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Probabilistic inference for structured planning in robotics

Marc Toussaint and Christian Goerick

Abstract— Real-world robotic environments are highly struc-
tured. The scalability of planning and reasoning methods to
cope with complex problems in such environments crucially
depends on exploiting this structure. We propose a new ap-
proach to planning in robotics based on probabilistic inference.
The method uses structured Dynamic Bayesian Networks to
represent the scenario and efficient inference techniques (loopy
belief propagation) to solve planning problems. In principle,
any kind of factored or hierarchical state representations can
be accounted for. We demonstrate the approach on reaching
tasks under collision avoidance constraints with a humanoid
upper body.

I. INTRODUCTION

Planning in high-dimensional robotic systems is a fun-
damental and critical problem when the goal is more au-
tonomous, problem-solving robots in natural environments.
Many behaviors that we would like robots to exhibit, such as
autonomously reasoning about tools to manipulate objects,
considering different paths to a goal, and generally coping
with unexperienced situations, cannot be based on purely
reactive behavior and require reasoning about the future.

Most approaches to planning try to directly cope with the
high-dimensional state space, using smart heuristics to find
paths in this space, e.g., using probabilistic road maps, or
Rapidly Exploring Random Trees [1], [2]. Although these
approaches provide practical solutions to many real-world
applications (such as foot step planning), the fundamental
question of scalability remains unsolved when the full high-
dimensional state space has to be considered. In particular,
structural knowledge about the system is not exploited.

What we aim for is a new approach to planning based
on a factored representation of state, i.e., based on models
of the environment and the robot that use multiple vari-
ables to describe the current state. These variables might
represent different “parts” of the state (such as different
body parts, different objects, or different constraints), but
they may also provide different levels of abstractions of the
current state (“situations”) as in hierarchical models (see
below and the discussion). Reasoning and inference on such
factored models is a challenge that has been extensively
addressed in the Machine Learning community [3], [4],
[5], [6]. Applied to the realm of planning, these techniques
provide a fundamentally new perspective on decomposing
planning processes and exploiting the inherent structure in
the coupling between random variables.

Marc Toussaint is with the Machine Learning group at Technical Univer-
sity Berlin, Franklinstr. 28/29, 10587 Berlin, Germany; Christian Goerick is
with the Honda Research Institute Europe, Carl-Legien-Strasse 30, 63073
Offenbach/Main, Germany.
mtoussai@cs.tu-berlin.de
christian.goerick@honda-ri.de

We base our approach on a recently developed framework
for planning based on probabilistic inference [7], where Dy-
namic Bayesian Networks (DBNs) are used to infer and emit
optimal control signals rather than to model observed data.
The general idea is that Machine Learning has developed
very rich techniques to learn, e.g., hierarchical or factored
structured probabilistic models (latent variable models) from
data as a method to analyze and represent the inherent
structure (e.g., hierarchical Hidden Markov Models [8],
factorial HMMs [9]). We use exactly such structured models
for the generation of control signals rather than as a model of
observed data. For instance, hierarchical probabilistic models
provide a framework for motor (or motion) primitives or
macro policies (see, e.g., [10] and [11]); factored models
provide a framework for multivariate (e.g., multiple object)
state representations.

We will discuss this in more detail in the concluding
section. As a first demonstration of the approach we address
the scenario of planning in a redundant kinematic system (a
humanoid upper body) under task and collision constraints.
The system is described by multiple variables, including the
joint state, the endeffector position and collision variables.
Inference in this model allows us to compute a posterior dis-
tribution over possible trajectories that fulfill the constraints
– i.e., we compute a whole distribution over trajectories
rather than a single trajectory. The theoretical grounding of
the approach guarantees that likelihood maximization w.r.t.
the control parameters is equivalent to solving the planning
problem in the sense of maximizing a corresponding global
cost function.

The next two sections will first introduce DBNs as a struc-
tured model description and then the general methodology
of using inference for planning in such models. Section IV
describes the inference technique we used (loopy belief prop-
agation on factor graphs) and section V the two experiments
we performed.

II. DYNAMIC BAYESIAN NETWORKS TO REPRESENT
STRUCTURED PLANNING PROBLEMS

Real-world robotic problems are highly structured and one
should exploit this structure when reasoning about possible
trajectories. Graphical Models have provided a very powerful
understanding of ‘structure’ in the realm of Machine Learn-
ing. Roughly, one assumes that the full state of the system
is described by multiple random variables, the coupling of
which is described by a graphical model. This is contrary
to the view that the system’s state is just a point is a high-
dimensional unstructured state space.



Fig. 1. A humanoid upper body with n = 13 hinge joints. The hip is
fixed, the right hand is used as endeffector.

Transferred to the realm of robotics, the random variables
we are concerned with are typically dynamic variables which
are coupled via kinematic or dynamic laws or imposed
constraints. Such structured dynamic processes are captured
in terms of Dynamics Bayesian Networks (DBNs); see [12]
for an excellent overview on how hierarchical, factored, or
otherwise structured processes can be captured.

In this paper the experiments refer to a humanoid upper
body (Figure 1) with n = 13 joints. If the hip is assumed
fixed, the configuration is determined by the joint state1

q ∈ Rn. With the position x ∈ R3 of the right hand
as the endeffector, this defines the non-linear kinematics
φ : q 7→ x.

Figure 2 captures the scenario in terms of a Dynamic
Bayesian Network. Here, x and q are treated as dynamic
random variables. The transitions P (qt+1 | qt) are the free
parameters of the problems and relate to the control signals
that we will learn via probabilistic inference. The coupling
P (xt | qt) is actually deterministic and given by the forward
kinematics φ. Note though that its inverse P (qt |xt) is not at
all deterministic but, via Bayes’ rule, a distribution over the
null-manifold (the set {q : φ(q) = xt}). In this model we
added an extra dependency P (xt+1 |xt) which will allow us
later to impose extra constraints on the endeffector trajectory
such as smoothness and collision avoidance.

III. GENERAL APPROACH: PROBABILISTIC INFERENCE
FOR REASONING ABOUT TRAJECTORIES

In [7] it was shown that a general planning problem
(maximization of an arbitrary global reward function) can
equivalently be translated into a problem of likelihood max-
imization in a corresponding Dynamic Bayesian Network
description of the problem. In the context of planning prob-
lems, likelihood maximization amounts to an EM-algorithm
which yields an optimal (control) policy. The core of this
EM-algorithm is an inference procedure, deriving a posterior
probability distribution over possible trajectories. We refer
the reader to [13] for theoretical result and demonstrations on
discrete and continuous Markov Decision Processes. Here,
we want to give a more informal introduction of the approach
of using probabilistic inference for trajectory generation in

1Please note the unfortunate ambiguity of the word ‘joint’ in our field:
as in the joint [combined] probability distribution of all random variables –
versus the joint [hinge] state of the robot.
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Fig. 2. Dynamic Bayesian Network of a redundant planning problem. q is
the joint state, ξ the endeffector position. The gray shading of XT indicates
that we condition the final endeffector position, i.e., constrain it to be the
target.

the context of robotics. The outline of the approach is as
follows:

(i) First formulate the scenario in terms of a Dynamic
Bayesian Network, using a multi-variate description
of state and structured graphical models to describe
possible inter- and intra-temporal couplings.

(ii) Constraints such as smoothness or feasibility of transi-
tions or consistency constraints between variables are
introduced by including additional factors in the model.
For instance, some of these define the prior probability
of transitions. This is elegantly done in factor graph
representations of the DBN, see below.

(iii) Target constraints such as reaching a target position
with the endeffector are also introduced by condi-
tioning the respective variable (effectively introducing
further factors).

(iv) An inference algorithm on the factor graph will com-
pute the posterior distribution over all trajectories
fulfilling the constraints. (E-step)

(v) Control parameters for each time step can be extracted
by investigating the posterior transition probabilities
(typically in the joint state). (M-step)

In the example of the humanoid upper body, we already
addressed step (i) in Figure 2. For the inference algorithm
and also for imposing additional constraints it is favorable
to represent this DBN as a factor graph [14] as in Figure
3. Formulating constraints within this framework (step (ii))
is done by specifying certain prior probabilities in terms of
factors. In our case, we include a factor

f1(qt+1, qt) ∝ P (qt+1 | qt) = N(qt,W−1) (1)

to constrain the likely joint state transitions. Here, N(c, C) is
the normal distribution with mean c and covariance matrix
C. The matrix W is a metric in joint space that weights
movements for different joints differently. We used W =
diag(w1, .., wn) with w1, w2 = 100 for the two torso joints
and w3,..,13 = 20 for all other joints. Further we include a
prior P (qt) as a factor in the factor graph, which limits the
joint range – for simplicity we use again a Gaussian potential

f2(q) ∝ P (qt) = N(0, 1.0) , (2)

where q = 0 denotes the joint centers. Next we include a
factor expressing our prior about the endeffector movement.
Since we do not have a strong prior about this, we assume
a weak potential

f3(xt+1, xt) ∝ P (xt+1 |xt) = N(xt, 0.1) , (3)
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Fig. 3. The factor graph for the DBN in Figure 2. We use this to implement
the generic inference algorithm. The labels A, B, C indicate the order of
belief propagation as described in section IV.

implying a prior standard deviation of endeffector move-
ments of 0.1. Finally we include the most important factor
in the model: the coupling between joint state and endef-
fector. This coupling is given via the kinematic map φ and
introduced by a factor

f4(xt, qt) ∝ P (xt | qt) = N(φ(q), 0.001) , (4)

which assumes that small perturbations (standard deviations
0.001) of the kinematic map might be possible.

This completes the specification of couplings and con-
straints between the variables. Step (iii) then determines the
actual task to be fulfilled – in our case by conditioning the
final endeffector random variable xT to be at the desired
target x∗T . Instead of a hard conditioning with a Kronecker-δ
we use a softer conditioning with a Gaussian potential of
small variance:

f5(xT ) ∝ P (xT ) = N(x∗T , 0.001) . (5)

The factors f1, .., f5 we have introduced so far determine
the factor graph in Figure 3. Step (iv) then uses generic
probabilistic inference techniques to compute the posterior
distributions on the factor graph for each variable and
transitions. We use an inference technique that exploits the
structure of the problem, namely a specific scheme of loopy
belief propagation [15], which is detailed in the next section.

Finally, step (v) extracts a control law from the computed
posterior transition probabilities. More specifically, if infer-
ence yields a joint posterior probability of (qt, qt+1) as

ξ(qt+1, qt) = N(
(
a
b

)
,

(
A C
CT B

)
) , (6)

then the corresponding kinematic control signal at time t is
a desired displacement

ut(qt) = b− qt + CTA−1(qt − a) , (7)

which forms an attractor signal towards qt+1 → b. (See also
[7] for details on the M-step.)

To conclude this section, first note that, to follow a proper
EM-algorithm for likelihood maximization, the E- and M-
steps would have to be reiterated until convergence. However,
for our applications a single EM-cycle was sufficient to yield
appropriate solutions. One may expect that in more complex
planning problems more EM-cycles are necessary – but this
remains in the scope of future research.

Second, in some applications it is not desirable to fix
the total time T in advance: we might also be interested in

trajectories within a certain time window, or in optimizing a
discounted future reward that favors shorter trajectories. In
[7], such problems in the case of simple Markov Decision
Processes are addressed and this technique can be transferred
to the redundant control scenario.

Finally, any traditionally formulated cost function can
equivalently be translated into a factor of the factor graph
(via a log-transform) such that global cost minimization is
equivalent to likelihood maximization (which is also clear
from [7]).

IV. THE INFERENCE ALGORITHM

In principle, the algorithm we use for inference in our
problem is a standard approach and we could refer to the
standard literature [12], [15]. However, we wish to discuss
the inference process in more detail for two reasons: (1)
this will allow us a more detailed comparison to traditional
planning and control approaches, and (2) it will provide us
with a more intuitive interpretation of the inference process:
basically a process of establishing coherence between pos-
sible trajectories and all constraints, including future target
constraints or collision constraints.

A. Alternating between decoupled planning and coupling

We are given the factor graph in Figure 3 which extends
over T time steps and the factors f1, .., f5 defined above. The
problem of inference is very closely related to finding low
energy states in physical systems where only neighboring
particles interact and factors f1, .., f5 define local energy
potentials. This view adds some intuitive understanding of
what the inference process computes: basically a distribution
that describes possible trajectories that are ‘coherent’ with all
defined constraints, be they in the future or the present.

Just as physical interactions are only local between neigh-
boring particles, inference algorithms can be based on only
local message passing between coupled random variables
(loopy belief propagation, [15]). The easiest kind of inference
process is a forward-backward process of message passing
along a chain of coupled random variables, as in hidden
Markov Models (also called the Baum-Welch algorithm) or
Kalman smoothers. This principle can be generalized to other
orders of message passing and coupling structures.

In our concrete model (Figure 3) we have two chains of
random variables, one for the joint state q1,..,T and one for
the endeffector x1,..,T . Both chains are coupled ‘vertically’ at
each time slice. The inference algorithm chosen to solve the
problems is simply defined by the order of message passing
we apply. Referring to the edge labels A, B, C in Figure 3,
our order of message passing is:

(1) A fwd & bwd: first pass messages forward and back-
ward along the endeffector chain x1,..,T ,

(2) B bwd: then pass messages ‘vertically down’ from the
endeffector state xt to the joint state qt at each time
slice,

(3) C fwd & bwd: then pass messages forward and back-
ward along the joint state chain q1,..,T ,



(4) B fwd: then pass messages ‘vertically up’ from the
joint state qt to the endeffector state xt at each time
slice.

This scheme is iterated until convergence.
The inference scheme can be interpreted in an intuitive

manner. Step (1) first calculates a distribution of possible
endeffector trajectories that neglects the existence of joint
constraints and only accounts for the endeffector state and
goal conditioning. The result will describe a straight line
from start to goal with variances (indicating a large variance
of possible trajectories). Step (2) uses the kinematic map
to induce an extra potential for the joint state (aligned
with the nullspace) – this constrains (probabilistically) the
possible trajectories in joint space. Step (3) then computes
a distribution over possible joint state trajectories taking
account of this extra potential (the endeffector constraint).
Step (4) projects these possible joint state trajectories up into
the endeffector space and the iterated step (1) now computes
a new distribution over possible endeffector trajectories – this
time accounting for the coupling to the joint state. In our
examples two iterations will be enough to provide sufficient
convergence.

Let us compare this procedure to a traditional redundant
control scheme (see, e.g., [16] for a concise presentation).
Step (1) can be interpreted as a trivial endeffector planner
(generating a straight line). Step (2) corresponds to the
typical nullspace identification via the (weighted) pseudo-
inverse Jacobian. Now, the forward pass in step (3) is still
in close analogy to the classical forward controller using
the pseudo-inverse Jacobian. However the backward pass
in step (3), which smoothes the joint state trajectory and
‘carries back’ constraints from the future to the present, does
not have a classical analogue. It is exactly here, where we
qualitatively depart from classical forward control. The sub-
sequent inference process further refines the distribution over
possible trajectories to globally account for the constraints
and couplings.

B. Implementation and scaling

We developed our own implementation of general loopy
belief propagation on factor graphs. The software and a
detailed reference to factor graphs, message passing, and our
implementation is freely accessible.2

The computational complexity of inference is basically
linear in the number of message passings needed. Hence,
a single forward-backward pass along one variable is linear
in T . If the number of neighbors to each variable is bounded,
then the total number of edges in the factor graph is O(TK),
i.e., linear in the number K of variables. For complex (e.g.,
hierarchically deep) DBNs it is however an open question
how many iterations of inference sweeps one needs until
convergence. For the experiments we will indicate the real
computational time. (Note though that, so far, our imple-
mentation focuses on robustness and correctness rather than
computational speed.)

2http://www.marc-toussaint.net/06-infer

trajectory cost C(q1,..,T )

forward controller 11.19

MAP trajectory 8.14

TABLE I
GLOBAL COST OF JOINT SPACE TRAJECTORIES.

V. EXPERIMENTS

A. Reaching with a humanoid upper body

The first experiment considers the n = 13 joint humanoid
upper body displayed in Figure 1. We take the right hand
as the endeffector and plan a target reaching trajectory (of
length T = 50) to a goal in the upper left working domain
of the robot.

Figures 5(a&b) display the result after 2 iterations of
the inference steps (1-4), which provided sufficient con-
vergence. The figures display the maximum a posteriori
joint configuration (MAP, the maximum of the posterior
joint state distribution) and the variance of the endeffector
distribution at different time steps. As we can see, the MAP
endeffector trajectory is not a straight line. We can give a
more quantitative measure of the quality of the trajectory: We
compare the MAP joint trajectory computed via probabilistic
inference with the joint trajectory that results from a standard
redundant control approach. More precisely, the redundant
control approach first presumes a straight endeffector line
equally divided in T = 50 segments. Then, starting with the
initial joint configuration q0, the controller uses the weighted
pseudo-inverse Jacobian to emit a desired step in joint space

ut(xt) = J#(x∗t+1 − xt) , J# = W−1JT (JW−1JT )−1 ,
(8)

where W = diag(100, 100, 20, 20, .., 20) weights movements
in joints differently, and x∗t is the desired intermediate
endeffector position on the straight line.

Given this controller, it is appropriate to use the metric W
for defining the global trajectory cost,

C(q1,..,T ) =
T−1∑
t=1

||qt+1 − qt||W . (9)

Table I displays the trajectory costs for the trajectories
computed via the forward controller and the MAP trajectory
computed via probabilistic inference. The MAP trajectory is
clearly more efficient in terms of this cost. This stems from
the fact that equation (1) imposes a prior transition likelihood
f1(qt+1qt) ∝ N(q,W−1) which reflects exactly this metric
in joint space. The curve of the endeffector trajectory is a
result of this efficiency.

B. Coupling with collision constraints

Coupling extra constraints into the system is straight-
forward. To demonstrate this we augment the model with a
collision risk variable ct. In the experiment, we will consider
collisions of the endeffector with a table. Figure 4 displays
the factor graph augmented with this variable. Note that we
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Fig. 4. The factor graph we used for belief propagation. The labels A, B,
C indicate the order of belief propagation as described in the text.

decided to couple this variable not to a single endeffector
position xt but rather to an endeffector transition given by
a tuple (xt, xt+1). This turned out to be more robust and
accurate, particularly in view of the time discretization used.

We define the risk variable with a non-linear sigmoidal
function as follows. Let zt, yt ∈ R be z- and y-coordinate of
the endeffector position xt ∈ R3, let z∗ be the table height.
Then

c(xt+1, xt) ={
0 if zt, zt+1 > z∗+δ or zt, zt+1 < z∗−δ

ψ(yt + yt+1) otherwise
(10)

with δ = .02. Thus, the risk is zero if xt and xt+1 are both
either above or below the table, and a sigmoid depending
on the y-distance to the table corner otherwise. We used
ψ(y) = 1− 1

1+exp(−3y) . Just as for the kinematics, this risk
function defines a coupling factor

f6(ct, xt+1, xt) ∝ N(c(xt+1, xt), .001) . (11)

Importantly, we also impose a prior on the risk variable,
effectively constraining it to be low, by including the factor

f7(ct) ∝ N(0, .1) . (12)

The other factors f1, .., f5 remain the same as in the
previous experiment, and together with f6 and f7 define the
factor graph in Figure 4. For inference, we need to decide
on an order of message passing. Referring to the edge labels
indicated in Figure 4, we choose

(1) A fwd & bwd
(2) D bwd
(3) A fwd & bwd
(4) B bwd
(5) C fwd & bwd
(6) B fwd
Figures 5(c&d) display the result after two iterations of

this message passing scheme for T = 30. In the first
case (Figure (c)) the target endeffector position is slightly
above the table and the generated movement avoids the
obstacle. In the second case, the target is only slightly

displaced but now below the table. Here, the result is a rather
straight trajectory. A standard forward controller that follows
a gradient of a superimposed target potential and obstacle
avoidance potential would typically get trapped under the
table in the first case – so we cannot present a quantitative
comparison here. Also, the local target potential of a reactive
controller would hardly distinguish between the first and the
second case.

The experiments ran on a simple Laptop with a 1.1GHz
Centrino Mobile processor. The first experiment (T = 50,
without constraints, k = 2 inference sweeps) takes 3.56
seconds, the second experiment (T = 50, with constraints,
k = 2 sweeps) takes 3.97 seconds.

VI. DISCUSSION

In this paper we propose a new approach to planning in
structured robotic applications using probabilistic inference.
The approach is based on recent theoretical work, showing
that planning (future reward maximization) can be translated
into a problem of likelihood maximization – and thereby
reduced to the core problem of inference in structured
Dynamic Bayesian Networks. First of all, this approach
departs from planning in an unstructured high-dimensional
system state space and rather aims at exploiting the structure
that can be expressed in a multi-variate description of state
and local couplings between system variables. This has
previously been addressed with traditional Reinforcement
Learning techniques in the context of Markov Decision
Processes (e.g., [3], [4], [5], [6]), but no demonstration on
continuous robotic systems with non-linear, redundant kine-
matic couplings has been presented before. A hierarchical
decomposition of control has been addressed in [17], which
proposes a heuristic similar to our inference steps (1-3): “first
plan on the endeffector, then project this in the joint space
and plan there”. However, no back-coupling of the result
in joint space to the endeffector is considered and there is
no theoretical grounding of the method such as likelihood
maximization. This approach would also lead to a non-
optimal, straight endeffector trajectory in the experiment in
section V-A.

DBNs provide a very powerful way to express structure.
Murphy [12] gives a comprehensive overview of how factor-
ization, hierarchies, coupling between discrete and contin-
uous variables, variables on different time scales, etc. can
be represented in DBNs. In the context of robotics, this
means that the framework can encompass many levels of
representation in one single model – including lower level
representations as the ones addressed in the our experiments,
as well as higher level symbolic representations (such as
macro actions or switching variables, see also [11]). The
future perspective is that using inference processes on such
structured DBNs provides a principled solution to integrating
the various processes of behavior generation – reactive
control, trajectory planning, symbolic reasoning, which refer
to different levels of representation – in one coherent frame-
work.
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Fig. 5. Results of probabilistic inference planning with an humanoid upper body. (a&b) Reaching to a target without obstacles, displayed from two
different perspectives. We see the MAP joint configuration and the Gaussian endeffector distribution (indicated as ellipsoid) at different intermediate time
steps. The optimal trajectory in joint space leads to a curve trajectory in endeffector space. (c) Reaching to a target above the table and (d) below the table
whilst avoiding collision.

Generally, the structure of the model will reflect the
environment’s structure and the internal representations used,
but does not depend on the current task which is specified
by conditioning some variables (step (iii) in the method’s
outline). For instance, changing the target position only
requires one to adapt the factor conditioning the endeffector
variable xT . This provides high flexibility in using the same
structural model for a large variety of tasks.

Finally, the probabilistic approach allows us to (1) cor-
rectly account for sensor and motor noise, and (2) compute
exact probabilities, e.g. the probability of success or colli-
sion, which may be used for action selection on a higher
level. Future work should (1) extend the current inference
software to include more flexible distribution representations
(including mixture of Gaussians and particle filters) and (2)
address more complex robotic scenaros with more interacting
variables.
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