2005). In recent years a stronger interest arose
in combining the advantages of both approaches (Raina, Shen, Ng, & Mc-
Callum, 2003; Ng & Jordan, 2002). Following Ulusoy and Bishop (2005),
discriminative approaches are faster and more reliable in predicting class
labels, since they are trained to do so rather than to model the joint distribu-
tion of input vectors and classes. Because of this specialization in a certain
classification task, these approaches suffer the drawback that they have to
be retrained whenever the scenario is changed, for example, by adding a
new class.
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Probabilistic generative methods, such as gaussian mixture models
(GMMs; Mc-Lachlan & Peel, 2000), learn independent models for each class.
Therefore, a new class simply adds a new model but does not influence the
existing ones. Also, they are able to deal with missing information and un-
labeled data. The disadvantage of generative methods is that they model
details of a data distribution that may be irrelevant or even disturbing in
classification tasks.

Also for the feature learning methods, a distinction exists between gen-
erative and discriminative approaches, depending on whether the learned
feature subspace supports reconstruction of the data or classification. Usu-
ally both approaches train one global feature basis for the whole data dis-
tribution. The discriminative approaches are trained in a supervised and
the generative approaches normally in an unsupervised manner. Although
the term generative is often used in this context, it is misleading because the
feature learning methods do not specify how new data could be generated
from a learned basis by means of learning priors on how to combine the
features. The probabilistic generative models do so explicitly.

There is a group of generative feature learning methods called linear
generative methods. These methods search for subspaces that allow for a
good reconstruction of the data vectors in terms of linear combinations of
the basis functions. This means each data vector is associated with a set
of coefficients that determines how the features (basis functions, weights)
have to be used to yield the best reconstruction. The linear generative
models differ in the constraints on how to reconstruct the data. Principal
component analysis (PCA; Duda, Hart, & Stork, 2000) finds dimensions
of highest variance in the data, which allows for a reconstruction with
minimal information loss when using fewer features than dimensions in the
data. Nonnegative matrix factorization (NMF; Lee & Seung, 1999) employs
purely positive weights and coefficients and was shown to learn localized
patterns that often have a direct interpretation as object parts. Sparse coding
(Olshausen & Field, 1996) puts constraints on the coefficients, enforcing
an efficient use of the basis functions. The principle of efficient coding
resembles receptive field properties in primary visual cortex when applied
to small patches of natural scenes.

As mentioned in the beginning, linear generative methods are often used
to facilitate classification. So, for example, PCA was successfully applied
to face recognition (Turk & Pentland, 1991), and sparse coding features
were used as intermediate layer in a feature hierarchy related to the ventral
visual pathway (Wersing & Körner, 2003), that yields robust classification
performance for different recognition problems. However, linear generative
methods for feature learning suffer the same drawback as the probabilistic
generative methods: they spend resources for modeling certain dimensions
in the data that might be irrelevant or disturbing for classification tasks. On
the other hand, the discriminative feature learning methods concentrate on
dimensions in the data that are relevant for classification but do not offer the
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possibility of learning features that have an interpretation as object parts.
Instead, they generate very holistic, noisy-looking features. An example for
those methods is the Fisher linear discriminant (Duda et al., 2000), which
finds subspaces in the data where the classes are separated best in terms of
Euclidean distance. This subspace is very specific for the trained scenario,
which may decrease the ability to generalize to new scenarios.

The mixture of advantages and disadvantages suggests a combination of
discriminative and generative properties as an attractive approach for fea-
ture learning. We decided to use the nonnegative sparse coding approach
(Hoyer, 2002) as the basis for our investigations. The nonnegative sparse
coding is a linear generative method that adopts the positivity constraints
from the NMF. As outlined above, this property facilitates the learning of
features that have an interpretation as object parts. But because the linear
generative methods are mainly based on the principle of reconstruction of
the data, the obtained features might not be useful for building a classifier.
So the nonnegative sparse coding will focus its resources on reconstructing
common parts of the classes in the first and does not concentrate on discrim-
inative ones. By adding class-specific, supervised components to the cost
function, we hope to prevent this behavior and to learn qualitatively differ-
ent features that are more discriminative while keeping their interpretation
as object parts.

After reviewing related work in section 2, we introduce the new methods
in section 3 and analyze them using a visualization of their representation
properties dependent on the cost function parameters. In section 4, we
analyze the obtained feature representations for two object test sets and
give our conclusions in section 5.

2 Related Work

The standard approach to sparse coding (Olshausen & Field, 1996) is formu-
lated as a linear code representing the data. Its target is to combine efficient
reconstruction with a sparse usage of the representing basis, resulting in
the following cost function,
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where the samples xi = (xi1, xi2, . . . , xi K )T , i = 1, . . . , I , and the weights
wp = (

wp1, wp2, . . . , wpK
)T , p = 1, . . . , P , have the same dimension K . In

the left reconstruction term, each xi is approximated by a linear combi-
nation ri = ∑

p cipwp, where ri is referred to as the reconstruction of the
corresponding xi . The coefficients cip specify how much the pth weight is
involved in the reconstruction of the ith data vector. The squared Euclidean
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norm ‖ · ‖2
2 of the difference vector between an xi and its reconstruction

ri contributes to the cost. The right sparsity term sums up the cip. The
nonlinear function � (e.g., �(·) = | · |) increases the cost the more the ac-
tivation is spread over different cip, and so many of them become zero
while few are highly activated. The influence of the sparsity term is scaled
with the positive constant γ . The sparsity forces the weights to align more
directly to the data and to reconstruct an xi most sparsely if multiple pos-
sibilities exist. This enables the sparse coding to handle an overcomplete
representation.

PCA (Duda et al., 2000) and NMF (Lee & Seung 1999) are based on the
same measure of reconstruction as the sparse coding model described by
equation 2.1, but do not put sparsity constraints on the coefficients. Using
fewer weights than dimensions in the data (P < K ), PCA forces the weights
to align to the directions with the biggest variance in data space. Therefore,
PCA is often used to reduce the dimensionality of data, with a minimal loss
of information.

NMF differs from PCA in that it puts positivity constraints on both the
weights and the coefficients. Therefore, the contribution of each weight to
a certain reconstruction is purely positive and cannot be canceled out by
the contribution of another weight. This limitation makes it economical
to reconstruct an image with nonoverlapping weights, where each single
weight is already a good reconstruction of an image part. This is often
referred to as a parts-based representation. Later Hoyer (2004) added to the
NMF an option to directly control the sparseness of the weights and the
coefficients. He discovered that for achieving a parts-based representation
with standard NMF, the same parts have to occur at the same position in
the training samples. By adding sparseness constraints on the weights, a
parts-based representation can be more reliably produced. In other cases,
the NMF produces extremely parts-based weights. This means they contain
only single pixels or small blobs and do not reveal any meaningful statistical
background of the data. Adding sparseness constraints onto the coefficients
forces the weights to reveal more holistic dependencies.

Nonnegative sparse coding (Hoyer, 2002) adopts the idea of a parts-based
representation for sparse coding by also putting positivity constraints on the
weights and the coefficients. It differs from NMF in the fact that the sparsity
of the coefficients is enforced explicitly, and so nonnegative sparse coding
is similar to NMF with sparseness constraints. The remaining difference
between both approaches is that sparse coding methods often use simple
gradient descent for the optimization of the cost function, whereas NMF
methods apply multiplicative update rules that do not require the definition
of a learning rate.

In the algorithms described above, each weight contributes only once
to a reconstruction of a certain image, and the position of activation in the
weight directly determines the position of activation in the reconstruction.
Therefore, a single weight cannot represent or learn a part that occurs in
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different images at different locations (or in other transformations). This
leads to redundancies in the coding scheme by representing transforma-
tions of one part with different weights. To overcome this limitation, Grimes
and Rao (2005) proposed an extension of the sparse coding that factors an
image into object features and transformations using a bilinear function.
In this way the weights can contribute several times to the same recon-
struction, each time undergoing another transformation beforehand (e.g.,
shifts to different locations). Currently the approach handles only transla-
tion, but in general it is able to deal with arbitrary transformations, such
as rotation, scaling and view changes. The concept of bilinearity imposes
that for a certain image, all features use the same transformations. This
contradicts the notion of features as independent parts. Therefore, further
extensions in Grimes and Rao (2005) go in the direction of allowing inde-
pendent transformations of features per image. This is a similar method
to the translation-invariant adaptation of the nonnegative sparse coding
proposed in Wersing and Körner (2003) and the translation-invariant adap-
tation of the NMF introduced in Eggert, Wersing and Körner (2004).

The unsupervised methods mentioned above produce features with re-
constructive qualities. The features are not specialized in solving a certain
task and therefore could be transferred to other scenarios from those used
for training. The drawback is that the extraction of statistically significant
parts in high-dimensional data with unsupervised methods requires large
training sets. Also, there is no guarantee that the obtained parts are useful
in object recognition tasks.

Another group of methods concentrates on only discriminative proper-
ties of the features. One example of such an approach is the Fisher linear
discriminant (Duda et al., 2000). It searches for a low-dimensional represen-
tation of the data that, unlike PCA, does not favor the directions of biggest
variance, but the directions allowing the best separation of the classes in the
data. This is done by generating a transformation matrix that minimizes the
ratio of within-class scatter to between-class scatter. Thus, in some sense,
this projection maximizes the signal-to-noise ratio. When Q is the number
of classes in the data, the feature space has dimension Q − 1. This allows
a linear separation of the classes only if each has a very peaked, unimodal
gaussian distribution in feature space.

Discriminative features are very efficient in solving the task they are
trained for, but normally lack the property of being reusable in adapted
scenarios. Methods combining the advantages of unsupervised and super-
vised methods are rare. One is the maximum representation and discrimi-
nation feature (MRDF) approach (Talukder & Casasent 1998). It combines
PCA and an adaptation of the Fisher linear discriminant, which could also
handle multimodal distributions, and introduces a parameter that deter-
mines to which degree reconstruction or discrimination are desired. Since
the method has no positivity constraints, the generated features are holistic
and do not have a direct interpretation as object parts.
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Cups with Handle Cups without Handle Closed Containers

Figure 1: Example views of the three-class problem.

We propose two new methods to combine unsupervised and supervised
feature learning on the basis of a nonnegative, parts-based representation.

3 Class-Specific Sparse Coding

Class specificity should denote the property of a feature to give a strong clue
on the class membership of an image the feature is detected in. Following
this definition, in the three-class problem shown in Figure 1, the handles
show a high specificity for the cups with handle class, because whenever
you recognize a handle, you can be sure that you see a view of this class. In
the same way, the white caps are specific for the closed container class.

The standard sparse coding model in equation 2.1 does not care about
the existence of different classes and produces features that are useful for
general image reconstruction but lack the property of being class specific.

Our two new approaches extend nonnegative sparse coding with super-
vised components. Suppose that the data samples are split into Q subsets
(classes) Xq , with q = 1, . . . , Q. Each subset has nq elements labeled as class
q . In the first approach, this class information has a direct effect on the
coefficients cip, and it will therefore be referred to as coefficient coding:
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We assume cip and wpk ≥ 0. For the sparsity term, we used the function
�(cip) = cip, which corresponds in the nonnegative case to the absolute
value. The right coefficient term causes cost if coefficients belonging to the
same weight wp are active for differently labeled samples xi and xı̃, where
q (i) is the label of xi and nq (i) is the number of samples in the class of xi .
nq (i) is used to normalize the effect of classes with different cardinality. The
influence of the coefficient term is scaled with the positive constant α.
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In the second approach, the class information has a more direct effect on
the weights, and it will therefore be referred to as weight coding:
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The right weight term causes cost if a wp has a large inner product with
differently labeled samples xi and xı̃. Again, q (i) denotes the label of xi , and
nq (i) is the number of samples in the class of xi . The influence of the weight
term is scaled with the positive constant β.

The minimization of the cost functions of coefficient and weight coding
is done by alternately applying coefficient and weight steps as described
in Wersing and Körner (2003). In the coefficient step, the cost function is
minimized with respect to the cip using an asynchronous fixed-point search,
while keeping the wp constant. The weight step is a single gradient step
with a fixed step size in the wp, keeping the cip constant. A more detailed
description of the optimization procedure is given in the appendixes.

To give an instructive visualization of sparse coding and show the quali-
tatively different behavior of the new approaches, we performed optimiza-
tions for an artificial two-dimensional setting. The conclusions we draw
from this toy setting hold in principle also for more complex and higher-
dimensional problems. The artificial setting contains 10 samples that were
distributed on the positive part of the unit circle and then assigned to two
classes (see Figure 2a). These samples are reconstructed using two normal-
ized weights. The actual visualization shows the resulting weights wp and
reconstructions ri for different values of a control parameter of the cost
function, for example, the influence of the sparsity term γ (see Figure 2b).
The relative position of ri and wp allows conclusions on the sparsity of
the reconstructions, whereas the course of the wp is a direct indicator for
their discriminative properties. The optimally discriminating weights are
those that maximize the gradient of their dot product with samples near
the border between the classes. This corresponds to the property of a linear
separator. In Figure 2a, the best discriminating features would point in the
direction of the coordinate axes. Hence, in the visualization of the angles
(see Figure 2b), these weights lie at 0 and 90 degrees.

In Figure 3 the visualization is used to compare nonnegative sparse
coding, coefficient coding, and weight coding. Figure 3a shows the typical
behavior of the nonnegative sparse coding for an increasing influence fac-
tor of the sparsity term γ . Each reconstruction lies between the weights or
on one of them due to the nonnegativity constraints. For γ → 0, the recon-
struction is perfect (when using at least as many weights as dimensions in
the data), and the weights are aligned with the outermost xi . If an ri lies on
top of a weight symbol, this reconstruction is very sparse because it does
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Figure 2: (a) Artificial setting, used in our visualization. The artificial setting
is two-dimensional and contains 10 data samples xi . The xi are randomly dis-
tributed on the unit circle and assigned to two classes (symbolized with a star
and a diamond). The optimization employs two normalized two-dimensional
weights wp . For a certain parameter setting, the optimization results in the shown
position of weights and reconstructions ri . (b) Schematic description of visual-
ization. The actual visualization shows for each symbol in a the angle between a
ray from the origin to that symbol and the x-axis (see how θ in a is represented
in b). The angles of weights and reconstructions are shown at the x-coordinate
of 0.2 because the result in a was produced with a cost function parameter of 0.2.
Visualizing ri and wp for different values of the same parameter will reveal its
qualitative effect on the cost function.

not use the other weight at all. With increasing γ , each ri gives up the use
of the less suitable weight, and therefore the ri unite to two main paths. At
the same time, each wp aligns to the center of the ri assigned to it. For high
values of γ , the result is therefore comparable to that of a cluster approach.

The coefficient term restricts the use of features by different classes. When
its influence factor is increased for the coefficient coding (see Figure 3b), the
reconstructions of each class are forced to use the same distinct weight basis
(here only a single weight). So the reconstruction of the lowermost sample
of the star class aligns with increasing α to the upper weight due to its
class membership, while for the nonnegative sparse coding (see Figure 3a),
the same ri aligns to the lower weight with increasing γ due to a better
sparseness. Note that the outermost two reconstructions at both sides are
equal from the beginning. For high values of α, each feature is dedicated
to a single class and changes its direction independent of other classes.
Therefore, an increase in discriminative quality is impossible, because this
would require a strong influence of different classes onto the same weight.
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Figure 3: Influence of certain parameters on different cost functions. (a) Nonneg-
ative sparse coding (SC). The results of optimization are plotted for 15 different
influence factors of the sparsity term γ . (b) Coefficient coding (CC). The influ-
ence factor of the coefficient term α is varied, while γ is set to 0.05. (c) Weight
coding (WC). The influence factor of the sparsity term γ is varied, while the
influence factor of the weight term β is set to 0.3. (d) Accumulated results. The
angular positions of the weights wp are visualized for typical parameter settings
of the different approaches. A detailed description is given in the text.

For the weight coding (see Figure 3c), there is a complex interplay be-
tween sparsity term and weight term. When the weight term dominates,
as for very small values of γ , it removes activation from the lower weight
that it shares with members of the upper class and vice versa. So one
weight moves to the top and the other to the bottom. This means each wp

aligns to the direction that is most specific for the class it is representing.
In the nonnegative case, this can be referred to as a gain in discriminative
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power. The weight term also dominates for very high values of γ . In this
case, the reconstruction cost is near its maximum, and the algorithm tries
to minimize the weight cost at least. Only for a certain range of parame-
ters is there a meaningful combination of discriminative and reconstructive
properties.

Figure 3d shows some typical weights obtained with the different ap-
proaches. The features of nonnegative sparse coding lie relatively close to
the borders of the data distribution, offering a good compromise between
reconstruction and sparseness. For the coefficient coding, it is expensive to
reconstruct the samples near the class border using both weights strongly.
Therefore, the features move closer to the class centers. Only the weight
coding finds out that activation in y is specific or diagnostic for the star
class and activation in x for the diamond class.

The results on the toy setting showed that nonnegative sparse coding
limits the use of features globally, so each data sample is reconstructed
using a small subset of features. To reduce the reconstruction cost, the
features model parts that occur most frequently among the samples. But
those parts are usually not specific for certain classes. In the extreme case,
sparse coding works like a cluster approach, using a single weight per
sample. The coefficient coding penalizes the use of a feature for different
classes, so each class tends to use a distinct feature subset to reconstruct its
samples. In this way, coefficient coding cannot avoid that parts that occur
frequently in different classes attract weights. These weights are therefore
not discriminative or class specific. More than this, the approach may waste
resources by modeling those parts for each class independently. The weight
coding directly penalizes if a feature reflects a part that occurs in different
classes. As a result, the presence of a certain feature in an image gives a
good indication for one or only a few classes.

By enforcing the use of a distinct set of features for reconstructing each
class, the coefficient coding mimics the behavior of probabilistic generative
methods like a GMM. A GMM models a data distribution with the help of
a finite number of gaussians. When the GMM framework is used to build a
classifier, it also trains a separate GMM for each class. Therefore, GMM and
coefficient coding represent or reconstruct details of the data distribution
that may be irrelevant for determining the class label (Ulusoy & Bishop,
2005).

The weight coding instead punishes directly if a weight contains acti-
vation that is shared among different classes and therefore irrelevant for
determining the class label. The cost function of the weight coding can be
rewritten as

EW = ES + 1
2
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∑
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∑
q ,q̃
q �=q̃

(
wT

p xq
) (

wT
p xq̃

)
with: xq = 1

nq

∑
x∈Xq
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where xq is the K -dimensional mean of the samples with label q . In this form,
the weight coding shows some relation to the Fisher linear discriminant,
when neglecting that the weight coding is nonnegative in all elements
while the Fisher linear discriminant is not. The Fisher linear discriminant
minimizes in the two-class case the following cost function with respect to
w:

EF =
∑

x∈X1

(
wT x − wT x1

)2 + ∑
x∈X2

(
wT x − wT x2

)2

(wT (x1 − x2))2 . (3.3)

The numerator prefers directions where the variance within each class is
minimal and the denominator tries to separate the means of the classes as
far as possible from each other. By multiplying the denominator out, you
get:

(
wT (x1 − x2)

)2 = (
wT x1

)2 − 2
(
wT x1

) (
wT x2

) + (
wT x2

)2
. (3.4)

The second term is equivalent to the weight term. The first and the third
terms force the weight to align to the input pattern. In the weight coding, this
is done by the interplay of reconstruction term and sparsity term. Assuming
a unimodal, peaked distribution for each class in data space, the numerator
of the Fisher linear discriminant plays no significant role, and hence both
approaches put comparable forces on the features.

The weight coding is also similar to the MRDF approach (Talukder
& Casasent, 1998), which combines supervised and unsupervised feature
learning by combining an adaptation of the Fisher linear discriminant with
PCA. The advantage of the weight coding is that it can produce a parts-
based, overcomplete representation, while the number of features in the
Fisher linear discriminant is limited by the number of classes and in the
MRDF by the number of dimensions in the data. The discriminative com-
ponent of the MRDF approach tries to increase the distance of the individual
members of different classes in the feature space. On the contrary, the weight
term handles only the means of the class members. This limits its suitability
on classes with unimodal data distributions. Another disadvantage of the
weight coding is that the two parameters have to be chosen carefully. When
the influence of the sparsity term is too weak, the weight term can force
the features to point to meaningless dimensions—those where no class has
activation.

4 Results on Two Scenarios

To further analyze the qualitative and quantitative differences between co-
efficient coding and weight coding, both approaches have been applied
to two scenarios. The first scenario is the three-class problem shown in
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Coefficient Coding Weight Coding NMFNon−negative Sparse Coding

Figure 4: Features trained on first scenario with different approaches. The fea-
tures for each approach are arranged from top left to bottom right by decreasing
mutual information. The features of the nonnegative sparse coding and the co-
efficient coding are very similar to each other. The features of the weight coding
are less view specific but much more parts based and class specific. In some of
the features, there is a focus on the handles of the cups. In these cases also, the
part of the cup opposite the handle is pronounced, since the presence of the
handle at one side shifts the cup to the other side of the image frame, where
otherwise no activation is present. In the cup-related features, the opening is
not highlighted, since activation in this part of the image is more typical for the
containers with the white caps. Therefore, there are features containing caps but
no cup-related features like a handle. The NMF features are also parts based but
not class specific and so lie visually somewhere in between.

Figure 1. Cups with visible handle, cups with no or occluded handle, and
some round containers with caps from the COIL-100 database (Nayar, Nene,
& Murase, 1996) were combined to three classes, each containing 140 views.
The gray-scale images were resized to a resolution of 32×32 pixels in ad-
vance. Forty features were trained using the same influence γ = 0.1 of the
sparsity term and relatively high values for the coefficient term α = 4.0 and
for the weight term β = 0.1.

Figure 4 shows the resulting features sorted by their individual mutual
information, the calculation of which is described later. The features of
nonnegative sparse coding and coefficient coding are very holistic and
view specific. The features of weight coding and NMF are both sparser and
more parts based, but the weight coding clearly emphasizes class-specific
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Table 1: Values of the Terms of the Cost Functions for the First Scenario.

Reconstruction Sparsity Coefficient Weight

SC 7.718 · 102 6.039 · 103 (19.98) (5.357 · 104)
CC 8.146 · 102 5.909 · 103 9.505 (5.607 · 104)
WC 8.138 · 102 8.952 · 103 (65.95) 2.215 · 104

NMF 6.866 · 102 (7.489 · 103) (46.76) (3.464 · 104)

Notes: The terms do not include their influences (γ , α, and β) on the total cost. Values
in parentheses were not used for optimization, but are shown to highlight qualitative
differences between features.

parts. So there is a group of features highlighting handles, while in all NMF
features that contain handles, the whole cup is recognizable. The first NMF
feature represents the white cap of a container, while the following features
show the opening and the rim of a cup. Both feature types have a strong
overlap at the top of the image frame, and therefore the cap features will
also respond to cups and the rim-opening features to the containers. The
weight coding does not tolerate this and makes the features sparser to better
work out the differences of cups and containers.

Table 1 lists the values of the terms of the cost functions after opti-
mization. These values are useful to interpret the effect of our two new
approaches compared to the nonnegative sparse coding: The coefficient
term puts a penalty on the use of features across different classes, which
leads to a reduced feature basis for reconstructing each class. As a result,
there is an increase in the reconstruction cost and a decrease in the sparsity
cost. The demand for sparsity of the coefficients in the nonnegative sparse
coding has an opposite effect on the weights, forcing them to become very
view specific and leading to a higher reconstruction cost. In the weight cod-
ing, the weight term removes activation from the features. They become
less view specific, which causes an increase of the sparsity cost.

To evaluate the discriminative power of the trained features, we chose
to calculate the mutual information between the features and the classes.
The mutual information is a measure for the dependency between two
or more random variables. In our case, these variables are the detection
of the different features and the class label, both varying over the set of
samples. The mutual information tells how much the detection of certain
features in a sample restricts the possibility of different class hypotheses.
Therefore, a high mutual information is a measure of discriminative power
and a desired feature property. Unfortunately, the direct optimization of
mutual information conveyed by a set of features about a class demands
the continuous PDF of the data. For low-dimensional data, the PDF can be
estimated from the training samples using the Parzen window technique
(Kwak & Choi, 2002). However, in high-dimensional data, the approach is
computationally too expensive and requires a huge set of samples.
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Table 2: Mutual Information for the First Scenario.

SC CC WC NMF

Mutual information 1.7831 1.7314 3.4068 2.5708
Mean error rate 0.2839 0.2950 0.2045 0.2695
Standard deviation 0.0809 0.0814 0.0840 0.0820

Notes: The table lists the mutual information conveyed by the pool of features
about the three classes (see: Ullman & Bart, 2004). Also some error rates are given
performing 100 nearest-neighbor classifications per approach.

For the results in Table 2, we used a calculation similar to the method
applied in Ullman and Bart (2004) to select informative image fragments.
First, for each feature, an optimal threshold is determined. For this purpose
the dot product with each sample is calculated. By applying a threshold
to the results of this calculation, a binary detection variable over the set of
samples is generated. The class label is also a discrete class variable over the
set of samples. The optimal threshold is the one that maximizes the mutual
information between the class variable and the detection variable. There are
different ways to calculate the information between the classes and the set
of features. Simply taking the sum of the individual mutual information the
features convey would totally neglect their dependencies. Another way is to
join the single values of the detection variables to a binary feature vector per
sample and then calculate the mutual information between this vector and
the classes. This approach is the mathematically correct one, but a perfect
result tells only that no binary feature vector is used in different classes
and not how well the information is distributed over the set of features.
Therefore we adopted the iterative process proposed by Ullman and Bart
(2004) to calculate the values in Table 2. First, the feature conveying the
most mutual information is chosen, and later the features with the most
additional mutual information. Because the calculation of the additional
mutual information given a set of already selected features is impractical,
we also adopted the heuristic of Ullman & Bart (2004). In this heuristic,
the additional mutual information of one candidate feature is calculated
with respect to each single selected feature. The minimum of these values
is assigned to the candidate feature. The candidate feature with the highest
assigned value is selected. This heuristic guarantees that the selected feature
is informative and differs from the features already selected. The sum of
the mutual information of the first feature and additional information of
the other features is the given value. Because of the heuristic approach, this
value can be higher than the entropy of the class distribution. The weight
coding has the highest value and the sparse coding and the coefficient
coding, the lowest ones. The NMF has an intermediate value. Furthermore,
in the sparse coding and the coefficient coding, the twenty-sixth selected
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feature of the 40 existing ones already has an additional mutual information
of less than 0.0005. In the NMF it is the thirty-fourth and in the weight coding
the thirty-ninth. So in some sense, the information is best distributed in the
weight coding approach.

Table 2 also gives some error rates performing nearest-neighbor classi-
fications on the three-class problem. In 100 runs per approach, three rep-
resentatives per class were chosen randomly out of the 140 views. These
representatives were transformed into feature space by calculating the dot
product with the trained features. Each of the remaining views was then
assigned to the closest representative in feature space. The error rates were
calculated on the basis of wrong class assignments. The results strongly
depend on the chosen representatives, causing a high standard deviation.
Nevertheless, we confirmed with a t-test that the error rate of the weight
coding, is significantly (with p = 0.001) lower than that of the other ap-
proaches. This supports the claim for an increased discriminative compo-
nent of the weight coding features. The coefficient coding shows in the
mean the worst performance because forcing each class to use a distinct
set of features prevents the development of discriminative properties. Note
that the projection of the image views on a feature space, which is simply a
complete rotation of the original orthogonal basis system would not influ-
ence the result of a nearest-neighbor classifier. The reason for the differences
shown is that the used algorithms produce a nonorthogonal basis with a
reduced dimension.

To show that the better performance of the weight coding is not simply
caused by the higher degree of sparseness of its features, an additional
test was performed. The features of the NMF were trained again, putting
additional sparsity constraints on them following the method proposed in
Hoyer (2004). So each NMF feature was ensured to have the same L2 norm
(1.0) as each weight coding feature and the average L1 norm of the weight
coding features. In this way the error rate of the NMF decreased from
0.2695 to 0.2457 but is still 4% higher than that of the weight coding. The
mutual information increased from 2.5708 to 2.9853 compared to 3.4068 of
the weight coding. Although these results show that sparsity of the weights
has indeed some influence on the performance, the main difference is caused
by the supervised component of the weight coding.

For a second scenario, we acquired the HRI-10 database that consists
of 10 classes. A single class contains 9 similar objects, each made up of
100 views taken during a rotation around the vertical axis (see Figure 5).
Five objects are used for the training of the features and the remaining four
objects for testing.

We trained 80 features per approach on the gray-scale images, which
were scaled to a resolution of 40×40 pixels. When training on the full
rotation, we observed that NMF and weight coding produced very sparse,
blob-like features that showed identical classification performance, while
the weight coding features had slightly higher mutual information. Only
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Figure 5: HRI-10 database. The database consists of 10 classes, each containing
9 similar objects. The first 5 objects per class are used for training and the
remaining 4 objects for testing. Each object is represented by 100 views covering
a full rotation around the vertical axis.

with such sparse features were the approaches able to reconstruct the wide
variety of images. Because of this problem, we reduced the complexity of
the problem by using only views taken from −35 to +35 degrees from the
first side view. Alternatively we could increase the number of features, but
this would heavily increase the computation time and allow the standard
NMF to produce even sparser features, while the sparsity constraint on the
coefficients could prevent this development for the weight coding.

The features trained on the simplified database are shown in Figure 6.
The influence of the sparsity term was set to γ = 0.05, the influence of
the coefficient term was α = 5, and the influence of the weight term was
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Non−negative Sparse Coding NMFWeight CodingCoefficient Coding

Selected Weight Coding Features Selected NMF Features

Figure 6: Features trained on the second scenario with different approaches.
The features for each approach are arranged from top left to bottom right by
decreasing mutual information. At the bottom, some selected features of weight
coding and NMF are shown to highlight qualitative differences between both
approaches. As for the first scenario, the features of nonnegative sparse coding
and coefficient coding are very holistic and view specific, and little difference
between them can be revealed. Weight coding and NMF again produce parts-
based features, but this time the difference between both approaches is not as
obvious as for the first scenario. But a carefull look shows some qualitative
differences, which are discussed in the text.

β = 0.4. Again the features of the nonnegative sparse coding and the coef-
ficient coding are holistic and similar to each other. Both NMF and weight
coding produce sparser features. Although the difference between NMF
and weight coding is not that obvious this time, some qualitative differ-
ences can be found. So the first selected weight coding feature again shows
a separated handle that cannot be found among the NMF features. The first
selected NMF feature is a car feature that looks very boxlike. The weight
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Table 3: Mutual Information for the Second Scenario.

NNSC CC WC NMF

Mutual information 6.5459 6.2302 10.7695 8.8732
Mean error rate 0.2465 0.2537 0.1896 0.2074
Standard deviation 0.0330 0.0338 0.0325 0.0316

Notes: The table lists the mutual information conveyed by the pool of features about
the 10 classes (see Ullman & Bart, 2004). Also some error rates are given performing
100 nearest-neighbor classifications per approach.

coding does not tolerate this and therefore makes a strong distinction be-
tween car and box features. That the weight coding features are not always
sparser than the NMF features is shown on the example of the can opener
(fifth selected feature). Also interesting is the selected NMF cup feature that
seems to be split into two features by the weight coding. A reason may be
that the upper part of the rim is a very specific pattern for all cups, while
the bright opening occurs in only a certain cup and is represented because
this cup would otherwise cause a very high reconstruction cost.

The evaluation of mutual information and classification rate was per-
formed on the four test objects per class, keeping the procedure of the first
scenario. The results are shown in Table 3. This time, five representatives
per class were chosen randomly out of 240 views that covered the limited
rotation of the four objects as described above. The weight coding has a
higher mutual information than the NMF, and both approaches are supe-
rior to nonnegative sparse coding and coefficient coding. The error rate in
the nearest-neighbor experiment is for the weight coding 2% lower than
that of NMF and 6% lower than that of coefficient coding and nonnegative
sparse coding. The high standard deviation is again caused by the random
selection of representatives. But the improved mean error rate of weight
coding features is significant applying a t-test with p = 0.001.

When adjusting the sparsity of each NMF feature to the average spar-
sity of the weight coding features, the error rate decreased from 0.2074 to
0.2032. This is still significantly higher than the 0.1896 of the weight cod-
ing. The mutual information increased from 8.8732 to 9.6584 compared to
the 10.7695 of the weight coding. So again the performance is improved to
some degree by the sparsity but does not reach the weight coding results.
Also, the arrangement of the features in Figure 6 indicates that very sparse
features normally provide lower information gain. This was also observed
by Ullman and Bart (2004), who discovered the superiority of features with
intermediate complexity.

Despite the simplicity of using segmented views of objects, the two
classification problems are suitable to show that the features of the weight
coding are more class specific and diagnostic than the object templates
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produced by sparse coding. More complex scenarios would have increased
the computational cost drastically (e.g., by requiring the approaches to be
invariant to position and size of the objects), while we would expect the
same qualitative differences.

5 Conclusion

In this letter, two new class-specific extensions of the nonnegative sparse
coding were introduced. Normally, unsupervised generative feature learn-
ing methods spend resources to model details of the data that are irrelevant
for classification tasks. The goal of extending the cost function of the non-
negative sparse coding with discriminative components was to shift the
focus of some resources from frequently occurring parts to diagnostic ones,
in this way increasing the suitability of the trained features for classification
tasks.

It was shown that the coefficient coding does not increase the discrim-
inative quality of the features because it prevents multiple classes from
influencing the same weight. This is due to the fact that the coefficient
coding restricts the use of features by different classes, whereas the weight
coding directly penalizes the suitability of features for different classes and
so successfully combines reconstruction and discrimination. The weight
coding is related to the Fisher linear discriminant and the MRDF, but does
not reduce the intraclass variance. Its advantage is that it learns localized,
parts-based features.

We used an artificial two-dimensional setting to introduce sparse coding
to somebody new in the field and visualize the different behavior of the
new approaches. Furthermore, we showed for two object scenarios that the
weight coding results in qualitative other features from that produced by
NMF or nonnegative sparse coding. This goes with higher mutual informa-
tion of the features and increased classification performance.

To test the difficulty of the scenarios, we used our features with a nearest-
neighbor classifier (NNC) and compared the performance to that of a single-
layer perceptron (SLP). In this way, we always get a lower classification
rate for our approaches. When using some categories as clutter for testing
and evaluating the false-positive rate by means of a receiver operating
characteristic, weight coding performs slightly better. But those results are
more a reflection of the different nature of SLP and NNC and not of the
quality of the weight coding features.

Mutual information is an unbiased measure for the discriminative qual-
ity of a feature learning method, whereas the classification rate is influenced
by the auxiliary method used to calculate it, for example, NNC. A compar-
ison of different features is only fair, when sticking to the same classifier,
because otherwise it is not clear which component caused the difference.
For the same reason, the NNC results are not comparable with those of
superior, standard classification schemes such as an SLP or a GMM.
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However, the question may arise as to how in principle a discriminative
method like an SLP could benefit from the combination with a reconstruc-
tive component. Purely discriminative approaches suffer from the draw-
back that they may overspecialize on the training scenario; they perfectly
learn in which way a class differs from negative examples present during
training. If these examples do not cover well the expected variations dur-
ing testing, the overspecialization impairs the classifier in rejecting unseen
clutter images because they may not differ in the learned features from the
class. Keeping reconstructive information means keeping information on
what the class is, regardless of which other classes existed during train-
ing. This gives the classifier the chance to reject a test image based on the
inability to reconstruct it.

Recent studies suggest that generative methods perform better when
training data are limited (Raina et al., 2003), because they converge much
faster. As more training data are available, discriminative models take the
lead by reaching a lower asymptotic error (Ng & Jordan, 2002). There is also
biological evidence for this process as outlined in Logothetis and Sheinberg
(1996). When a new object is being learned, holistic snapshots are stored,
keeping as much information as possible. With increasing familiarity of the
stimulus, prototypes are generated keeping only meaningful, discrimina-
tive parts, enabling them to generalize over nonmeaningful parts. In relation
to this, weight coding features are useful for building a representation of
objects that are somewhere between novel and familiar by moving away
from a full reconstruction of the stimulus to a prototypical representation
focusing more on the diagnostic object parts. Weight coding can provide a
basis for building an efficient object representation, a prerequisite for robust
and fast object recognition.

Appendix A: Nonnegative Sparse Coding

The minimization of the cost function in equation 2.1 is done by alternately
applying coefficient and weight steps as described in Wersing and Körner
(2003). In the coefficient step, the cost function is minimized with respect to
the cip using an asynchronous fixed-point search, keeping the wp constant.
To do that, the derivation of ES with respect to a certain cip is set to zero,
leading to the update rule,

cip := σ


wT

p xi −
∑

p̃
p̃ �=p

ci p̃wT
p̃ wp − γ


(

wT
p wp

)−1
, (A.1)

where σ (·) = max(0, ·) ensures the positivity of the coefficients. This update
rule is applied to randomly chosen cip until convergence. The weight step
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is a single gradient step with a fixed step size η in the wp, keeping the cip

constant:

wp := σ


wp − η


∑

i

∑
p̃

ci p̃wp̃cip −
∑

i

xi cip





 . (A.2)

The weight step is executed for each wp at the same time, and σ (·) is applied
component-wise. Before the next coefficient step, the weights are normal-
ized using

wp := wp

‖wp‖2
. (A.3)

Appendix B: Coefficient Coding

The optimization of the cost function, equation 3.1, is nearly the same as
for the nonnegative sparse coding. Only the update rule for the coefficients
changes into

cip := σ


wT

p xi −
∑

p̃
p̃ �=p

ci p̃wT
p̃ wp − γ − α

∑
ı̃

q (ı̃)�=q (i)

cı̃p

nq (ı̃)nq (i)


 (

wT
p wp

)−1
, (B.1)

while the update of the weights follows exactly equations A.2 and A.3.

Appendix C: Weight Coding

The weight term of the cost function, equation 3.2, has effect only on
the weight step, and so the update rule for the coefficients remains
equation A.1, while the gradient step in the weights becomes

wp := σ


wp − η




∑
i

∑
p̃

ci p̃wp̃cip −
∑

i

xi cip + β
∑

i,ı̃
q (i)�=q (ı̃)

xi
(
wT

p xı̃

)

nq (i)nq (ı̃)





 ,

(C.1)

followed by the normalization of the weights, equation A.3.
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