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Abstract

This paper reviews the state-of-the-art in robust design optimization – the search for designs and solutions which are immune with
respect to production tolerances, parameter drifts during operation time, model sensitivities and others. Starting with a short glimps of
Taguchi’s robust design methodology, a detailed survey of approaches to robust optimization is presented. This includes a detailed dis-
cussion on how to account for design uncertainties and how to measure robustness (i.e., how to evaluate robustness). The main focus will
be on the different approaches to perform robust optimization in practice including the methods of mathematical programming, deter-
ministic nonlinear optimization, and direct search methods such as stochastic approximation and evolutionary computation. It discusses
the strengths and weaknesses of the different methods, thus, providing a basis for guiding the engineer to the most appropriate tech-
niques. It also addresses performance aspects and test scenarios for direct robust optimization techniques.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In order to design and manufacture high quality prod-
ucts at a minimum of costs, techniques are needed which
are able to find those designs which meet the requirements
usually specified by objectives (goal functions) at the begin-
ning of the design process. Provided that the general system
design has been fixed (e.g., the type of product and its
desired basic properties are given), it is the engineer’s task
to choose the design parameters x according to an (or
some) objective function(s) f(x). These objective functions
may be given by verbal descriptions, mathematical models,
simulation models, or physical models. The process of
finding the right design parameters is usually referred to
as optimization. Typically, the optimization has also to
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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account for design constraints imposed on the design
parameters x. Such constraints can be modeled by inequal-
ities and/or equalities restricting the design space (search
space). In mathematical terms a general optimization task
can be stated as

optimize: f ðxÞ; ðaÞ
subject to: giðxÞ 6 0; i ¼ 1; . . . ; I ; ðbÞ

hjðxÞ ¼ 0; j ¼ 1; . . . ; J ; ðcÞ

9>=
>; ð1Þ

where (1b) represents the set of inequality constraints and
(1c) the set of equality constraints.

There are principle problems that might prevent us from
identifying the optimum of f(x) in (1), like NP-hardness in
discrete search spaces or multi-modality in continuous
search spaces. However, one might also ask whether the
formulation of the optimization problem in Eq. (1) is as
general and practical as it seems. The question arises
whether it is desirable to locate isolated, singular design
points with a high precision:
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1 For an introductory book see, e.g., [9].
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(1) The global optimal design clearly depends on the goal
(objective) function(s) and constraints in (1), however,
these functions always represent models and/or
approximations of the real world. As long as one does
not have detailed knowledge of the error function of
the model, one cannot be certain the model optimum
can be mapped to the true optimum. Thus, being too
precise in the model might waste resources, which
could be better used at a later design stage.

(2) Even if one were able to map the model optimum to
the true optimum, one might not be able to build the
true optimum either because of manufacturing uncer-
tainties [1] or because the required precision during
the manufacturing stage would be too costly. There
is always an economical trade-off between a poten-
tially more complex manufacturing process and the
performance gain by the new design.

(3) The formulation of the optimization problem in Eq.
(1) is inherently static. Reality is dynamic: environ-
mental parameters fluctuate (temperature, Reynolds
number for gas turbine design), materials wear down,
parts of a complete system might be replaced. Since
the constraints on which the original design process
was based change, Eq. (1) is only correct for a limited
time span.

(4) Life cycle costs have to be taken into account for
many engineering designs. Life cycle engineering
[2,3] focuses on the whole life span of a design, e.g.,
easier maintenance (system design to enable a cheap
disassembly and assembly process, e.g., for gas tur-
bines), longer maintenance intervals, effect of attri-
tion during operation, or environmentally friendly
disposal, e.g., recycling capability.

Systems (1) optimized in the classical sense can be very
sensitive to small changes. Changes which are likely to
occur as we have just argued. A better target for a design
is one that provides a high degree of robustness. Marczyk
writes ‘‘Optimization is actually just the opposite of robust-

ness’’ [4, p. 3]. Although there is some truth in this state-
ment, it does make sense to re-consider the current
optimization algorithm philosophy and the test functions
and instances used to evaluate these in the framework of
robustness. We will come back to Marczyk’s statement
later in the paper. As a result, again one will search for
optimal solutions, however, for robust solutions. The proce-
dure of finding such solutions is referred to as robust design

optimization. The appeal of robust design optimization is
that its solutions and performance results remain relatively
unchanged when exposed to uncertain conditions.

The quest for robust design techniques is not only moti-
vated by coping with sensitivities of goal or utility func-
tions with respect to design parameters or environmental
uncertainties. Whenever the design parameters describe
only a part of the overall system, the engineer has to make
assumptions on the optimal operating point of each subsys-
tem. Either the integrated system must be simulated [5] or
optimal (robust) operating intervals have to be defined. A
similar problem arises in the field of complex systems design

where multidisciplinary teams develop a complex system
by independently optimizing subsystems [6]. Due to the
complexity of the whole system and the time constraints
(time-to-market restrictions), the teams must optimize
their subsystems without full information about the out-
puts of the other subsystems (which appear as the inputs
of the subsystem to be optimized). Such types of optimiza-
tion are referred to as multidisciplinary design optimization.

Coping with uncertainties in such optimizations is sub-
ject of robust multidisciplinary design, see e.g., [6–8], and
may be regarded as a new application field of robust
optimization.

Concepts of robustness and robust design optimization
have been developed independently in different scientific
disciplines, mainly in the fields of operations research
(OR) and engineering design.

While the methods of stochastic (linear) programming1

may be regarded as a first approach to deal with uncertain-
ties treating robustness as a side effect only, the notion of
robust optimization gained focus in OR after the publica-
tion of [10] (for an introductory paper, see also [11]).

Robust design and optimization has even deeper roots
in engineering. There it is inextricably linked with the name
of Taguchi [12] who initiated a highly influential design
philosophy (see Section 2). Due to the advent of high-speed
computers and its exponentially increasing FLOPS-rates
(floating point operations per second), robust design opti-
mization has gained increasing interest in the past few
years. This is reflected in, e.g., a special issue of the ASME
Journal of Mechanical Design (July issue 2006, vol. 128),
which is devoted to robust and reliability-based design,
and also in an overview article of Park et al. [13].

While [13] represents a first resume of what has been
done in robust engineering design optimization so far, this
survey tries to present a broader perspective taking the
activities in the OR field into account. Furthermore, as
indicated in [14], modeling robustness aspects is only one
side of the coin, solving the related optimization problems
is the other often computationally demanding side, and
only a few computational tools have been developed so
far. Therefore, also the different algorithmic approaches
will be reviewed.

This survey is organized as follows. First, we will pro-
vide a short introduction into the ‘‘Taguchi method’’ of
robust design. The seminal work of Taguchi marks the
beginning of systematic design methods taking robustness
into account. In Section 3, we will shortly review the differ-
ent sources and kinds of uncertainties that can be encoun-
tered when facing design problems. Then, in order to
incorporate uncertainties in design optimization, robust
counterparts to the original design objectives will be
defined – the robustness measures. Section 4 gives an
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overview over how the robustness measures can be opti-
mized using different approaches from mathematical
programming, nonlinear optimization, and direct (random-
ized) search methods including evolutionary algorithms.
Most often robust design optimization will rely on simula-
tion programs evaluating the different designs. Moreover,
the outcome of such simulations is often noisy. In such
cases direct search methods might be the means of choice.
However, it is not clear which of the various direct search
algorithms are the most efficient ones. To this end, it would
be helpful to have a collection of scalable test function in
order to compare the different algorithms. Section 5 makes
a first attempt to propose such a test bed. Being based on
the results of this review, the concluding Section 6 aims
to identify promising future research areas.
2 For an state-of-the-art introduction into DOE, the reader is referred to
[16,17].
2. Taguchi’s robust design methodology

Early attempts to account for design uncertainties in the
framework of quality engineering are closely connected
with Taguchi, the ‘‘father of robust design’’ who envisioned
a three-stage design methodology comprising [15]:

(1) Systems design: determines the basic performance
parameters of the product and its general structure.

(2) Parameter design: optimizes the design parameters in
order to meet the quality requirements.

(3) Tolerance design: fine-tuning of the design parameters
obtained in the second stage.

From viewpoint of mathematical optimization, the dif-
ferentiation between the second and the third stage seems
superfluous since both stages differ only in the granularity
by which design parameters are treated (of course practi-
cally the classification might be important because stage
two and three can occur under very different constraints,
e.g., design time vs. operation time). That is why we will
only concentrate on the second stage.

The main difference of Taguchi’s method compared to
ordinary optimization lies in the accounting for perfor-
mance variations due to noise factors beyond the control
of the designer. That is, there are two kinds of parameters
entering the objective function: control parameters x, which
are to be tuned to optimality, and noise factors n, such as
environmental conditions (e.g., temperature, pressure,
etc.) and production tolerances (e.g., weight and length
variations, purity of material used, etc.) difficult to be
controlled by the designer.

Depending on the design objective, Taguchi proposed
so-called signal-to-noise measures. Let yi ¼ yðx; niÞ be the
quality value of a single sample (keeping x constant), the
Mean Square Deviation

MSD1 :¼ 1

j

Xj

i¼1

ðyðx; niÞ � ŷÞ2 ð2Þ
measures the deviation of y from the desired target value ŷ.
If the design goal is to have y close to zero, Eq. (2) simpli-
fies to

MSD2 :¼ 1

j

Xj

i¼1

yðx; niÞ
2
; ð3Þ

and if the design goal is to have y as large as possible,
Taguchi proposed

MSD3 :¼ 1

j

Xj

i¼1

yðx; niÞ
�2
: ð4Þ

Using these MSD-functions, Taguchi defined the ‘‘signal-
to-noise ratio’’

SNR :¼ �10log10ðMSDÞ ð5Þ
which is to be maximized w.r.t. x.

Taguchi does not really use an automated optimization
procedure in order to maximize (5). Instead he uses design

of experiments (DOE)2 in order to evaluate different
designs (i.e., different x values). To this end, the design
parameters are systematically changed taking values on a
predefined (orthogonal) lattice, the so-called ‘‘control
array’’ (also ‘‘inner array’’). At each design point x, the
noise variables n are systematically changed according to
an ‘‘outer array’’ ðn1; . . . ; njÞ. Thus, one obtains for each
x a set ðy1; . . . ; yjÞ which can be used to calculate
MSDðxÞ and finally an array of SNRðxÞ. A statistical data
analysis applied to this array allows to identify the x

producing the best performance.
An example using Taguchi’s method for finding an opti-

mal robust design of an automobile rear-view mirror has
been presented in [18]. A decisive point for a successful
application of this method concerns the identification of
the principal design variables, the number of which must
be kept small (see below).

From viewpoint of optimization efficiency, Taguchi’s
optimization approach suffers from the ‘‘curse of dimen-
sions’’. If we consider an N-dimensional design vector x

we need at least two points per dimension, we already have
2N designs and thus we have to perform a minimum of j2N

experiments. As pointed out by Trosset [19]: ‘‘the Taguchi

approach violates a fundamental tenet of numerical optimiza-

tion – that one should avoid doing too much work until one

nears a solution.’’
Besides these efficiency considerations there are other

aspects of Taguchi’s method which are subject to contro-
versial debates summarized in [20] including the disputable
definition of MSD and SNR functions (2)–(5). In the fol-
lowing, we will take a broader view on robustness, how-
ever, keeping in mind the merits of Taguchi in developing
a philosophy of robust design.
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3. Robustness concepts and measures

This section discusses two topics. First, we will identify
the sources of uncertainties that can be encountered in
the design and optimization process. Thereafter, the second
section provides measures for evaluating the effects of these
uncertainties and means to incorporate them in the objec-
tive functions.
Design Parameters 

+
x1 xN

? ? ? ? ?

Optimization Strategy quality  signals

3F

Fig. 1. Robust system design has to account for different classes of
uncertainties: (A) uncertain operating conditions, (B) design parameter
tolerances, (C) uncertainties concerning the observed system performance.
3.1. Uncertainties in the parameter design process

There are different possibilities to classify uncertainties
which the engineer has to face during the design process.
Firstly, we will start from a system theoretical point of view
and thereafter present an alternative epistemologically
motivated typology often used in mechanical engineering.

Consider the ‘‘system’’ in Fig. 1. This system is to be
designed in such a way that it generates (desired) outputs
f which depend on input quantities a provided by the envi-
ronment the system is embedded in. The output behavior
of the system can be controlled to a certain extend by the
design variables x

f ¼ fðx; aÞ ð6Þ

to be tuned in such a way that designer-defined perfor-
mance or quality measures are fulfilled. While this param-
eter design task matches perfectly the classical optimization
scenario, real-world system design has to face different
kinds of uncertainties which are usually beyond the (direct)
control of the designer (see Fig. 1)3:

(A) Changing environmental and operating conditions.

These uncertainties enter the system via the a-vari-
ables in Eq. (6). Examples are the angle of attack in
airfoil design, operating temperature, pressure,
humidity, changing material properties and drift,
etc. This kind of uncertainties is also referred to as
Type I variations in [21].

(B) Production tolerances and actuator imprecision. The
design parameters of a product can be realized only
to a certain degree of accuracy. High precision
machinery is expensive, therefore, a design less sensi-
tive to manufacturing tolerances reduces costs. This
type of uncertainties enters the f functions in terms
of perturbations d of the design variables x, i.e.,
one has to consider the function
3 No
discret
f ¼ fðxþ d; aÞ: ð7Þ

This kind of uncertainties is referred to as Type II

variations in [21]. Note, even though d enters f in
(7) via an additive coupling with x, in the general case
d may also depend on x. For example, d ¼ ex models
relative manufacturing tolerances.
te, that one is not restricted to continuous spaces, x can also contain
e components.
(C) Uncertainties in the system output. These uncertainties
are due to imprecision in the evaluation of the system
output and the system performance. This kind of
uncertainty includes measuring errors and all kinds
of approximation errors due to the use of models
instead of the real physical objects (model errors).
That is, the actually observed output/performance ~f
is a (random) functional of f
~f ¼ ~f½fðxþ d; aÞ�: ð8Þ
(D) Feasibility uncertainties. Uncertainties concerning the
fulfillment of constraints the design variables must
obey. This kind of uncertainty is different to (A)–
(C) in that it does not consider the uncertainty effects
on f but on the design space. In real-world applica-
tions it often appears together with the uncertainty
types (A) and (B).

Since the uncertainties of type (A) and (B) are closely
related to the sensitivity of the objective function f w.r.t.
specific changes, the corresponding robustness has also
been termed sensitivity robustness [22].

There are different possibilities to quantify the uncer-
tainties subsumed under (A)–(D) mathematically. Basi-
cally, the uncertainties can be modeled deterministically,
probabilistically, or possibilistically:

(1) The deterministic type defines parameter domains in
which the uncertainties a, d, etc. can vary,

(2) the probabilistic type defines probability measures
describing the likelihood by which a certain event
occurs, and

(3) the possibilistic type defines fuzzy measures describing
the possibility or membership grade by which a cer-
tain event can be plausible or believable.

These three different types of uncertainties are
mathematically modeled usually by crisp sets, probability
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distributions, and fuzzy sets [23], respectively. Having four
different classes (A–D) of uncertainties and three ways to
quantify them, one ends up with up to 12 different concepts
of robustness that can be encountered in the analysis of
real-world problems. The most important ones that are fre-
quently found in the literature will be reviewed in more
detail below.

Especially in mechanical engineering disciplines, a some-
what complementary classification scheme of uncertainties
is in common use. It is taken from an epistemological per-
spective differentiating the uncertainties into objective and
subjective ones. Objective uncertainties, also called aleatory

[24] or random uncertainties, are of intrinsically irreducible
stochastic nature. That is, these kinds of uncertainties are of
physical nature, e.g., the noise in electrical devices (resistor
noise, 1=f -noise), seismic and wind load, humidity, temper-
ature, server load, material parameters (steel yielding
strength, stiffness, conductivity), stochastic imperfections
in the design of mesostructures of materials [25] and quan-
tum mechanical effects to name but a few. These uncertain-
ties cannot be removed. The designer has to ‘‘live with
them’’ and to optimize his design according to this reality.
Due to the probabilistic nature, probability distributions
are the adequate means for the mathematical description
of these uncertainties. Thus aleatory uncertainties basically
belong to item (2) (probabilistic type) uncertainties.

In contrast to the objective character of aleatory uncer-
tainties, epistemic uncertainties reflect the lack of knowl-
edge a designer has about the problem of interest. This
kind of uncertainty is regarded as subjective, because it is
due to a lack of information that could, in principle, be
reduced by increased efforts.4 Epistemic uncertainties
include uncertainties about the model used to describe
the reality, its boundary and operation conditions, also
referred to as model form errors [26], and also the errors
introduced by the numerical solution methods used (e.g.,
discretization error, approximation error, convergence
problems). Such uncertainties can be modeled by type (1)
and (3) techniques.

It should be also mentioned that the differentiation into
aleatory and epistemic uncertainties does not cover all
aspects of robust design: Consider the performance of an
airfoil design with respect to different angles of attack,
i.e., performance of a system under different operating con-
ditions (which are well known, there is no lack of informa-
tion). This is a type A(1) uncertainty in the taxonomy
presented above, however, it neither belongs to the aleatory
nor to the epistemic uncertainty class.

3.2. Accounting for uncertainties – robustness measures

Robust design can be regarded as an optimization
approach which tries to account for uncertainties that have
4 This is of course a somewhat philosophical point of view and
increasing the efforts might be economically not feasible, thus ‘‘subjectiv-
ity’’ can be also a consequence of fully ‘‘objective’’ constraints.
been defined in the previous section. There are different
approaches to incorporate the uncertainties. Generally
one tries to derive/construct robust counterparts F of the
original performance or objective function f.5 In the follow-
ing an overview over the different robustness measures
starting with the treatment of the deterministic uncertain-
ties. Thereafter, three sections are devoted to probabilistic
uncertainties and finally, a fifth section concerns possibilis-
tic uncertainties.
3.2.1. Coping with deterministic uncertainties: the robust
counterpart approach

In this section, robustness with respect to deterministi-
cally defined uncertainty sets is considered. Given an objec-
tive function f(x) to be minimized, the robust counterpart
function F Bðx; �Þ is defined as

F Bðx; �Þ ¼ sup
n2Xðx;�Þ

f ðnÞ; ð9Þ

where Xðx; �Þ is a neighborhood of the design x the size of
which depends on the regularization parameter � and

lim
�!0

F Bðx; �Þ ¼ f ðxÞ: ð10Þ

This kind of accounting for uncertainties of the design vari-
ables (i.e., type B uncertainties) presents a worst case sce-
nario in that it considers the maximal f-value within the
neighborhood of the design x. This technique is also
referred to as robust regularization in [27]. Minimizing the
regularized f resembles basically the idea of ‘‘minimax’’
optimization used in context of Tschebyshev approxima-
tion. This approach can also be found in [19]. In the evolu-

tionary computation field,6 it has been used to evolve robust
wing-boxes in [35]. A genetic algorithm utilizing this idea
for robust job shop scheduling has been proposed in [36].
Robust regularization is not restricted to type B uncertain-
ties, it can also be defined for type A uncertainties. In [37] it
has been used to find robust solutions to least-squares
problems with uncertain data.

In order to see the effect of robust regularization on a
simple example, consider the one-dimensional function

f ðxÞ :¼
�x; if x < 0;ffiffiffi

x
p
; if x P 0:

�
ð11Þ

which is displayed as solid curve in Fig. 2 and which is to
be (robustly) minimized. Let us consider the design neigh-
borhood n 2 ½x� �; xþ ��. The robust regularization reads

F Bðx; �Þ ¼ max
n
ff ðnÞjx� � 6 n 6 xþ �g

¼ max
n
ff ðnÞjjx� nj 6 �g: ð12Þ
Note, in order to simplify notations, we will restrict our considerations
to scalar-valued objective functions f(x).

6 For introductory material to evolutionary algorithms, such as evolu-
tion strategies and genetic algorithms, the reader is referred to, e.g., [28–
34].



Fig. 2. On the effect of robust regularization of function (11). The
regularized function depends on the regularization parameter �. From
bottom to top � ¼ 0, 0:5, 1:0, and 2:0.
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Having a look at the graph of (11) in Fig. 2 (the continuous
curve), one sees that the maximum in this constraint
optimization problem is attained at the interval boundaries
x� � and xþ �, respectively. Shifting successively the x� �
interval from large negative x-values to large positive x-val-
ues, the maximum is first governed by the left branch, i.e.,
by �ðx� �Þ, and then for x P x̂ by the right branch, i.e.,ffiffiffiffiffiffiffiffiffiffi

xþ �
p

. The transition point x̂ is given by equality of the
left and right branch maximum, i.e.,

�ðx̂� �Þ ¼
ffiffiffiffiffiffiffiffiffiffi
x̂þ �
p

: ð13Þ

This quadratic equation can be solved for x̂ yielding

x̂ ¼ 1þ 2��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�
p

2
ð14Þ

and the robust regularized f becomes

F Bðx; �Þ ¼
�� x; if x < x̂;ffiffiffiffiffiffiffiffiffiffi
�þ x
p

; if x P x̂:

�
ð15Þ

Fig. 2 shows the graphs of F Bðx; �Þ for different values of
the regularization parameter �. The optimal robust design
can be easily determined. Taking into account that the
monotonously decreasing part in Eq. (15) corresponds to
the left branch in Fig. 2, it becomes clear that F Bðx; �Þ takes
its minimum at x ¼ x̂ which is given by Eq. (14). This opti-
mal design depends on the regularization parameter �
displayed in Fig. 3. As one can see, the location of the
robust minimum does in general not coincide with the min-
Fig. 3. The optimal value x̂ of the design variable of the robust regularized
function depends on the regularization parameter �.
imum of f (continuous curve). This is a typical property of
robust optimization.

There is no reason to restrict robust regularization to
design parameters x as has been done in [27,19]. It can also
be defined for the a parameters in (6), thus providing a reg-
ularization w.r.t. type A uncertainties

F Aðx; �Þ ¼ sup
a2Að�Þ

f ðx; aÞ; ð16Þ

where Að�Þ is a neighborhood that defines the operating
conditions of the system.

Combinations of type A and type B regularizations are
also imaginable.

The regularization w.r.t. feasibility constraints, i.e., type
D uncertainties, has been considered in the context of
robust linear, conic, and quadratic programming [38,39]
under the label ‘‘robust counterpart approach’’. This
approach usually incorporates also type A uncertainties.
In the case of linear constrained minimization

min
x
faTxjAx� b P 0g; ð17Þ

a as well as the matrix A and the vector b can be sources
of uncertainties, i.e., they are only known to belong
to a ‘‘uncertainty set’’ U. Regarding the constraints
Ax� b P 0 as hard constraints, only robust feasible candi-

date solutions x are allowed to be considered. That is, the x

must fulfill all possible realizations of U. Thus, the regular-
ized counterpart of f becomes

F DðxÞ :¼ sup
ða;A;bÞ2U

faTxjAx� b P 0g: ð18Þ

Since maximizing aTx is equivalent to finding the smallest t

for which aTx 6 t, the robust counterpart of the linear min-
imization problem (17) can alternatively be expressed as

min
x;t
ftj8ða;A; bÞ 2 U : ðt P aTxÞ ^ ðAx� b P 0Þg: ð19Þ

The inequalities t � aTx P 0 and Ax� b P 0 must be
satisfied for all a;A; b 2 U (worst case scenario). This is
equivalent to demanding mina2Uðt � aTxÞP 0 and
minA;b2UðAx� bÞP 0, respectively. Thus, we alternatively
obtain

min t

s:t: min
a2U
ðt � aTxÞP 0;

min
A;b2U
ðAx� bÞP 0;

9>>=
>>; ð20Þ

a linear objective function with (arbitrarily) difficult con-
straints due to nonlinearity of the functions produced by
the minimum operator. Therefore, the robust counterpart
of the linear programming task (17) is typically not a linear
programming task. This can easily be seen considering an
example where U contains only three different a vectors.
For sake of simplicity we consider a two-dimensional case.
Fig. 4 shows a typical case where there is a large uncer-
tainty about the a vectors resulting in ascending and
descending f(x) scenarios. Taking the supremum of the
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7 A similar proposal can be found in [47, p. 6f], and it turns out that this
is a recurring idea. In stochastic programming it appears as a means of
handling ‘‘risk in decision-making’’, see e.g., [48, p. 4].

8 Note, in contrast to [49, p. 311] we have changed f k to signðf Þjf jk in
order to treat the even k cases for f(x)-functions with negative f-values
correctly.
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three possible f(x)-functions within the constraints given,
we see that the resulting robust regularization function
F ¼ supðf Þ is not linear within the constraints given. This
has considerable consequences, both from viewpoint of
solving such tasks and the general properties of the mini-
mizer: It is well known from linear programming theory
(see, e.g., [40]) that the optimum states are located on the
feasibility boundary. As one can see in Fig. 4, this does
not necessarily hold for the robust counterpart, the optimal
solution can be located deeply in the feasible domain. This
is also different to linear stochastic programming (see, e.g.,
[9]), where uncertainties are aggregated in a linear function
resulting in an ordinary linear programming problem.

The field of robust mathematical programming has
received increasing interest during the last five years [41–
46]. While we have seen that the robust counterparts will
usually turn the original linear or quadratic problem into
nonlinear ones, the focus of recent research is on the ques-
tion to identify conditions and uncertainty sets resulting in
systems (20) which can be solved efficiently, i.e., the origi-
nal problem class should be conserved or should at least
not go beyond second-order cone problems. Of course, this
is bought at the expense of a higher effort modeling/
approximating the original problem in such a way that it
fits into the concepts developed.

3.2.2. Expectancy measures of robustness

The robust regularization approach taken in Section
3.2.1 may be considered as a worst case philosophy:
According to Eq. (9), the robust counterpart F of a func-
tion f to be minimized is the maximal value of f in a
user-defined domain X around the design point x. This
can be regarded as a conservative setting, and choosing
the domain X too large can result in robust solutions with
very poor performance such that the resulting design is ren-
dered useless (e.g., the stability of an aircraft design is guar-
anteed, but due to its heavy weight the aircraft cannot take
off). In such situations it might be better to consider robust-
ness measures based on probability. That is, we regard d,
a, and ~f in (7) and (8), respectively, as random variables
obeying user-provided distribution functions reflecting the
knowledge about the uncertainties. As a result, the func-
tion f itself becomes a random function. Dealing with these
random functions can be done in two ways: (a) using aggre-
gation approaches, and (b) evaluating the induced distribu-
tion function of f. We will consider the latter case in the
next section.

The aggregation approach yields one (or more) integral
measure(s) of robustness – the expectancy measures. Intro-
ducing a utility function U(f), the robust counterpart of f

can be defined as the conditional expectation of U(f)

F UðxÞ :¼ E½Uðf Þjx�: ð21Þ
Depending on the choice of U, one can define different
robustness measures.7 Using

Uðf Þ ¼ signðf Þjf jk; ð22Þ
one obtains momentum measures introduced in the context
of robust evolution strategy optimization [49].8 The special
case k = 1 yields with (7)

F 1ðxÞ ¼
Z

f ðxþ d; aÞpðd; aÞddda; ð23Þ

where pðd; aÞ is the joint density of the uncertainties.
Accounting for type B uncertainties only, one obtains

F 1ðx; aÞ ¼
Z

f ðxþ d; aÞpðdÞdd ð24Þ

a standard robustness measure often proposed in literature,
e.g., [19,50,51]. In [52] the quantity F1 has been called
‘‘effective fitness’’ (see also [53, p. 127f]). Power coefficients
k 5 1 can be used to put different emphasis on the utility of
f-values. If k > 1, extreme values of the random variate f

are amplified. In the opposite case 0 < k < 1, the influence
of (statistical) outliers will be dampened.

Other utility functions than the power functions (22) can
be of interest or may be additionally used to define robust-
ness aspects in a specific application. For example, finding
plateau-like regions in quality or fitness landscapes sug-
gests the introduction of dispersion measures such as

F dðxÞ ¼
Z
ðf ðxþ dÞ � f ðxÞÞ2pðdÞdd ð25Þ

proposed in [50, p. 7]. Considering the conditional variance

of f

Var½f jx� ¼ E½ðf � E½f jx�Þ2jx� ¼ E½f 2jx� � ðF 1ðxÞÞ2; ð26Þ
where

E½f 2jx� ¼
Z
ðf ðxþ dÞÞ2pðdÞdd ð27Þ

provides an alternative to the dispersion measure (25).



Fig. 5. Pareto-front of example function (28) using the goals (29): The
curve represents the non-dominating solutions of the multi-objective
optimization problem, i.e., those ðE½f �;Var½f �Þ-values for which the
improvement of one component results necessarily in a deterioration of
the other component.
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The search for optimal robust designs appears often as a
multiple criteria decision problem. For example, optimiz-
ing the conditional expectation (21) may lead to a design
with large dispersion Fd, Eq. (25), or variance (26). This
is not always desirable. For example, provided that the
optimum is located in a plateau-like region of the f-func-
tion, decreasing its variance might be more important than
just searching for the best mean value behavior. However,
also the opposite case might be of interest: An increased
‘‘phenotypic’’ variance of a product can be desirable. At
least in nature, additional variance in the genotype or phe-
notype of animals and plants makes creatures more resis-
tant to parasites, bacteria, and viruses.9 In all these cases
there is a trade-off between maximal performance and var-
iance and a compromise must be found. Thus, we are enter-
ing the field of robust multi-objective optimization.

As a simple example, consider the objective function

f ðx; aÞ ¼ a� ða� 1Þkxk2
; a 2 R; x 2 RN ð28Þ

to be minimized under a type A uncertainty, where a is
assumed to be normally distributed a �Nð0; 1Þ. Using
the first moment of f and the variance as robustness
measures, the multi-objective optimization task becomes

E½f jx� ¼ kxk2 ! min

Var½f jx� ¼ ð1� kxk2Þ2 ! min

)
: ð29Þ

As one can see, E½f jx� and Var½f jx� have different mini-
mizers and therefore they represent conflicting goals. Deal-
ing with such scenarios, as a first approach one may
aggregate the different objectives in a single function using
a weighted sum of the objective functions (see e.g., [10, p.
265; 55, p. 138f; 56])

ð1� bÞE½f jx� þ bVar½f jx� ! min; b 2 ½0; 1�: ð30Þ
Alternatively, one can consider the set of Pareto-optimal

solutions (for the example (28), (29), see Fig. 5). There
are different techniques for determining the Pareto-front,10

such as compromise programming (in context of robust
optimization, see [58,59]) and others (see e.g., [50]). In the
field of evolutionary computation the method of ‘‘dynamic
weighted aggregation’’ has been proposed and applied to
the bi-objective optimization problem of the mean-variance
trade-off of some test functions in [60]. These authors also
introduced relative variance robustness measures in that
they divide the standard deviation of f, i.e., the square root
of (26), by aggregated standard deviations of the design
variable uncertainties. There is a growing number of papers
on evolutionary algorithms for finding solutions to robust
design optimization problems using approaches other than
the aggregated sum technique in order to locate the Pareto
front, see e.g., [61–64].
9 There is evidence that increased genetic diversity reduces disease
damage in natural ecosystems, see e.g., [54].
10 Also referred to as ‘‘efficient front’’ in finance applications, see [57] and

the references presented there.
3.2.3. Probabilistic threshold measures of robustness

Instead of considering the expected value of utility func-
tions U(f) one can consider the distribution of the f-variate
directly. In the case of minimization one is interested in
obtaining f realizations sufficiently small. That is, given a
threshold q, one is aiming at a maximum number of sam-
ples of f for which f 6 q. Given a fixed number of samples
n, the expected number of samples fulfilling f 6 q is
nPr½f 6 q�. Therefore, one yields a threshold dependent
criterion for robustness optimization

Pr½f 6 qjx� ! max; ð31Þ

where the lhs in (31) measures the relative frequency of de-
sired designs. Clearly, this relative frequency should be as
large as possible. Since the lhs of (31) is the conditional
cumulative distribution function P of the random variate
f, P ðqjxÞ ¼ Pr½f 6 qjx�, this criterion for robust minimiza-

tion based on the threshold measure reads

F qðxÞ ¼ P ðqjxÞ ! max : ð32Þ

The optimal value x̂ of the design parameter(s) x depends
on the choice of the threshold q. That is, as a result, x̂ is
a function of q, i.e., x̂ ¼ x̂ðqÞ. This is in contrast to the
expectation measures introduced in Section 3.2.2 where,
given a fixed utility function U(f), the optimizer of (21) is
usually a single state x̂.

Similarly, one obtains the threshold measure for robust
maximization

Pr½f > qjx� ! max: ð33Þ

Using P(f) one gets 1� P ðqjxÞ ! max. Therefore, the crite-
rion for robust maximization based on the threshold mea-
sure reads

F qðxÞ ¼ P ðqjxÞ ! min: ð34Þ

There is an interesting connection between the threshold
measures and the expectancy measures. The former can
be considered as expectancy measures using parameterized



11 These kinds of errors are also referred to as model form errors, see e.g.,
[26].
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utility functions U(f,q). Considering the case of maximiza-
tion, Eq. (33) can be recovered from (21) using the utility
function

Uðf ; qÞ ¼ Hðf � qÞ; ð35Þ
where HðtÞ is the step function

HðtÞ :¼
0; t 6 0;

1; t > 0:

�
ð36Þ

This can easily be shown starting from (21) using (36)

E½Hðf � qÞjx� ¼
Z

Hðf � qÞpðf jxÞdf

¼
Z

f>q
pðf jxÞdf ¼ Pr½f > qjx�: ð37Þ

Using rectangular or bump-like parameterized utility func-
tions, one can extend the idea of threshold measures to de-
fine certain robustness ranges for f the probability of which
is to be maximized. For example

Pr½q1 6 f 6 q2jx� ! max : ð38Þ
Applications of the proposed probabilistic threshold
robustness measures have not been found in literature.
There are likely two basic reasons for their non-appearance:

(a) Determining P ðf jxÞ analytically will almost always be
excluded except for simple toy problems (see Section
5.2 for examples). On the other hand, calculating
Pðf jxÞ numerically will usually be computationally
expensive due to the need of Monte-Carlo simula-
tions. Since Pðf jxÞ is to be optimized w.r.t. x, these
Monte-Carlo simulations are in the inner loop of an
optimization algorithm. That is, the overall computa-
tional complexity increases considerably.

(b) While the robustness function P ðqjxÞ contains in
principle all relevant (statistical) information of a
design x, its interpretation can be rather difficult:
Maximizing P ðqjxÞ w.r.t. x yields an optimum design
x̂ which depends on the threshold q. Unless the user
has a clear picture of the meaning of q, fixing the
threshold q can be a difficult decision problem.

However, there is a certain demand of using the proba-
bilistic threshold measures in theoretical investigations.
Especially in those cases where the statistical momentum
measures do not exist, e.g., when Cauchy-noise is involved,
these measures present a means to find robust optimizer
states.

3.2.4. Statistical feasibility robustness

Considering uncertainty type D, a natural way of
handling (general nonlinear) constraints

gðx; aÞ 6 0 ð39Þ
is to guarantee these inequalities probabilistically. That is,
e.g., demanding

Pr½gðx; aÞ 6 0�P P 0; ð40Þ
where P0 is the confidence probability and a is a random
variable (or vector) with probability density function
(pdf) pðaÞ. This way of expressing feasibility robustness is
usually referred to as ‘‘probabilistic or chance constraints

programming’’ in the stochastic programming literature
[9].

Design optimization problems incorporating probabilis-
tic inequalities (40) are also referred to as reliability-based

design optimization (RBDO) problems in mechanical engi-
neering literature (see e.g., [65–71]). However, reviewing
the literature, there is no general consensus that RBDO
should not be regarded as part of the robust optimization
methodology. Therefore, agreeing with Park et al. [13],
we also consider it in this survey.

Formally, inequality (40) can be expressed by integrals.
Considering a single constraint giðx; aÞP 0, this leads to

Pr½giðx; aÞ 6 0� ¼
Z

giðx;aÞ60

pðaÞda P P 0i: ð41Þ

Since this integral depends on x, we again end up with a non-
linear constraint of the form ~giðx; aÞP P 0i. Thus, the prob-

abilistic or chance constraints approach does not define a
new class of optimization problems from the mathematical
point of view. However, calculating ~gi appears as a techni-
cally involved problem analytically tractable for the simplest
cases only (see e.g., [9, pp. 103–109]). In practice one has to
resort to numerical approximations such as First-Order
Reliability Methods (FORM) and Second-Order Reliability
Methods (SORM, see also Section 4.2.1.1) or Monte-Carlo
simulations. An overview and a comparison of feasibility
modeling techniques can be found in [72].

Statistical feasibility robustness is often considered in
conjunction with type (A) and (B) uncertainties. This kind
of problems is also referred to as reliability-based robust

design optimization [73,67,74].

3.2.5. Possibilistic uncertainties: getting the optimum under

subjectivity

So far we have discussed the crisp and probabilistic
characterization of uncertainty sets. While the former
uniquely characterizes a design variable x or parameters
a as a feasible design alternative or not, the latter one does
this probabilistically. Both kinds of characterization, how-
ever, are based on complete information about the design
problem and its modeling. If this information is not avail-
able, various kinds of error sources have to be taken into
account, such as the error introduced by the model used,11

the uncertainties about the model’s input parameters
(boundary and operating condition) and its feasibility
constraints. In all these cases one has to rely on experts’
estimates which are intrinsically subjective. This is the
domain of epistemic methods for characterizing and
handling uncertainties.
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Coping with epistemic uncertainties has not gained
much attention in literature. There are basically two
directions:

(a) iterative improvements of probability models using
bootstrap methods based on Bayesian statistics [68]
(this concerns the question how to incorporate new
information), and

(b) treatment of uncertainty sets using fuzzy logic and
evidence theory [23].

The fuzzy set methodology offers a mathematical rigor-
ous way to quantify the membership of a design solution to
the feasible solution space. That is, rather than characteriz-
ing a design x as feasible or infeasible, it is mapped to a
membership function lDðxÞ 2 ½0; 1� describing the degree
of membership to the feasible set. Here the extreme value
lD ¼ 1 means that x is feasible and lD ¼ 0 that it is not
feasible. The advantage is that this approach allows for
intermediate membership grades 0 < lD < 1. Thus, the
feasibility constraints of the crisp case (39) and of the prob-
abilistic case (40) can be replaced by

lDðx; aÞP l0: ð42Þ

This concept can be extended to model uncertainties of the
quality information of the objective function as well
[75,76]: The idea is to associate the unconstrained optimum
f ðx�Þ with the membership value lf ðx�Þ ¼ 1 and the worst
performing design with lf ¼ 0 and assigning intermediate
values in between. Finding the optimal robust design x̂ is
then done by maximizing the membership grade of the
minimum of the membership grade of the constraints lD

and of lf, i.e.,

x̂ ¼ arg max
x
½minðlDðxÞ; lfðxÞÞ�: ð43Þ

The most radical approach to possibilistic modeling is to
express the whole design problem using fuzzy numbers.
To this end, the crisp problem formulation must be fuzz-
ified. However, such an approach bears various subtleties
when fuzzifying nonlinear functions, since this can be done
using Zadeh’s extension principle or via a-cuts [77,78] (with
interval arithmetic) which can lead to different results [79].
Also, the numerical effort for solving the resulting min–
max problems is computationally high when considering
real applications.

Determining the concrete form of the membership func-
tions and combining different fuzzy constraints is also a dif-
ficult part of this approach. Possibility theory provides the
theoretical basis to quantify the notions of ‘‘belief’’ and
‘‘plausibility’’ and to aggregate opinions of different
experts based on the Dempster–Shafer theory [80].

Optimization problems formulated in the possibility
framework are also referred to as evidence-based design

optimization [81] or possibility-based design optimization
[82,83]. For an in-depth discussion of the possibilistic
approach, the reader is referred to [84]. A simple applica-
tion example using the concept of fuzzy numbers can be
found in [85].

4. Robust optimization in practice

In Section 3, ideas for constructing robust counterparts
F of objective functions f have been presented based on the-
oretical considerations without taking into account their
usability in practical applications. Implementing these
ideas, one has to face two problems: (a) determining F ðxÞ
and (b) optimizing F ðxÞ. There are different philosophies
to handle these problems when facing real-world robust
design optimization tasks. At the one end of the spectrum
there is the simplification strategy aiming at a reduction (or
transformation) of the problem to an optimization task
that can be solved using standard techniques of mathemat-
ical programming. At the other end there are the simulation

optimization techniques [86], predominantly used in engi-
neering sciences where the function F ðxÞ to be optimized
is usually not available analytically and/or the resulting
optimization problem is not tractable by standard proce-
dures from mathematics.

We will first review where mathematical programming
can contribute to the field of robust optimization. Thereaf-
ter, deterministic numerical approximation techniques are
considered. A strong focus will then be put on randomized
approaches and direct search methods including a separate
section devoted to evolutionary algorithms. These tech-
niques allow for very flexible and direct robustness tests
and evaluations.

4.1. Robust optimization using mathematical programming

By mathematical programming we mean exact (usually
polynomial runtime) algorithms developed to solve convex
constrained optimization problems. These are:

(P1) linear optimization problems (LP),
(P2) quadratically constrained quadratic optimization

problems,
(P3) conic linear or quadratic optimization problems,
(P4) semidefinite optimization problems.

In [10] a robust counterpart approach for (P1) based
on expectancy measures (cf. Section 3.2.2) has been pro-
posed. It basically extends the idea of (linear) stochastic
programming [9] by enhancing the linear objective
function of the stochastic programming problem with a
nonlinear regularization function penalizing constraint
violations. In order to keep the resulting optimization
problem tractable, the penalty function must be kept
simple, e.g., quadratically. Approaches for treating more
complicated nonlinearities do exist, see e.g., [11], however,
these usually represent ad hoc approximations resulting in
quadratic optimization problems with auxiliary variables
the number of which increases linearly with the number
of scenarios considered.
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An approach based on robust regularization (worst case
regularization, cf. Section 3.2.1) for least-square problems
with uncertain data has been developed in [37]. Finding a
solution x to the over-determined linear system Ax ¼ b

can be formulated as a least-square minimization problem
D :¼ kAx� bk ! min. The authors have shown that under
certain conditions the robust optimum of D in the worst
case scenario (w.r.t. uncertainties of A and b) can be com-
puted using convex quadratic cone and semidefinite pro-
gramming techniques, respectively.

While the work of [37] is a special case of robust quadratic
programming, the work of Ben-Tal and Nemirovski initiated
increased research activities during the last ten years. Their
theory is mainly based on the robust counterpart idea of Sec-
tion 3.2.1. In various papers, e.g., [38,87,39], the authors
developed a theory of robust linear, quadratic, and semidef-
inite programming considering systems with linear, conic
quadratic, and linear matrix inequality constraints.

In [39] the authors also showed the significance of robust
optimization for finding robust solutions in engineering
applications such as robust antenna design, robust truss
topology design, and control of uncertain dynamic sys-
tems. They also addressed investigations concerning the
stability of solutions to linear programming test cases col-
lected in the NETLIB library.12 As have been observed by
other authors long ago, the solutions of a considerable
amount of these ‘‘real-world’’ test cases obtained by stan-
dard LP software are highly unreliable: Even very small
perturbations of the solutions can result in severe con-
straint violations. Applying the robust counterpart meth-
odology, the solutions to these test problems can be
‘‘immuned’’ against such perturbations.

Recently, first attempts have been made to extend the
ideas developed for continuous search spaces to discrete
optimization [88,43,46,44]. Unlike the case of continuous
design spaces, the conditions on the uncertainty sets are
rather restrictive to still ensure the efficient solvability of
the robust counterpart. As has been shown in [44] general
ellipsoidal uncertainty sets turn polynomially solvable
problems, such as shortest path, minimum spanning tree,
minimum cost assignment, and resource scheduling, into
NP-hard counterparts. Therefore, approximation tech-
niques based on piecewise linearization are currently the
means of choice to tackle such problems.

Even though the methodology presented in this section
represents a successful approach with strong theoretical
background, its application domain seems somewhat
restricted. Up until now, applications are mainly in the field
of finances and portfolio management [89,57,90], but also
engineering applications such as (linear) truss topology
design, antenna design (basically a robust linear approxi-
mation problem) and robust (linear) control problems have
been reported in [39]. In [91] the robust design of a truss
12 See http://cm.bell-labs.com/netlib/index.html and http://cm.bell-labs.
com/netlib/lp/index.html.
has been modeled by a nonlinear semidefinite program-
ming problem which has been solved by a sequence of
semidefinite programs obtained by successive linearization.

The main disadvantage of this approach lies in the
necessity to fit the real-world problem into a linear model
with (at most) conic or quadratic constraints. Provided that
the original real-world problem can be expressed analyti-
cally by an objective function f ðx; aÞ, then there is a certain
chance to construct approximate models. However, this is
often bought at the expense of a system having a huge
number of variables (because the nonlinearities must be
approximated by piecewise linear or quadratic functions,
etc.). Finding approximate models of tractable size is usu-
ally a non-trivial task. Nevertheless, the trade-off between
modeling effort and optimization effort, but also the prob-
lem solver’s preferences, finally decide whether to apply
this approach or not.

However, if the values of the objective function f ðx; aÞ
are not available as a closed mathematical expression and
if they can only be obtained by simulations, the methodol-
ogy presented in this section cannot be applied. Therefore,
these techniques of robust optimization are restricted to
cases where the original problem itself can be well approx-
imated by linear or quadratic functions. In the other cases,
one has to consider alternative approaches that we will
discuss in the next section.

4.2. Robust optimization – the broader perspective

Reviewing the approaches to robust optimization taken
in engineering science, one can differentiate two main classes:

(A) Methods which calculate the desired robustness mea-
sures F ðxÞ and the related (robust) constraints explic-
itly using numerical techniques. Thus, the resulting
optimization problem is an ordinary one, to be solved
using local or global optimization algorithms. This
will be referred to as the deterministic approach to
robust optimization.

(B) Treating the (probabilistic) uncertainties directly by
optimizing noisy functions and constraints. This will
be referred to as the randomized approach to robust
optimization, sometimes referred to as Monte-Carlo
techniques. Since the noisy information is usually
obtained by simulation programs, this kind of opti-
mization is also referred to as simulation optimization

in OR literature [86].

The review of class (A) will concern methods on how to
transform the robust optimization problem into an ordin-
ary optimization problem, which can be solved by standard
(and also non-standard) techniques of nonlinear program-
ming. These optimization techniques usually rely on strong
mathematical assumptions on the functions to be opti-
mized, such as the availability of first- or second-order
derivatives. Such information is not available in the class
(B) approach. Therefore, class (B) is basically devoted to

http://cm.bell-labs.com/netlib/index.html
http://cm.bell-labs.com/netlib/lp/index.html
http://cm.bell-labs.com/netlib/lp/index.html
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direct search methods, i.e., algorithms which do not need
explicit first- or second-order information, but only the
f ðxÞ-values to calculate the next search point. Class (B) also
contains the Evolutionary Algorithms which will be reviewed
in a separate third section. The algorithms collected in class
(B) can – of course – also be used for the treatment of the
ordinary optimization problems arising from class (A).
The optimization algorithms from class (B) may be
regarded as ‘‘general’’ problem solvers. This generality,
however, usually has to be traded off against a lower effi-
ciency when compared to standard nonlinear programming
algorithms (e.g., quasi-Newton methods, augmented
Lagrangian methods) which are designed by making strong
assumptions on the structure of the optimization problem.

4.2.1. The deterministic approach to robust optimization
In this section, we will shortly review methods for deter-

mining robustness measures F using deterministic numeri-
cal techniques. It is assumed that the objective function
f ðx; aÞ and the constraints as well as its derivatives w.r.t.
x and a, respectively, can be calculated analytically or
numerically with sufficient accuracy. In literature, one finds
almost exclusively methods for the expected utility models
introduced in Section 3.2.2 and for feasibility robustness,
Section 3.2.4.

4.2.1.1. Feasibility robustness. Methods for robust optimi-
zation using the expected value robustness measure and
taking feasibility constraints into account can be found in
[92], in which the authors focused mainly on the treatment
of the constraints and presented three methods for incorpo-
rating the effect of uncertainties in the constraints. The
method: ‘‘Constraints with Build-in Constraints Variation’’
presented there can be found in numerous follow-up papers
where it is usually referred to as some kind of (linearized)
worst case analysis. Considering the inequality constraint
giðx; aÞ 6 0, the effect of uncertainties d on x and Da on
a about a design point can be approximated by linear
Taylor expansion as

giðxþ d; aþ DaÞ ¼ giðx; aÞ þ
X

j

ogi

oxj
dj þ

X
j

ogi

oaj
Daj þ � � �

6 0: ð44Þ

Neglecting higher-order terms, design point x will surely
fulfill (44) if it fulfills the worst case where the sum of the
deviations in (44) assumes its maximum. Since the upper
bound of these deviations is given by the absolute values
of the summands, one obtains the inequality condition
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Alternatively, the inequality
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has been proposed in [92]. Considering (44) as a linear
inequality at the nominal design point, the robust counter-
part approach of mathematical programming (cf. Section
4.1) can be used to perform approximately robust optimi-
zation [93]. From this point of view, (45) and (46) are
special cases. However, in order to apply both (45) and
(46), the uncertainties must have bounded support (i.e.,
0 6 jdij < d̂i and 0 6 jDajj < âj). Incorporating unbounded
uncertainties can be done in the probabilistic framework
using expected value considerations applied, e.g., to (46);
this leads to the so-called moment matching method (see
e.g., [94] or [72, p. 386f]).

In many applications (see below), the robust solutions
have also to fulfill inequality or equality constraints prob-
abilistically. Some sophisticated techniques for calculating
expected value integrals taking constraints and uncertain-
ties into account can be found in [50]. Simple techniques
for handling constraints under uncertainties are also
described in [72,95]. These are again based on worst case
or confidence measures and replace the original constraints
by (first-order) Taylor approximations at the nominal
design point.

Numerical approximation techniques for calculating the
acceptance probabilities in statistical feasibility models (40)
have been developed in the field of reliability engineering
and have been used in reliability-based design optimization

(RBDO). Provided that the problem can be (approxi-
mately) transformed to an integral of the form

Pr½gðxÞ 6 0� ¼
Z

gðxÞ60

pðxÞdx; ð47Þ

where pðxÞ is the standard normal distribution N ð0; IÞ.
A first-order approximation to Pr½gðxÞ 6 0� is obtained
as follows. First one has to find the most probable point

(MPP) xp on the limit state surface gðxÞ ¼ 0 (i.e., the
maximum of pðxÞ on gðxÞ ¼ 0) by solving the constrained
optimization problem. Since the joint density function
pðxÞ is spherically symmetric, this is equivalent to finding
that point on gðxÞ ¼ 0 that is nearest to the coordinate
origin

xp ¼ arg max
x:gðxÞ¼0

kxk; ð48Þ

to be determined by numerical techniques such as the
Rackwitz–Fiessler algorithm (see, e.g., [96]). In a second
step, gðxÞ is expanded in a Taylor series around x ¼ xp.
In the case of the First-Order Reliability Method (FORM),
the expansion is truncated after the linear terms resulting in

gðxÞ � gðxpÞ þ rTgðx� xpÞ ¼ rTgx�rTgxp: ð49Þ

Eq. (49) represents the hyperplane separating the designs
and �rg points into the direction of states gðxÞ < 0.
Due to the spherical symmetry, the problem reduces to
an one-dimensional integration of the standard normal
density function from �1 to the (signed) distance kxpk.
Thus, (47) can be approximated by
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Pr½gðxÞ 6 0� � Uð�bÞ; where b ¼ �r
Tgxp

krgk ð50Þ

and UðzÞ is the cumulative distribution function of the stan-
dard normal variate. Considering quadratic terms in the
Taylor expansion of gðxÞ leads to Second-Order Reliability

Methods (SORM), the reader is referred to [96] and the
state-of-the-art review [97]. The embedding of these tech-
niques in the reliability-based design framework and the
different numerical approaches as single- vs. double-loop
and decoupled optimization methods are reviewed in detail
in [65].

4.2.1.2. Expected value robustness and related measures.

Most of the applications on robust design (see below) use
the expected value and variance measure to assess robust-
ness of a design. However, as one can infer from Eqs.
(23)–(27), calculating these measures analytically is almost
always impossible. Therefore, approximation techniques
must be used.

Almost all approximation techniques are based on Tay-
lor expansions (see below). There is notably one exception
in [14] where it has been proposed to calculate the expected
value integrals (23) and (27) using numerical Gauss–Her-
mite integration. However, since the n-dimensional inte-
grals are approximated by n-fold sums, one has to face
the curse of dimensions. Therefore, this approach can only
be applied for low-dimensional design spaces (in the case of
[14] it was four-dimensional).

In [55], the authors presented an approach based on the
Taylor expansion of the objective function f ðx; aÞ. We will
briefly sketch the approach for the case of type B uncer-
tainties. Using d ¼ ðd1; . . . ; dN ÞT the Taylor expansion of f

including second-order terms reads

f ðxþ dÞ ¼ f ðxÞ þ
XN

i¼1

of
oxi

di þ
1

2

XN

i¼1

XN

j¼1

o2f
oxioxj

didj þ � � �

ð51Þ
Let us assume that

E½d� ¼ 0; ð52Þ
which is a reasonable assumption, since a systematic devi-
ation E½d� ¼ dc 6¼ 0 could be easily incorporated in the
design. Considering the linear approximation first, the
expected value of f w.r.t. d becomes

E½f jx�1 ¼ f ðxÞ ð53Þ
and the variance

Var½f jx�1 ¼ E f ðxÞ þ
XN

i¼1

of
oxi

di � E½f jx�1

 !2
2
4

3
5

¼ E
XN

i¼1

XN

j¼1

of
oxi

of
oxj

didj

" #

¼
XN

i¼1

XN

j¼1

of
oxi

of
oxj

E½didj�: ð54Þ
Introducing the covariance matrix C

ðCÞij :¼ E½didj� ð55Þ

and the gradient vector rf , Eq. (54) can be expressed as

Var½f jx�1 ¼ rTf Crf : ð56Þ

If the uncertainties are not correlated, C will be a diagonal
matrix containing the di-specific variances r2

i :¼ Var½di� ¼
E½d2

i �. In such cases (56) simplifies to

Var½f jx�1 ¼
XN

i¼1

of
oxi

� �2

r2
i : ð57Þ

Provided that there is a way to calculate the derivatives of f

analytically or numerically, Eqs. (56) or (57) may be used
to estimate the variance. Inserting (53), (56), (57), respec-
tively, into Eq. (30) we arrive at the so-called sensitivity

robustness approach [55, p. 139].
Applications of the sensitivity robustness approach with

weighted sum of objectives can be found in (note, this is not
an exhaustive collection, it just presents typical examples):

• [98] deals with the geometry optimization of a magnetic
pole face of a motor.

• [56] presents nearly the same approach as in [98] applied
to some simple toy problems in mechanical design.

• [99] uses this approach for the robust minimization of
the negative square of the lift-to-drag ratio of a 3-D flex-
ible wing.

• [100] presents a robust design optimization of the truss
structure of a parabola antenna. It uses sequential qua-
dratic programming to solve the resulting optimization
problem.

The sensitivity robustness approach assumes the mean
value of f to be equal to f at the nominal design point x,
Eq. (53). In Section 5.2.3, we will present test functions
derived from a real-world problem where this assumption
would lead to disastrous results. While not being a final
solution to this problem, considering higher-order approx-
imations can improve the situation. To this end, we take
the quadratic terms in (51) into account. Calculation of
the expected f value yields with (52) and (55) immediately

E½f jx�2 ¼ f ðxÞ þ 1

2

XN

i¼1

XN

j¼1

o2f
oxioxj

E½didj�

¼ f ðxÞ þ 1

2
Tr½HC�; ð58Þ

where H is the Hessian of f at x, i.e.

ðHÞij :¼ o2f
oxioxj

ð59Þ

and the trace of a matrix A is defined as

Tr½A� ¼
X

i

ðAÞii: ð60Þ
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Calculating the variance using (51) and (58) yields

Var½f jx�2 ¼ E f ðxÞ þ
XN

i¼1

of
oxi

di þ
1

2

XN

i¼1

XN

j¼1

o
2f

oxioxj
didj � E½f jx�2

 !2
2
4

3
5

¼ E
XN

i¼1

of
oxi

di þ
1

2

XN

i¼1

XN

j¼1

o2f
oxioxj

didj � E½didj�
� � !2

2
4

3
5

¼
X

ij

of
oxi

of
oxj

E½didj�

þ
X

ijk

of
oxk

o2f
oxioxj

ðE½didjdk � � E½didj�E½dk �Þ

þ 1

4

X
ijkl

o
2f

oxioxj

o
2f

oxkoxl
ðE½didjdkdl� � E½didj�E½dkdl�Þ: ð61Þ

This expression can be further simplified assuming corre-

lated Gaussian noise, i.e.

d �N ð0;CÞ ð62Þ
with covariance matrix ðCÞij. Then it holds (see e.g., [101]
or [102, p. 356f])

E½didjdk� ¼ 0; E½didjdkdl� ¼ CilCjk þ CjlCik þ CklCij

ð63Þ
and (61) finally becomes with (56) and (59)

Var½f jx�2 ¼ Var½f jx�1 þ
1

2
Tr½ðHCÞ2�: ð64Þ

Inserting (64) and (58) into Eq. (30) we arrive at the so-
called mean-variance robustness approach [55, pp. 139ff].

Applications of the mean-variance robustness approach
can be found in (note, this is not an exhaustive collection,
it just presents typical examples):

• [103], where the expected value and variance of f are
obtained by weighted sums of f-samples taken according
to a fractional quadrature factorial design.

• [104], where it is applied to aircraft design. The authors
used an automatic differentiation tool to generate For-
tran 77 code of the derivatives needed to determine
mean and variance of a second-order model (Taylor
approximation) which is then optimized using standard
numerical optimization techniques.

• [105], dealing with robust shape optimization of an air-
foil using a weighted sum of performance values (drag
coefficients) to be minimized under operation con-
straints (angle of attack, Mach number) numerically
solved by a variant of sequential linear programming.

4.2.2. The randomized approach to robust optimization

Methods subsumed under this section may be regarded
as direct approaches to robust optimization in that they
directly incorporate the uncertainties into the generic opti-
mization problem (1). Provided that the uncertainties are
of probabilistic type, the objective function f ðx; aÞ becomes
a random function ~f because of Eqs. (8) and (9). That is, in
the direct approach, the effect of the uncertainties can
directly be evaluated and one can use any simulation tech-
nique to obtain objective function values. The problem is,
however, how to utilize these information. In order to per-
form robust optimization, the respective robustness mea-
sures of Section 3.2 must be calculated from the observed
~f values. Generally, the question arises how to use the
raw data obtained. There are basically three categories:

(A) Monte-Carlo (MC) strategies: Given a fixed design
point x, calculate the statistics (mean value, variance,
etc.) and use the statistical parameters obtained as
input for a deterministic (derivative free) numerical
optimization algorithm. More elaborated approaches
usually take into account the special problem struc-
ture and are referred to as sample path optimization
strategies [86, p. 154].

(B) Meta-model approach: A meta-model is constructed
using a set of design points x carefully chosen. The
optimizer of the meta-model is used as an estimate
of the real robust optimizer.

(C) Use the ~f values directly as inputs of an optimization
algorithm especially suited for noisy optimization.

An overview of the state-of-the-art of direct simulation
optimization techniques can be found in [106]. Unfortu-
nately, the author almost completely ignored the Evolution-

ary Algorithms (Evolution Strategies, Genetic Algorithms)
widely used in engineering optimization. Therefore, we will
present below our own brief review of these categories from
viewpoint of robust design optimization.

If one is interested in expectancy robustness measures
(cf. Section 3.2.2), averaging over a fixed number j
of ~f ðxÞ samples (keeping the design point x constant) rep-
resents a simple possibility to obtain robustness estimates.
However, this naive MC approach is computationally
expensive; and w.r.t. optimization it remains an open issue
which degree of accuracy, controlled by j, is actually
needed to obtain a certain robust solution quality. With
respect to assessment of statistical feasibility robustness,
specially tailored Monte-Carlo methods, such as impor-
tance or Latin hypercube sampling [107], are an alternative
if FORM/SORM approximations are suspected to yield
wrong results due to the nonlinearity of the limit state sur-
face [97]. Such an approach has been taken in conjunction
with Evolution Strategies (see below) in order to find earth-
quake-resistant steel frame designs [108]. Further examples
using MC techniques can be found in [109–112].

Option (B) uses the observed ~f values to build a meta-
model F MðxÞ of the robust counterpart of f ðx; aÞ. The
meta-model FM is usually a simple function of x which
depends on a set of model parameters b to be tuned (opti-
mally) such that it predicts the observed data ~f well. Having
a model of the observed data, the optimal design point x̂M

of the meta-model can be easily calculated and can serve
as an approximation of the original robust optimum of f.

Meta-modeling techniques are reviewed in [113,114]. In
the context of robust design optimization, the response sur-

face methodology, neural networks, and Kriging models have



13 This obvious deficiency does not imply that meta-modeling techniques
cannot be practically useful in improving robust system design.
14 By ‘‘direct optimization algorithms’’ we refer to methods which only

use values of the function ~f to be optimized as inputs, but no gradient or
higher-order derivative information. However, this does not exclude that
the algorithm calculates internally an estimate of these derivatives.
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been proposed as meta-modeling techniques. In [115], these
three techniques have been evaluated for a robust two-bar
design problem with N = 2 unknown design parameters.
In the application considered, Kriging models appeared as
the method with the best results. However, apart from this
study, comprehensive empirical investigations comparing
the different meta-modeling techniques from viewpoint of
robust optimization are still missing.

Even though there are several papers on robust optimi-
zation using meta-modeling techniques, especially concern-
ing response surface methodology, these techniques are not

well suited for large-scale robust optimization problems
when the number of design variables N is large. There
are basically two problems:

First, the model complexity: For example, a fully qua-
dratic response surface F Mðx; bÞ comprises OðN 2Þ free b
parameters. In order to determine these parameters,
OðN 2Þ function evaluation of ~f are needed – a prohibitive
number when considering large-scale simulation models.
Although sophisticated sampling techniques have been
proposed such as the Latin hypercube sampling and frac-

tional factorial design (see [113,116]), this information the-
oretical complexity limit can principally not be bypassed.

Second, similar to Newton strategies in numerical opti-
mization, the (quadratic) model optimum will usually be a
first approximation only. That is, the meta-model must be
repeatedly applied in order to get closer to the robust
optimum. However, unlike one of the standard assumption
in Newton strategies ensuring the convergence to the opti-
mizer, the meta-model is not allowed to shrink arbitrarily
(because it still has to cover the uncertainties). Under such
conditions, it appears very unlikely that the (quadratic)
meta-model represents the robust counterpart adequately.

There is a third problem with the meta-model approach,
especially for the response surface methodology, which is
due to the data uncertainties which lead to uncertainties
in the model parameters b itself. Finding the model param-
eters b should be regarded as a robust optimization prob-
lem itself. Actually, this has been proposed in [117],
where the robust regularization approach of Section 3.2.1
has been used to derive a robust response surface.

Although the application of the response surface meth-
odology and other meta-models in robust optimization
has obvious weaknesses, it is often applied, e.g., in

• [21], where the authors optimized a solar powered irriga-
tion system.

• [95], where the authors applied it to a multidisciplinary
mechanical design (six-link function-generator linkage)
consisting of two subsystems.

• [116], where the authors used Latin hypercube sampling

strategy and a physically motivated utility function as
robustness measure for the design optimization of the
femoral component for total hip arthroplasty.

• [110], where the authors used a Kriging-based approxi-
mation model for the optimal mean-variance design of
an on silicon micro gyroscope.
To summarize, the application of meta-modeling can be
useful in cases where the design space dimensionality N is
not too large. However, the computational efficiency of
the meta-model approach is at least questionable. The cri-
tique given by Trosset [19] concerning the Taguchi method
(cf. p. 2), which may be regarded as a meta-model
approach as well, applies to any kind of meta-models.
From a more mathematically rigorous point of view, it is
even not clear what the response surface methodology
really produces as iteration time t!1: Up to now no
proof has been presented that this methodology yields a
robust optimum based on any of the robustness measures
defined in Section 3.2.13

Option (C) represents the most direct usage of noisy
information. To this end, the direct optimization algo-
rithms14 must be able to cope with the noise. In the remain-
der of this section, we will briefly review some of the
techniques found in literature except the Evolutionary Algo-

rithms, which are to be reviewed separately in the next
section.

Four types of direct search methods in the presence of
noise can be identified:

(I) gradient estimation techniques, usually referred to as
stochastic approximation methods (see below),

(II) pattern search methods (see below), and
(III) optimization techniques based on response surface

methodology. This type of methods iteratively gener-
ate sequences of response surfaces. The local opti-
mum or improvement directions predicted by the
response surfaces serve as predictors for an improved
design point about which a new response surface is
established. In order to be computationally efficient,
very simple response surfaces must be used. An elab-
orate algorithm for low-dimensional problems using
a quadratic response surface has been proposed and
analyzed in [118]. Since the optimization approach
based on the response surface methodology is very
similar to the one that has been described under
Option B in this section, it will not be considered
further.

(IV) In [119] a tabu search algorithm has been proposed
for finding robust solutions to a discretized one-
dimensional multi-modal test function and to knap-
sack problems with type B uncertainties. While this
algorithm shares certain similarities with evolutionary
algorithms, it currently represents a singular applica-
tion and will not be considered further in this survey.
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The techniques I–III are usually aiming at the solution
of optimization problems of type

optimize: E½Uðf Þjx�; ðaÞ
subject to: x 2 X; ðbÞ

	
ð65Þ

where X 	 RN is the space of feasible solutions. That is,
these techniques can be mainly applied to optimize expec-
tancy robustness measures as defined in Section 3.2.2.

The idea of stochastic approximation dates back to the
work of Robbins and Monro [120]. Combined with the
usual gradient search strategy, it yields an iterative update
formula for the design parameters x

xðtþ1Þ :¼ PX½xðtÞ � aðtÞ~cðxðtÞÞ�: ð66Þ

Here the function PX½y� projects a vector y 2 RN to the
nearest point in the set of feasible points X and ~cðxðtÞÞ is
an estimate of the gradient cðxðtÞÞ ¼ rxE½Uðf Þjx�. Under
the condition that Uðf ðxÞÞ does not grow faster than a
quadratic function and the sequence of step-sizes aðtÞ fulfillsX1
t¼1

aðtÞ ¼ 1 and
X1
t¼1

ðaðtÞÞ2 <1; ð67Þ

it can be shown that (66) converges to the minimizer of
E½Uðf Þjx�. More elaborated versions of algorithm (66)
are referred to as stochastic quasi-gradient methods [121].
Even though these algorithms guarantee local convergence
on a quadratic model, the convergence rate of 1=

ffiffi
t
p

is slow.
This is due to the choice of aðtÞ ¼ að0Þ=t ensuring the validity
of (67).

In order to derive convergence proofs for stochastic
approximation algorithms one usually has to assume the
existence of the (first) moments of the function to be opti-
mized. Therefore, e.g., cases with Cauchy-noise are not well
covered. Interestingly, the ðl=lI ; kÞ-Evolution Strategy15

does not suffer from such limitations. As has been shown
in [122], this kind of biologically inspired direct search
technique can easily cope with Cauchy noise.

Several improvements of the conceptual algorithm (66)
have been proposed in order to increase its computational
efficiency and convergence rate at the price of sacrificing
convergence guarantee. There are notably two algorithms:
1. Spall’s simultaneous perturbation stochastic approxima-

tion (SPSA) [123], that estimates the gradient by just two
function evaluation per iteration. 2. Kelley’s implicit filter-

ing [124] which uses the central difference formula to
estimate the gradient and employs a specially tailored
step-size adaptation technique.

Pattern search methods build a class of direct optimiza-
tion methods which intentionally do not approximate the
local gradient or Hessian of the function f to be optimized.
They rather generate search points according to a pattern
(where the distance between these points can be large as
opposed to the difference schemes of derivative approxima-
15 This kind of direct optimization technique belongs to the class of
Evolutionary Algorithms (EA), to be discussed in Section 4.2.3.
tors) and accept those points which appear as improve-
ments (w.r.t. its f-values) over the prior search points. A
short review of these methods can be found in [125]
(aspects of noisy optimization are not considered there).

Even though numerically not very stable, Nelder and
Mead’s simplex strategy [126]16 is according to [128] the
most popular direct search method. For noisy optimization
problems improved simplex strategies have been proposed
in [129,130]. The latter paper seems to be the only one pre-
senting a convergence proof for a pattern search method
under noise. The proof is based on the assumption that
the standard deviation of the noise reduces faster than
the step size when approaching the optimum. Theoretical
investigation as to the solution quality in the case that the
noise does not decrease (this is the interesting case for
robust optimization) has not been done.

Pattern search methods have a certain appeal because
they directly search the design space by inspecting pattern
points on the basis of ‘‘necessity’’. That is, pattern search
steps are only performed up to the next improvement. This
is in contrast to the response surface methodology where a
constant number of test designs must be generated to build
the response surface used to determine the next design
point. While this argument seems to be obvious in the
non-noisy case, things might be different if noise deceives
the f information leading to wrong acceptance decisions.

Interestingly, application of direct pattern search meth-
ods in robust design optimization are hard to find. This
raises the question whether these methods have simply
not been considered up to now or whether they are not well
suited for robust design optimization. When considering
the case studies on robust designs published, it appears that
most of these examples are dealing with a surprisingly
small number N of design variables. Therefore, when con-
sidering high-dimensional design spaces, then things might
change. Obviously, there is a need to reevaluate the differ-
ent robust design optimization methodologies on a test bed
consisting of scalable problems. We will come back to this
issue in Section 5.
4.2.3. Evolutionary algorithms in the context of robustness

Evolutionary algorithms (EA) are population based
probabilistic direct search and optimization algorithms
gleaned from principles of Darwinian evolution. Starting
with an initial population of l candidate designs xm (also
referred to as ‘‘parents’’) and the corresponding observed
(calculated, simulated, or measured) objective function val-
ues fm ¼ f ðxmÞ (also referred to as ‘‘fitness’’ values), an off-
spring population of k designs ~xl is created from the
parents using variation operators. These variation opera-
tors change each single parent xm randomly according to
a specific probability distribution. This process is referred
to as mutation. If more than one parent is involved in the
16 For a convergence analysis of the simplex strategy in the deterministic
case, see [127].



17 Note an EA combining feasibility robustness and type A – type C
uncertainties has not been found in literature.
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procreation of an offspring individual ~x, one speaks of
recombination.

While mutation and recombination produce diversity in
the design space, an antagonist is needed giving the evolu-
tion a direction toward the optimum. This is done by
so-called selection operators, which are designed to choose
those offspring individuals as parents for the next genera-
tion which exhibit high fitnesses (i.e., small f values for min-
imization, large f values for maximization). Depending on
the manner in which the variation and selection operators
are designed and the spaces in which they act, different clas-
ses of evolutionary algorithms (EA) have been proposed,
known as Evolution Strategies (ES) [34,28], Evolutionary

Programming (EP) [131], Genetic Algorithms (GA) [30],
and Genetic Programming [132]. For a comprehensive
overview, the reader is referred to [133]. Note, in this review
we do not discuss simulated annealing [134–136] explicitly.
With respect to our terminology, simulated annealing
appears as a special case of an evolutionary algorithm com-
prising one parent, one offspring, a mutation operator, and
a time dependent probabilistic selection operator.

From viewpoint of optimization, EA may be regarded
as ‘‘yet another direct optimization technique’’ applicable
to general optimization problems defined by (1). While
EA can be successfully applied to deterministic robust
counterpart functions F of f, we will especially consider
EA for noisy optimization. From this point of view, they
may be regarded as an alternative to the other direct opti-
mization algorithms reviewed in Section 4.2.2. Such appli-
cations of EA usually take as f-inputs the results of Monte-
Carlo-like simulations. These inputs can be regarded as
estimates of the theoretical robustness measures such as
expectancy measures defined in Section 3.2.2 or (rough)
estimates of robust regularizers according to Section
3.2.1. EA applications of these types are to be found in
(chronological order, not exhaustive):

• [137], where EP has been used to evolve neural net-
works, robust w.r.t. random deletion of weights and
biases of the neurons.

• [138], where an ES algorithm has been applied to the
evolution of robust optical filter designs.

• [139], where a specially tailored GA for robust optimi-
zation for financial time series prediction has been
suggested. While this paper does not explicitly take
uncertainties into account, a robustness measure based
on mean value and variance has been used and a fitness
sharing model has been proposed aiming at avoiding a
high concentration of individuals in the vicinity of sharp
(i.e., instable) peaks.

• [35], where a ‘‘re-evaluating’’ distributed GA’’ for wing-
box optimization has been introduced. The authors have
used the robust regularization idea (9) to evolve robust
designs.

• [140] (in German) where the problem of robust design of
multilayer optical coatings [138] has been analyzed using
ES. An excerpt of this work can be found in:
• [51], where the thickness and the refraction indexes are
treated as uncertain design variables, i.e., as type B
uncertainties.

• [36], where the robust regularization (9) of Section 3.2.1
has been realized approximately by sampling the f ðx; aÞ
function in the neighborhood of the design point x (or of
the nominal a, respectively) and taking the maximum (or
minimum). This minimax approach, termed ‘‘two-space
GA’’ (because in general, x- and a-space are sampled
independently), has been applied to parallel machine
scheduling.

• [141], where type D feasibility uncertainties have been
analyzed. A chance-constrained GA has been presented
based on Monte-Carlo sampling and Latin hypercube
sampling, respectively.17

• [109], where an automotive inner structure panel is opti-
mized using a hybrid genetic algorithm optimizing the
frame topology while a nonlinear programming algo-
rithm optimizes the size parameters.

• [142], where a multi-objective GA has been employed to
find an optimal design of an automobile valve-train with
the two criteria manufacturing costs and performance
variance and several constraints.

• [143], where the robust regularization and expectancy
measures for the robust optimization of machine sched-
uling has been used.

• [144], where the expectancy measure has been applied to
evolve robust maintenance schedules for a railway
company.

• [67], where besides the application of neural networks
to MC-driven reliability-based design optimization,
a multi-criteria robust optimization problem for the
design of a 39-bar truss has been solved using a multi-
objective ðlþ kÞ-Evolution Strategy. The same authors
developed also a so-called cascade evolutionary algo-

rithm for multi-objective optimization in [62].
• [145], where the multi-objective NSGA-II Evolutionary

Algorithm has been used to find robust design of com-
pressor fan blades against erosion.

• [146], where evolutionary algorithms are combined with
surrogate models for robust optimization, [147], where
trust region methods are combined with evolutionary
algorithms and [148] where multi-objective optimization
is combined with surrogate models for robust design
optimization.

• [149], where evolutionary algorithms have been
employed to generate maximally different alternative
solutions to an optimization problem that is only incom-
pletely represented by a mathematical model.

• [150], where a priori information on the desired robust-
ness of the final design has been used with a multi-objec-
tive evolutionary algorithm that converges to a solution
with good nominal performance and maximal robust-



19 Indeed in biology, mutations are noise for the inheritance (and cell
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ness. Design of experiment methods were used to reduce
the computational cost which is high for inverse
methods.

Most of the applications presented rely – when using
expectancy measures – on resampling strategies in order
to reduce the noise. That is, given a design point, a number
of j samples is generated and the average of the observed
f ðxÞ values is used as (still noisy) estimate of the robustness
measure. The question arises how to choose j and whether
it makes sense to devote the same number j of re-evalua-
tions to each of the k design points in the population.
Branke [52] empirically investigated various reevaluation
strategies, e.g., evaluating seemingly good individuals more
often. However, the results obtained w.r.t. the computa-
tional efficiency were not very conclusive and sampling
each population member just once appears not a bad
choice (see also [53, Chapter 8] for further considerations).

The latter observation is in accordance with theoretical
findings concerning the steady state solution quality of
ðl=lI ; kÞ-ES18 on simple test functions. In [49], the perfor-
mance of the ðl=lI ; kÞ-ES on a quadratic N-dimensional
sphere model with normally distributed actuator noise
d �N ð0; e2IÞ, i.e., type B uncertainties, has been analyzed.
In [151], the analysis has been extended to the general qua-
dratic fitness model (maximization considered)

f ðxÞ :¼ bTx� xTQx ð68Þ
(Q, positive definite symmetric matrix) having the robust
counterpart (24)

F 1ðxÞ ¼ E½f jx� ¼ f ðxÞ � e2Tr½Q�: ð69Þ
The resulting expected steady state fitness error E½D~f � of
the ES with l parents and k offspring is given by [151]

E½D~f �P Ne2Tr½Q�
8l2c2

l=l;k

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8l2c2
l=l;kTr½Q2�
Tr½Q�2

vuut0
@

1
A; ð70Þ

where cl=l;k is a strategy-specific constant (see Appendix B)
which depends asymptotically only on the l=k-ratio. Mak-
ing the substitution s :¼ 8l2c2

l=l;k, one can easily see that
(70) is a monotonously decreasing function of s. Therefore,
the error E½D~f � can be reduced by increasing the popula-
tion size (keeping l=k ¼ const:). Furthermore, a closer
analysis shows that resampling each individual j times re-
sults in a change from s / l2 to s / jl2. That is, resam-
pling helps decreasing the error at a price of jk function
evaluations per generation. Assuming the same number
of function evaluations, one can alternatively increase the
population by the factor j with the result s / ðjlÞ2. In this
case, we can clearly see that increasing the population size
is the more efficient strategy compared to resampling. Re-
cently, the same conclusion has been drawn on a more
complex test function to be discussed in Section 5.2.3.
18 For a definition of this algorithm, see Appendix A.
Using only one sample per design point is also standard
in GAs with Robust Solution Searching Scheme (GAs/RS)

proposed by Tsutsui et al. [152,153]. In [154], Tsutsui
showed empirically that resampling is less efficient than
using just one sample per design point. The GAs/RS
addresses type B uncertainties. Since the standard GA
[30,33] operates on a genotype space, usually the space of
bit-strings f0; 1g‘ of length ‘, a so-called genotype-pheno-

type mapping is needed to transform the bit-strings b to
the elements x of the design space X 	 RN . The elements
of the design space are referred to as the phenotypes.

Tsutsui’s approach to robust design applies actuator
noise to the phenotypic level. This is in accordance with
(7). However, the GA itself operates on the genotypes. The-
oretically, it is not clear which impact this division among
the two spaces has e.g., with respect to convergence. The
theoretical considerations presented in [153] are based on
Holland’s [155] schema theorem and are valid for an infi-

nite population size k only. It is claimed in [153] that the
GAs/RS with fitness-proportionate selection operator cal-
culates implicitly E½f jx�, i.e., the robust counterpart (24)
for k!1. At the same time, it is well known that a GA
with fitness-proportionate selection operator does not con-
verge to the optimum [156,157]. Tsutsui’s empirical investi-
gations show that GAs/RS are able to locate robust
solutions approximately for low-dimensional problems
and large population sizes. Unfortunately, a more rigorous
analysis both empirical (problem dimensions etc.) as well as
theoretical (expected steady state fitness error, etc.) has not
been carried out.

One must add that almost all direct optimization algo-
rithms with noise lack this rigorous analysis. Nevertheless,
there is reason to believe that EA are especially good at
direct robust optimization (i.e., without calculating deter-
ministic robust counterparts of f explicitly). Looking at
nature, it seems that species are well adapted to their
environments and that the structures evolved through nat-
ural evolution appear to be optimal on average. That is,
the species as a whole exhibits a certain ‘‘optimality’’ while
the individuals itself are not concentrated at a singular point
in the ‘‘design space’’. This is just what one is looking for in
robust design. Taking this seriously, the application of EA
in robust design might lead to a new quality in and a new

approach to robust optimization. That is, the EA is not only
used as a well working optimization strategy under noise,
but it serves as a robustness optimizing strategy per se.

When looking at the EA-literature on robust optimiza-
tion, this point of view seems to be not so well established:
Uncertainties are almost always added explicitly. However,
one may regard the mutation operator itself as a robustness

tester:19 If mutations z act directly on the design variables,
as is customary in ES/EP20, an offspring individual ~x is
division) processes against which the system has to be sufficiently robust to
succeed.
20 See e.g., the example of the ðl=lI ; kÞ-ES in Appendix A.



21 Strategies that have been considered: direct pattern search [162], multi-

directional search [163], implicit filtering [164].
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formed by adding z to the recombinant hxi and robustness
is tested by adding actuator noise d to the offspring design
~x. As a result, the function for evaluating the robustness of
an offspring design becomes

~f ¼ f hxi þ zþ d|ffl{zffl}
:¼~z

� �
: ð71Þ

That is, the effect of mutation and type B uncertainties can
be emulated by just another mutation ~z. In order to have
this work, mutations and parameter uncertainties must enter

the system at the same level. That is why, this approach can-

not be used in GAs with genotype-phenotype mapping such
as Tsutsui’s GAs/RS considered above. However, for ES
algorithms this idea might open up an approach for simple
and efficient robust optimization strategies. An ES taking
advantage of this idea has been proposed in [158].

A similar idea is due to Thompson [159] who stated that
‘‘Population dynamics can give rise to some level of fault
tolerance ‘for free’.’’ Applied to an GA operating on a bin-
ary design space (without genotype-phenotype mapping),
using a mutation rate pm > 0, this has the effect of checking
type B robustness to a certain extend. An application for
finding robust electronic designs on field-programmable
gate arrays (FPGA) using an ð1þ 1Þ-ES has been pre-
sented in [160].

5. Remarks on performance aspects and test scenarios

In the former sections, we have discussed the different
(algorithmic) techniques that can be used for robust and
noisy optimization. While the methods from mathematical
programming provide guarantees for solution quality and
efficiency at least partially, their applicability is rather
restricted. At the same time, the deterministic numerical
and randomized approaches to robust optimization and
especially direct search methods such as evolutionary algo-
rithms allow the flexible incorporation of direct robustness
tests. However, for all of those techniques reviewed in the
last section usually no theoretical (finite time) results with
regard to quality and convergence are available. Therefore,
there is a pressing need to evaluate and compare the differ-
ent techniques – a research topic of increasing importance.
In the following sections, we will review and discuss some
of these aspects.

5.1. Performance of direct search algorithms

In this survey, we have reviewed the different
approaches to finding robust optimal designs. When facing
a new design task the natural question arises, however,
which of the approaches should be used and which meth-
ods are especially well suited to a specific design optimi-
zation task. It is quite clear that we cannot provide a
definitive answer here. Actually, this would not even be
possible for ordinary design optimization. Here we will
only discuss some implications for robust optimization
where the quality of a design must be evaluated by simula-
tion programs. That is, we are acting in a black-box sce-
nario, similar to Fig. 1. Under such conditions, direct
optimization techniques should be considered at the first
place. Whereas, the deterministic approaches, presented
in Section 4.2.1, can only be applied to a restricted class
of problems (mostly problems which can be quadratically
approximated using Taylor expansion and with normally
distributed uncertainties).

However, even when sticking to the direct search tech-
niques, one does not find any useful guideline in literature
as to the question which of the methods should be used in
robust optimization. Actually, leaving aside any computa-
tional performance aspects, for most of the direct search
algorithms proposed in literature, we even do not know
what the algorithms’ output will be given a sufficient long
running time. While there is a certain guarantee for sto-

chastic approximation algorithms to converge to a local
minimizer of E½f jx� (under strong restrictions on the class
of functions f ðxÞ and t!1), predictions of the solution
quality of optimization strategies on noisy functions are
hard to find. Apart from the performance considerations
for ðl=lI ; kÞ-ES, mentioned in Section 4.2.3, there seems
to be no further theoretical investigations. This makes per-
formance comparison of different algorithms a serious
problem.

However, sound empirical performance comparisons
using a test bed of robust design problems are also spare.
There are some empirical investigations concerning ordin-
ary optimization problems superimposed with noise, i.e.,
for type C uncertainties. These investigations usually aim
at showing that a respective algorithm performs better
(one might add with a wink: usually the one designed by
the respective authors) than some others on a set of test
problems, e.g., [118,128–130]. In [161] a performance com-
parison of the ðl=lI ; kÞ-ES with other direct search strate-
gies21 on the quadratic sphere model, Eq. (61) where Q ¼ I,
with additive normally distributed proportionate noise has
been given showing the superiority of the ES on this special
test function. While one can argue that the sphere model is
overly simple, it does allow for a deeper understanding of
the working principles of the different algorithms. Further-
more, the scaling behavior w.r.t. the problem dimension
and the noise strength can be evaluated. Therefore, we
argue that performance comparisons should start with such
simple test functions. Considering more complex test func-
tions – as usually done in EA-literature on robust optimi-
zation, e.g., [153,53,60] – always bears the risk that the
results obtained are very specific and cannot be general-
ized. This empirical analysis should be the second step
and particular care must be taken to aim at analyzing a cer-
tain class of functions, e.g., a number of different design
problems instead of just one.
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There is clearly a need for a set of scalable test functions
and corresponding robust optimization problems that
could serve as a library for testing the different optimiza-
tion algorithms. Such a test library should contain a collec-
tion of problems of different ‘‘complexities’’. A possible
taxonomy of test scenarios could be:

(a) Scalable robust optimization problems with known
analytical solutions. The analysis should provide esti-
mates on expected solution quality, or even better,
estimates on the expected runtime for reaching a solu-
tion of a certain quality. Results of the former type
have already been obtained for ES with actuator
noise (discussed above). In the next section, some
candidates for this problem class will be presented.

(b) Scalable robust optimization problems amenable to
constrained linear or quadratic programming as dis-
cussed in Section 4.1. Since the (nearly) exact robust
solutions are known, the solution quality of the direct
optimization strategies could be assessed easily.

(c) Test problems gleaned from real-world robust design
tasks of different complexity, easy to program and
without any ambiguities. These problems should be
‘‘typical’’ in the sense that they also represent major
characteristics of a problem class. Clearly, agreeing
on the members in this class is most difficult. Also,
the real robust optimum will often not be known such
that one can only rely on relative evaluations.

In the following, we will consider class (a) test functions
only. The other two classes are empty up until now. No
publications on these topics have been found.

5.2. Class (a) test scenarios

5.2.1. The quadratic sphere and general quadratic models

The quadratic N-dimensional sphere

fsðxÞ :¼ kxk2 ¼
XN

i¼1

x2
i ð72Þ

is probably the most simple scalable test function firstly
considered in context of type B uncertainties in [49]. Opti-
mization goal is the minimization. One can easily deter-
mine the robust counterparts F. For the case of robust
regularization (9) using the neighborhood X ¼ fn : kn�
xk 6 �g, i.e., an Euclidean ball around the design point
x, one gets

F sBðx; �Þ ¼ sup
kdk6�
ðxþ dÞ2

¼ sup
kdk6�

kxk2 þ 2kxkkdk cosð�ðx; dÞÞ þ kdk2
� �

:

ð73Þ
Taking into account that the cosine assumes its maximum
for xkd and kdk 6 �, one immediately obtains

F sBðx; �Þ ¼ ðkxk2 þ 2kxk�þ �2Þ ¼ ðkxk þ �Þ2 ð74Þ
and the robust minimizer is at x̂ ¼ 0.
Considering the first momentum robustness measure
(25), one finds

F s1ðxÞ ¼ E½fsðxþ dÞjx� ¼ E½x2 þ 2xTdþ d2jx�
¼ x2 þ 2xTE½d� þ E½d2�: ð75Þ

Assuming for the d uncertainties E½d� ¼ 0, the robust min-
imizer is at x̂ ¼ 0. The special case d ¼N ð0; �2IÞ leads to

F s1ðxÞ ¼ kxk2 þ N�2: ð76Þ

Similarly, one finds for the variance in the d ¼N ð0; �2IÞ
case [49]

Var½fsjx� ¼ 4�2kxk2 þ 2N�4: ð77Þ

In this special case, minimizing the first moment and the
variance are not conflicting goals and the minimizer is
x̂ ¼ 0.

The probabilistic threshold measure (31) can also be
applied. As has been shown in [49],

F sqðxÞ ¼ Pr½fs 6 qjx�

¼ Pr �2
XN

i¼1

xi

�
þNð0; 1Þ

� �2

6 q

�����x
" #

! max

¼ Pr½v02N ðfÞ 6 tjx� ! max: ð78Þ

The random variate v02N ðfÞ in (78) obeys a non-central v2

distribution with N degrees of freedom, non-centrality
parameter f ¼ x2=�2, and threshold t ¼ q=�2. One can
prove for arbitrary thresholds q > 0 that the global mini-
mizer is at x̂ ¼ 0.

The performance of the ðl=lI ; kÞ-ES on the quadratic
sphere with normally distributed actuator noise has been
investigated in [49,165]. The steady state performance (final
fitness error) appears now as a special case Q ¼ I in (70)
valid for the general quadratic model (68). Since we have
already considered (68), we will not explicitly discuss it
here, but only note that the general quadratic model (68)
should definitely belong to this class of test functions.

5.2.2. The sphere model with environmental uncertainties and

the variance problem
This model presents an example for type A uncertainties

feðx; aÞ :¼ a� ðaþ 1Þkxkb þ ba; b > 0; a 2 R: ð79Þ

It is the task to robustly maximize (79). Note, this test
function is similar to (28) where minimization has been
considered.

The robust regularization approach of Section 3.2.1, can
be easily transferred to robust maximization. In this case
the robust counterpart must be determined as the infimum

of feðx; aÞ. Using an jaj 6 � neighborhood, we get

F eBðx; �Þ ¼ inf
jaj6�
ðfeðx; aÞÞ ¼ inf

a2½��;��
ða� kxkb þ ðb� kxkbÞaÞ

¼ a� kxkb � ðb� kxkbÞ�; if kxkb 6 b;

a� kxkb þ ðb� kxkbÞ�; if kxkb > b:

(
ð80Þ
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Rearranging terms, this reads

F eBðx; �Þ ¼
a� �b� ð1� �Þkxkb; if kxkb 6 b;

aþ �b� ð1þ �Þkxkb; if kxkb > b:

(
ð81Þ

Visual inspection of the robust counterpart (81) reveals
that the robust maximum of feðx; aÞ is given by

max
x

F eBðx; �Þ ¼
a� �b; if 0 6 � 6 1;

a� b; if � > 1

�
ð82Þ

and the optimizer obeys

kx̂kb ¼ arg max
kxkb

F eBðx; �Þ ¼
0; if 0 6 � 6 1;

b; if � > 1:

�
ð83Þ

That is, for 0 6 � 6 1 it holds x̂ ¼ 0; for � > 1 all designs x̂

which fulfill kx̂k ¼ b1=b are optimal; and for � = 1 all x̂

which fulfill kx̂k < b1=b are optimal.22 For � > 1 we encoun-
ter an example where the optimizer of the robust counter-
part does not coincide with that of the original test function
(79) with vanishing uncertainties.

Assuming stochastic a uncertainties, one can alterna-
tively consider the first moment (23) of fe and the variance
measure (26) of Section 3.2.2. Rewriting (79) as feðx; aÞ ¼
a� kxkb þ ðb� kxkbÞa, one immediately sees that (pro-
vided that E½a� ¼ 0)

F e1ðxÞ ¼ E½fejx� ¼ a� kxkb ð84Þ
and

Var½fejx� ¼ ðb� kxkbÞ2Var½a�: ð85Þ
In contrast to the robust regularization (81), there is an
optimum of F e1 at x̂ ¼ 0 independent of the choice of a.
For example, assuming a �Nð0; �2Þ, the standard devia-
tion � of the uncertainty a has no influence on the location
of the optimum. However, considering the location of the
minimum of the variance (85), one sees that this minimum
is at those designs x̂ for which kx̂k ¼ b1=b 6¼ 0. Therefore,
maximizing performance and minimizing the variance are
two conflicting goals on this test function. Interestingly,
the states with minimal variance agree with those of the ro-
bust regularization with � > 1 in (83). This appears reason-
able – to a certain extend – since the worst case scenario
considers large deviations from the nominal design, con-
versely the variance may be regarded as quantity measuring
these deviations.

As the third robustness measure, we consider the
probabilistic threshold measure (33), (34) assuming
a �Nð0; �2Þ. After a short calculation one obtains (see,
[49])

F eqðxÞ ¼ Pr½fe 6 qjx� ¼ U
q� aþ kxkb

�jb� kxkbj

 !
! min; ð86Þ
22 Remark: It would be interesting to analyze the behavior of an EA
where the fitness function performs a minimum search over j samples.
Such a type of EA has been proposed in [36]. Using the test function (79)
one might have a chance to obtain theoretical results.
where UðyÞ is the cdf (cumulative distribution function) of
the standard Gaussian variate

UðyÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z t¼y

t¼�1
e�

1
2t2

dt ¼ 1

2
1þ erf

yffiffiffi
2
p
� �� �

: ð87Þ

The robustness measure (86) is displayed in Fig. 6. As one
can see, this robustness measure does not provide a conclu-
sive and simple decision rule how to choose x̂. While there
is a certain bias to x̂ ¼ 0 for large q thresholds, there is also
a region where the local minimum of Pr is at kx̂kb ¼ b.
Considering (86), this is the case for q < a� kx̂kb. One also
sees that for such q values there is a plateau-like region of
nearly optimal x values. Since it is difficult to draw general
conclusions as to the choice of x̂ on this test function inde-
pendent of q, we stop considering this measure for now.

Even though test function (79) is a simple sphere, it pos-
sesses a rich repertoire of properties. This also holds for the
behavior of the ðl=lI ; kÞ-ES on this function. Provided that
a �Nð0; �2Þ one can show [49] that the expected steady
state fitness error E½D~f � obeys

E½D~f �P �Nb
�N þ 2blcl=l;k

: ð88Þ

That is, assuming a constant truncation ratio l=k (recall:
l – number of parents, k – number of offspring), the robust
optimum a of F e1, Eq. (84), can be approached arbitrarily
close by increasing the population size k. The investigations
in [49] also showed that there are parameter combinations
of N, b, b, �, l, and k for which the convergence/divergence
of the ES depends on the initial distance x to the optimizer
x̂ ¼ 0.

As Eq. (88) shows, the ES optimizes the first momentum
measure. If one is interested in minimizing the variance
(regardless of the expected value of f), the ES does not pro-
vide a direct approach. This holds for all test functions
investigated so far (except those cases where the optimizer
of the expected value and the variance are the same). This
property is similar to that of the stochastic approximation
Fig. 6. Probabilistic robustness measure of test function (79) with a = 5,
b = 1, b = 1, and � = 4. Given a threshold q, those kxkb are desirable for
which Pr is small.



23 Note, a need not be a Gaussian normal variate. E½a� ¼ 0 is the only
condition on a that must be fulfilled in order to yield the results.
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algorithms. It seems that there is no direct way of evolving
variance-minimal solutions using a population of k single

f ðxl; aÞ samples. A variance estimate can be obtained by
sampling j times each single design xl. That is, one needs
at least j = 2 samples from each design xl.

5.2.3. Functions with noise-induced multi-modality

In [166] a new class of test functions has been proposed,
motivated from design optimization of gas-turbine blades.
Unlike the test functions considered so far, the newly pro-
posed function class exhibits a (smooth) topology change
of the mean value landscape depending on the regulariza-
tion (or uncertainty) parameter �.

5.2.3.1. Function ‘‘f2’’. As a first example we consider the
robust maximization of

f2ðx; aÞ :¼ a� ðxN�1 þ aÞ2 þ
PN�2

i¼1 x2
i

x2
N þ b

� x2
N ; b > 0; x 2 RN

ð89Þ
with type A uncertainties. The derivation of the robust
counterparts will only be sketched here, for an in-depth
treatment, the reader is referred to [167].

Let us first calculate the robust regularization function
F 2B. In the worst case scenario assuming jaj 6 � one has

F 2Bðx; �Þ ¼ inf
a2½��;��

ðf2ðx; aÞÞ

¼ a� x2
N �

PN�2
i¼1 x2

i

x2
N þ b

� 1

x2
N þ b

max
a2½��;��

ððxN�1 þ aÞ2Þ:

ð90Þ

Since

max
a2½��;��

ððxN�1 þ aÞ2Þ ¼ ðxN�1 þ �Þ2; if xN�1 P 0;

ðxN�1 � �Þ2; if xN�1 < 0;

(
¼ ðjxN�1j þ �Þ2;

ð91Þ
one gets the robust counterpart

F 2Bðx; �Þ ¼ a� ðjxN�1j þ �Þ2 þ
PN�2

i¼1 x2
i

x2
N þ b

� x2
N : ð92Þ

In order to maximize (92) one sees that 8i ¼ 1; . . . ;N � 1:
x̂i ¼ 0 must hold. The determination of the local optimizer
�xN of F 2Bðx; �Þ for arbitrary xi ði < NÞ can be done using
calculus

�xN ¼

0; if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjxN�1j þ �Þ2 þ

PN�2

i¼1

x2
i

s
6 b;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjxN�1j þ �Þ2 þ

PN�2

i¼1

x2
i

s
� b

vuut ; otherwise:

8>>>>>><
>>>>>>:

ð93Þ
Inserting x̂i ¼ 0 (for i < N ) one gets from (93) the global
optimizer

x̂N ¼
0; if � 6 b;

�
ffiffiffiffiffiffiffiffiffiffiffi
�� b
p

; if � > b

�
ð94Þ
and therefore

x̂ ¼
0; if � 6 b;

ð0; . . . ; 0;�
ffiffiffiffiffiffiffiffiffiffiffi
�� b
p

ÞT; if � > b:

�
ð95Þ

While for � 6 b there is a maximum at x ¼ 0, there emerge
two maxima for � > b. That is, depending on the strength �
of the uncertainty, the topology of the robust counterpart
changes from a unimodal to a bi-modal landscape. The
maximum value is obtained by inserting (95) into (92)

F̂ 2B ¼
a� �2

b ; if � 6 b;

aþ b� 2�; if � > b:

(
ð96Þ

The bifurcation behavior observed in (94) is not a peculiar-
ity of the regularization approach used, it also appears
when considering the momentum robustness measure.
Assuming a �Nð0; �2Þ, the expected value measure (23)
can be easily calculated

F 21ðx; �Þ ¼ E½f2jx� ¼ a� r2 þ �2

x2
N þ b

� x2
N ; ð97Þ

where

r :¼

ffiffiffiffiffiffiffiffiffiffiffiffiXN�1

i¼1

x2
i

vuut : ð98Þ

Using the aggregated quantity r, the robust counterpart of
f2 can be displayed in Fig. 7. For small levels � of uncertain-
ties the robust counterpart landscape possesses a unique
maximum. From the graph on the left-hand side one gets
the optimal design parameter setting r̂ ¼ 0, ŷN ¼ 0, i.e.,
ŷ ¼ 0. This solution is robust with respect to the change
of the noise strength �. However, when exceeding a certain
level, the mean fitness landscape changes dramatically
as can be seen in the right-hand graph of Fig. 7. While
r = 0 still remains the optimal setting, yN ¼ 0 is no longer
optimal. Remarkably, the maximum at yN ¼ 0 has changed
to a minimum. The analysis can be found in [166]. It yields
exactly the same result as in the case of the robust worst
case regularization, interpreting � in (95) and (96) as
standard deviation of the a variate.23

The robust optimization of f2, Eq. (89), using the
probabilistic threshold measure (33), (34) assuming
a �Nð0; �2Þ has been considered in [167]. It has been
shown that in general the global robust optimizer x̂

x̂ ¼
0; if a� q 6 b;

ð0; . . . ; 0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� b� qÞ=2

p
ÞT; if a� q > b

�
ð99Þ

depends on the threshold q, but not on the strength of the
uncertainty �. The critical point here is that the bifurcation
behavior of the xN optimizer depends on the threshold
value q chosen. This first comes as a surprise, however,
considering the freedom in choosing q one can choose
q :¼ aþ b� 2�. If inserted in (99) one recovers (95).



Fig. 7. Expected value landscapes of f2 given by Eqs. (97) and (98) for � ¼ 0:25 (left) and � = 3.0 (right) (a = 5, b = 1).
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5.2.3.2. Variations on f2. A generalization of f2 has been
presented in [166]. Using our notations, the test function
f3 reads

f3ðx; aÞ :¼ a�
PN1�1

i¼1 x2
i þ

PN2�1
i¼N1
ðxi þ aiÞ2

bþ
PN

i¼N2
x2

i

�
XN

i¼N2

x2
i ; b > 0; ð100Þ

where

1 6 N 1 < N 2 6 N : ð101Þ

Function f2 is contained in (100) for N 1 ¼ N � 1 and
N 2 ¼ N . Considering the expectancy robustness measure,
one can easily calculate the robust counterpart (23).
Assuming E½ai� ¼ 0 and Var½ai� ¼ �2 one obtains for the
robust optimizer (see [167])

x̂ ¼ 0; if � 6 b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
;

ð0; . . . ; 0; x̂N2
; . . . ; x̂N ÞT; if � > b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
;

(

ð102Þ

where the x̂N2
; . . . ; x̂N are located on a sphere

XN

i¼N2

x̂2
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
� b: ð103Þ

That is, if the uncertainty strength � exceeds the limit
b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
, the robust counterpart function F 31ðx; �Þ

changes from a unimodal function to a multi-modal func-
tion of x. This is referred to as noise-induced multi-modality.
If N 2 < N then there is an ðN � N 2Þ-dimensional manifold
of optimal robust designs x̂. The maximum of the robust
counterpart F 31ðx; �Þ is given by

F̂ 31 ¼
a� �2ðN 2 � N 1Þ=b; if � 6 b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p

aþ b� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
; if � > b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � N 1

p
:

�
ð104Þ
5.2.3.3. Function f4. Predicting the behavior of the
ðl=lI ; kÞ-ES on test functions f2 and f3 still remains a chal-
lenge. Using a very rough model it has been shown in [166]
that one can explain the qualitative behavior of the ES on
f2. However, this does not suffice for theoretical perfor-
mance evaluations which are expected to be exact in the
asymptotical limit of infinite problem size N. In order to fill
this gap, f4 has been proposed in [167]. It is defined as a
special case of f3, Eq. (100), using N 1 ¼ 1 and N 2 ¼ N , i.e.,

f4ðx; aÞ :¼ a�
PN�1

i¼1 ðxi þ aiÞ2

bþ x2
N

� x2
N ; b > 0: ð105Þ

Assuming ai �Nð0; �2Þ, the steady state behavior of the
ðl=lI ; kÞ-ES has been analyzed in [167]. The expected qua-
dratic deviation of the first N � 1 components is obtained as

E
XN�1

i¼1

x2
i

" #
’ ðN � 1Þ2�2

8l2c2
l=l;k

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8l2c2
l=l;k

N � 1

s0
@

1
A ð106Þ

and the expected steady state value of xN

E½xN � ’ �


ðN � 1Þ�2 1þ N � 1

8l2c2
l=l;k

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8l2c2
l=l;k

N � 1

s0
@

1
A

2
4

3
5

vuuut � b

vuuuut :

ð107Þ

A closer examination of (106) and (107) shows for
l=k ¼ const: that increasing the population size k allows
for an arbitrarily exact approximation of the true robust
optimizer. Furthermore, it also shows that upgrading the
population of k designs by a factor of j is more efficient
than resampling k designs j times.

Again the question remains, how other direct search
algorithms perform on these test functions.

We have argued at the beginning of this section that due
to the limited versatility of the mathematical programming
approaches and the limited theoretical results for direct
optimization approaches, the empirical investigation of
robust optimization techniques becomes increasingly
important. Besides making sure that the technical – statis-



24 Using isotropic mutations represents the simplest form expressing
unbiasedness in the search space. There are also more elaborate ES
versions using correlated Gaussian mutations [171,172], however, these are
not considered in this introductory appendix.
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tical – means are chosen correctly [168], the choice of the
‘‘test’’ problem is of utmost importance. It should represent
either the characteristics of a certain practically relevant
problem class or of a theoretical problem property, or be
of considerable practical interest in itself. In this section,
we made a first step to introduce test functions that exhibit
some characteristics which seem to be shared by some prac-
tical aerodynamic design optimization problems, see [166].

6. Outlook – trends and research perspectives

In this survey, we have given a comprehensive overview
over the field of robust optimization. Starting from Tagu-
chi’s robust design methodology, we first considered the
robust regularization approach based on worst case scen-
arios usually used to find robust solutions to linear and
quadratic constrained optimization problems. While this
approach has a certain appeal from the viewpoint of math-
ematics, its usability for real-world applications is, how-
ever, very restricted. Often the evaluation of designs in
practice cannot be approximated by linear or quadratic
models. Furthermore, in general, one cannot expect the
availability of an analytical model. In such situations one
has to resort to simulation tools such as computational
fluid dynamics or even directly to experiments. Emulating
the design uncertainties, the output of such programs is
inherently and explicitly noisy. In order to optimize a
design based on noisy quality information, suitable direct
optimization techniques are required. Empirically as well
as principally evolutionary algorithms are direct optimiza-
tion techniques that work well on noisy problems.
Here ’’principally’’ refers to the ability of biological evolu-
tion – the paradigm behind evolutionary computation – to
generate robust and flexible systems that are well adapted
to noisy and dynamic environments.

Most design problems reported in the literature are low-
dimensional, i.e., the design is represented by only a few
parameters mostly of the order of ten. Under such condi-
tions, most approaches such as response surface methodol-
ogy, direct pattern search, Kriging method, etc. work
(nearly) equally well. However, there is a growing number
of optimization problems that require a detailed design rep-
resentation and where the number of parameters increases
by nearly an order of magnitude, see e.g., [169,170].

Robust design optimization using direct search algo-
rithms is still in its beginning. Developing and analyzing
optimization algorithms for noisy functions is likely to be
an research area of growing interest driven by the increasing
engineering demand to produce solutions whose perfor-
mance is not just increased at the design point but for a wide
interval of operating conditions. Research in robust design
optimization is currently carried out in the fields of opera-
tions research, engineering optimization and computational
intelligence (among others). Looking for synergies between
the different philosophies in these fields is one promising
approach towards a qualitative step in robust optimization.
Furthermore, mathematical precision must be more whole-
heartedly coupled to engineering pragmatism, e.g., speci-
fying upper and lower bounds on the expected search
performance is very valuable even for the practitioner.

Finally, there are some more short term research ques-
tions that have to be tackled in the near future to make
robust optimization the rule and not the exception in engi-
neering design:

• What kind of direct search technique should be used for
which problem class? In order to be able to provide
some answer to this question, we have to carefully set
up useful test cases and test problems for robust design
and analyze them in detail.

• We must extend our knowledge on expected perfor-
mance indices by direct search techniques. It is likely
that this is most practically achieved by theoretical stud-
ies of simplified version of the test problems that we
have defined above possibly resulting in upper and lower
bounds for the true test cases.

• How is performance in general related to robustness and
are there additional means to achieve robustness
through adaptivity during operation. It is likely that in
many cases maximal performance at the design point
is in contradiction to robustness over a wide interval
of operating conditions. Thus, robust design is inher-
ently a multi-criteria optimization problem. Research
in this direction is just beginning [60].

• How can constraint handling be efficiently coupled to
robustness and how do both quality measures interact
both theoretically as well as empirically on a set of char-
acteristic benchmark problems.

Of course this list is by no means exhaustive. There is a
large variety of open problems giving rise to exciting
research topics which should be considered next.
Appendix A. The ðl=lI ; kÞ evolution strategy

The ðl=lI ; kÞ-ES [28,34] is a simple but very effective EA
for optimization in real-valued search spaces (i.e., the space
of the design variables x). It uses a population of l parental
individuals xm and generates a population of k offspring ~xl

(l ¼ 1; . . . ; k) by intermediate multirecombination and muta-

tion. Intermediate multirecombination is performed by cen-
troid calculation. That is, given a set of l vectors am (or
scalars), the centroid hai is defined as

hai :¼ 1

l

Xl

m¼1

am: ðA:1Þ

On top of the centroid hxi a mutation is applied by adding
a(n) (isotropic24) normally distributed random vector
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N ð0; r2IÞ. r is referred to as the mutation strength. The
mutation process is performed k times producing a set of
k offspring individuals with design (or objective) para-
meters ~xl and fitness values (i.e., objective function values)
f ð~xlÞ. In order to obtain a new parent population selection
must be applied. This is done by ðl; kÞ-truncation selection
taking the top l best individuals (w.r.t. the measured fit-
ness) as parents for the next generation. In order to refer
to the mth best individual, we use the ‘‘m; k’’ notation.

The efficient working of the ES under various conditions
strongly depends on a sophisticated control of the muta-
tion strength r during the evolution. There are two
standard approaches to r-control: the r self-adaptation
[173,34] and alternatively the cumulative step size adapta-
tion [174,171].

The r self-adaptation technique is based on the coupled
inheritance of design and r parameters. Using the notation

haiðgÞ :¼ 1

l

Xl

m¼1

a
ðgÞ
m;k ðA:2Þ

for intermediate recombination, where (g) is the generation
counter, the ðl=lI ; kÞ-rSA-ES can be expressed in ‘‘off-
spring notation’’

8l ¼ 1; . . . ; k :
~rðgþ1Þ

l :¼ h~riðgÞesNlð0;1Þ;

~x
ðgþ1Þ
l :¼ h~xiðgÞ þ ~rðgþ1Þ

l N lð0; IÞ:

(
ðA:3Þ

That is, each offspring individual (indexed by l) gets its own
mutation strength ~r. And this mutation strength is used as
mutation parameter for producing the offspring’s design
parameter(s). In (A.3) we used the log-normal update rule
for mutating the mutation strength. The learning parame-
ter s is usually chosen as s ¼ 1=

ffiffiffiffi
N
p

, where N is the search
space (design space) dimensionality.

While in evolutionary self-adaptive ES each individual
get its own set of endogenous strategy parameters, cumula-

tive step size adaptation uses a single mutation strength
parameter r per generation to produce all the offspring.
This r is updated by a deterministic rule which is controlled
by certain statistics gathered over the course of genera-
tions. The statistics used is the so-called (normalized)
cumulative path-length s. If ksk is greater than the expected
length of a random path, r is increased. In the opposite
situation, r is decreased. The update rule reads

8l ¼ 1; . . . ; k : ~x
ðgþ1Þ
l :¼ h~xiðgÞ þ rðgÞN lð0; IÞ;

sðgþ1Þ :¼ ð1� cÞsðgÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� cÞc

p ffiffi
l
p

rðgÞ
h~xiðgþ1Þ � h~xiðgÞ
� �

;

rðgþ1Þ :¼ rðgÞ exp ksðgþ1Þk�vN
DvN

� �
;

9>>>=
>>>;
ðA:4Þ

where sð0Þ ¼ 0 is chosen initially. The recommended stan-
dard settings for the cumulation parameter c and the
damping constant D are c ¼ 1=

ffiffiffiffi
N
p

and D ¼
ffiffiffiffi
N
p

. For the
expected length of a random vector comprising N stan-
dard normal components, the approximation vN ¼ffiffiffiffi

N
p
ð1� 1=4N þ 1=21N 2Þ can be used.
Appendix B. The progress coefficient cl=l;k

The progress coefficient cl=l;k is defined as the expected
value of the average over the l largest samples out of a
population of k random samples from the standard normal
distribution. According to [102, p. 247], cl=l;k can be
expressed by a single integral

cl=l;k ¼
k� l

2p

k

l

� �Z 1

�1
e�t2

UðtÞð Þk�l�1 1� UðtÞð Þl�1 dt;

ðB:1Þ
where UðtÞ is the cumulative distribution function (cdf) of
the standard normal variate.

In [102, p. 249] an asymptotically exact cl=l;k expression
has been derived. For l; k!1 and truncation ratios
0 < l=k 6 1, one finds

cl=l;k ’
k
l

1ffiffiffiffiffiffi
2p
p exp � 1

2
U�1 1� l

k

� �� �2
 �

; ðB:2Þ

where U�1 is the inverse to the cumulative distribution
function U.
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