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Abstract. Many existing works for handling uncertainty in problem-solving rely on some form 
of a priori knowledge of the uncertainty structure. However, in reality, one may not always 
possess the necessary expertise or sufficient knowledge to identify suitable bounds of the 
uncertainty involved. Rather, it is more likely that specifications of the realistic performance 
desired are derived, which may be based on the maximum degradation tolerable or worst-case 
performance permissible in the final solution.  In this paper, we present a Single/Multi-
objective Inverse Robust Evolutionary (SMIRE) optimization methodology. In contrast to 
conventional forward robust optimization, an inverse approach based on non-probabilistic 
methods is introduced to avoid making possible erroneous assumptions about the uncertainty 
when insufficient field data exists for accurately estimating its structure. Further, since 
uncertainty is practically impossible to avoid, we consider the possible benefits as the 
uncertainty prevails by introducing an opportunity criterion in the inverse search scheme. Four 
inverse schemes are presented to include the different objectives possibly considered in robust 
evolutionary optimization. The inverse schemes are applied on synthetic test functions to 
illustrate their utility. 

1   Introduction   

Evolutionary Algorithm (EA) [1] is a modern stochastic optimization technique that 
has emerged as a prominent contender for global optimization in complex engineer-
ing problem-solving. Its popularity lies in the ease of implementation and the ability 
to arrive close to the global optimum solution with reasonable computational budget. 
Most early studies in the literature on the application of EAs to complex engineering 
design have mainly emphasized on locating the global optimal design using determi-



nistic computational models. However, in many real-world problems, uncertainties 
are often present and practically impossible to avoid. In the case where a solution is 
very sensitive to small variations either in the system’s variables or the operating 
conditions, it may not be desirable to put it into practice. Hence optimization without 
taking uncertainty into consideration generally leads to solutions that should not be 
labeled as optimal as they are likely to perform differently when put into practice.  

Various classifications of uncertainty have been suggested over the recent years 
[2-8]. In [2], four types of uncertainty were described. They are 1) noise at fitness 
function, 2) uncertainty at design variables or environmental parameters, 3) 
approximation errors, and 4) time varying fitness function. Similar categorization can 
also be found in [3]. Others [4-5] classify uncertainty as either aleatory or epistemic. 
Aleatory uncertainty refers to naturally irreducible variability, e.g. quantities that are 
inherently variable over time and space. In contrast, epistemic uncertainty is caused 
by incomplete knowledge about the designs to be optimized and should be reducible 
if greater knowledge can be acquired. In [6-8], uncertainty is defined as the gap 
between the known and unknown facts.  In this paper, we follow the categorization of 
uncertainty in [2] and [3]. In particular, we focus on uncertainty in the system’s 
variables and/or environmental parameters.  

To date, many approaches exist for coping with uncertainty in complex 
engineering design optimization. These include the One-at-a-Time Experiments, 
Taguchi Orthogonal Arrays, bounds-based, fuzzy and probabilistic methods [9]. In 
the context of EA, a number of prominent new studies on handling the presence of 
uncertainty in engineering designs have emerged recently. In [10], a Genetic 
Algorithm with Robust Searching Scheme (GA/RS3) was introduced. In this work, a 
probabilistic noise vector is added to the genotype before fitness evaluation. In 
biological terms, this means that part of the phenotypic features of an individual is 
determined by the decoding process of the genotypic code of genes in the 
chromosomes. The study of an (1+1)-Evolutionary Strategy (ES) with isotropic 
normal mutations using the noisy phenotype scheme has also been reported in [11]. 
An evolutionary algorithm based on max-min optimization strategy using a 
Baldwinian trust-region framework that employs surrogate models was also recently 
proposed in [3] for robust design. Recent applications of these robust EA strategies to 
engineering design problems include 2D aerodynamic airfoil [3,12], lightweight 
space structures [13] and multilayer optical coating design [14]. 

In this paper, we present a Single/Multi-objective Inverse Robust Evolutionary 
(SMIRE) design search methodology. In contrast to conventional forward robust 
optimization, the inverse approach avoids making assumptions about the uncertainty 
structure in the formulation of the optimization search process. Making assumptions 
about the uncertainty that are not backed up by strong evidence in evolutionary de-
sign optimization can possibly lead to erroneous designs that could have catastrophic 
consequences. Further, most existing schemes for handling uncertainty in evolution-
ary design optimization have focused on probabilistic methods [10-14]. Since prob-
ability theory may be inappropriate when insufficient field data exists for accurately 
estimating the structure of the uncertainty, we consider non-probabilistic methods, 
particularly, convex modeling, in the SMIRE. We begin with a single objective IRE 
approach in search for robust designs that are resilient to maximum uncertainty, given 



the worst-case performance permissible by the designers. Further, since uncertainty is 
practically impossible to avoid, we consider the possible benefits as the uncertainty 
prevails by introducing an opportunity criterion in the design search. To provide a 
trade-off between nominal, robustness, and/or opportunity in the final design solution, 
various multi-objective IRE schemes are introduced.  

A motivating application for the proposed methodology perhaps is in the area of 
finance where portfolio design relies on the estimation of the expected returns on 
securities invested.  The estimation is usually based on historical valuations of the 
securities and the deviation from the expected return on investment is crudely 
quantified as the risk level.  One underlying assumption is that for longer investment 
horizon, the estimated return based on historical valuations is a good approximation 
of future returns. Such an investment planning scenario originated from Markovitz’s 
pioneering work on portfolio optimization [15] and is usually hard to put into practice.  
One reason is that the uncertainty in estimation of the expected returns as mentioned. 
Although it appears that taking a very long term perspective on a portfolio may 
circumvent this source of uncertainty, it is seldom adhered to for practical reasons.  
Furthermore, with the current advance information technology and the dynamically 
changing macro-economics landscape, a “sit-and-wait” attitude towards a portfolio is 
no longer viable.  To the best of our knowledge, there has not been any work the 
attempts to apply evolutionary algorithms based on an inverse optimization approach 
to portfolio structuring. based on an inverse optimization approach. 

The rest of this paper is organized as follows. In Section 2, we provide a brief 
overview of robust evolutionary design optimization. Four inverse schemes for 
evolutionary design search in the presence of uncertainty are presented in Section 3. 
To illustrate their applications, section 4 provides an empirical study on a series of 
test functions with different complexities. Finally Section 5 concludes this paper. 

2   Evolutionary Optimization in the Presence of Uncertainty   

This section presents a brief overview on the fundamental aspects of evolutionary 
design in the presence of uncertainties. Forward optimization refers to those schemes 
where an optimal solution is sought based on some prior knowledge about the 
structure of the uncertainty. Inverse optimization, on the other hand, locates the target 
solution that satisfies some criteria specified by the designers. Here, we consider the 
general bound constrained nonlinear programming problem of the forms: 
 

Forward Optimization: 
                              Optimize : )x(f  

Subject to: ul xxx ≤≤  
 

(1) 

or 
 
Inverse Optimization: 

                              Optimize : T)x(f −   
(2) 



Subject to: ul xxx ≤≤  
 
where )x(f  is a scalar-valued objective function, T is the targeted output perform-
ance, dx ℜ∈  is the vector of design variables or environmental parameters, while lx  
and ux are vectors of lower and upper bounds for x.  

Here, our focus is on EAs for robust engineering design optimization under un-
certainties that arise in:   

 

i) design vector x  
 
 

( ) ( )δ+= xfxF  (3) 
 

 
where ( )k,...,, δδδδ 21= , is the noise in the design vector and F(x) is the effective 
fitness of design vector x.  

 

ii) operating/environmental conditions 
 

( ) ( , )F x f x c ξ= +  (4) 
where ( )1 2, , , nc c c c= K , is the nominal value of the environmental parameters and ξ  
is a random vector used to model variability in the operating conditions. Since both 
forms of uncertainty may be treated equivalently, we do not differentiate uncertainty 
in design variables and the operating conditions. In the rest of this paper, we refer 
both the uncertain design variables and environmental parameters as uncertain pa-
rameters for the sake of brevity.  
 
2.1 Probabilistic and Non-Probabilistic Schemes 
 
Evolutionary techniques for handling uncertainty based on probabilistic schemes 
usually assume prior knowledge about the structure of the uncertainty. For example, 
the uncertainties, δ and/or ξ , are often assumed to be Gaussian (normal), Cauchy, or 
uniformly distributed.  Very often, a Gaussian distribution with zero mean and 
variance σ2, N(0, σ2) is considered for the uncertainty, by virtue of the central limit 
theorem. Consequently, the effective fitness function F(x) for forward and inverse 
optimization can then be described as: 
 
Forward probabilistic optimization: 

δδδ d)()x(f)x(F Φ+= ∫
∞

∞−

 
 
(5) 

or 
Inverse probabilisic optimization: 



( ) δδδ d)(T)x(f)x(F Φ−+= ∫
∞

∞−

 
 
(6) 

 
where )(δΦ is the probability distribution of δ . 

On the other hand, it is often the case in many real world engineering design 
problems that very little knowledge about the structure of the uncertainty involved is 
available. Making assumptions about the uncertainty that are not backed up by strong 
evidence in evolutionary design optimization can possibly lead to erroneous designs 
that could have catastrophic consequences. Instead of focusing on making any 
probably unjustifiable mathematical model out of the uncertainty, non-probabilistic 
methods may be used. Non-probabilistic approaches have attracted increasing 
attention in the engineering design community in recent years. They include evidence 
theory, possibility theory, interval analysis, and convex modeling. For example, 
interval analysis and convex modelling studies the uncertain parameters x for some 
intervals [ ]ul x,x , where lx  and ux  are the lower and upper bound and how this range 
affects the design solutions. Nevertheless, while non-probabilistic approaches 
generally require minimum assumption about the uncertainty involved, they can incur 
a high computational cost [3, 16]. For the details of non-probabilistic approaches in 
design optimization, the reader is referred to [3, 6, 16]. 

 
2.2   Benefits of Uncertainty  
 
In most design optimization schemes, uncertainty has always been viewed upon as 
harmful to the final design solution. More specifically, the performance of the final 
design is believed to deteriorate in practice as the result of uncertainty. Since uncer-
tainties are practically impossible to avoid, it is worth asking whether possible bene-
fits can be derived from the presence of uncertainty. In [7-9], such an observation is 
termed as possible opportunity or windfall brought about by uncertainty. In Figure 1, 
it is shown that at x=5.0, it is possible to obtain a better performance when x deviates 
to 4.0 on account of the uncertainty. The same can be explained for x=7.3, which can 
even reach the global optimum at x=7.0. In this paper we will consider the benefits of 
uncertainty in our SMIRE algorithm in section 3.2. 



    

 
Figure 1. Benefits of uncertainty. 

3 Single/Multi-objective Inverse Robust Evolutionary (SMIRE) 
Design Optimization 

In this section, we present the Single/Multi-objective Inverse Robust Evolutionary 
algorithm for design optimization. In particular, four inverse optimization schemes 
are introduced. 
 
3.1 Single and Bi-objective SMIRE Design Optimization  
 
Here, we present a scheme for single and bi-objective inverse robust evolutionary 
design in the presence of uncertainty. The basic steps of the proposed algorithm are 
outlined in Figure 2. In the first step, the worst-case performance permissible for the 
final design ft, and step size ∆  used to conduct nested searches are defined and 
initialised by the designers. The robustness fitness Rf(x) is then defined as the 
maximum uncertainty a design variable x can handle before violation of ft.  Hence, a 
design with a larger Rf(x) represents one that is more robust to uncertainty.  

Subsequently, a population of designs is created randomly or using Design of 
Experiments (DOE) techniques such as Latin hypercube sampling or minimum 
discrepancy sequences [21]. Each individual in the population is evaluated to 
determine its nominal fitness f(x) and undergoes a sequence of nested searches across 
a family of nested search regions parameterized by the uncertainty. The aim of the 
nested searches is to determine the maximum amount of uncertainty that a design 
solution guarantees to handle before violating the worst-case fitness permissible as 
defined by ft.  
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Figure 2. Single and bi-objective SMIRE design algorithm. 

 
More specifically, for each chromosome, we solve a sequence of bound con-

strained optimization sub-problems of the form: 
 

                              Minimize : )x(f k  
Subject to: k

u
k
l xxx ≤≤  

 
(7) 

  
where k

lx  and k
ux  are the appropriate bounds on the uncertain parameters. Each kth 

optimization sub-problem locates the worst-case fitness in the direct neighborhood of 
individual x within the bounds, k

lx  and k
ux  which are updated with step size ∆ : 

 
∆−= kxx i

k
l   

BEGIN SMIRE (Consider a maximization problem) 
Initialization Phase: 

• Initialize worst-case permissible performance, ft  
• Initialize the step size ∆  for the inner search  
• Generate a population of design vectors 

Search Phase: 
While (termination condition is not satisfied) 
   For (each individual i in the population) 

• Objective-1: Obj-1 = f(xi) ,  applicable for bi-objective SMIRE 
• Objective-2: 

o Assign k=0 
o Repeat 

◊ k=k+1 
◊ Minimize: )x(f k  

subject to: k
u

k
l xxx ≤≤ , where  ∆−= kxx i

k
l , ∆+= kxx i

k
u  

◊ Obtain k
optx  and ( )k

optxf  

◊ Store ( )k
optxf  and associate it with ∆k  in database Db 

until t
k
opt f)x(f ≤  

o Estimate maximum uncertainty i
maxδ  by  interpolating from ( )k

optxf  and ∆k  
in Db 

o Obj-2 = Rf(xi) = i
maxδ  

   end For 
• Apply MOEA (if multi-objective), or EA (if single objective) evolutionary opera-

tors to create a new population.  
end While   

END SMIRE 



∆+= kxx i
k
u  (8) 

 
In single objective inverse robust evolutionary design optimization, only the robust-
ness function Rf(xi) is considered. The bi-objective IRE on the hand considers both 
Rf(xi) and f(x) is in the design search to locate the pareto-optimum set. 

Note that by conducting a sequence of nested searches across a family of ascend-
ing nested bounds parameterized by the uncertainty vector, we arrive at a monotonic 
decreasing function of worst-case fitness versus uncertainty such that: 

 
( ) ( )111 +++ ≤→≤≤ k

opt
k
opt

k
u

k
u

k
l

k
l xfxfxx,xx  (9) 

 
where k

optx  denotes the optimum at the s iteration and ( )k
optxf  is the corresponding 

worst-case fitness obtained for k
u

k
l xxx ≤≤ . In addition, the ( )k

optxf  found and associ-
ated ∆k  for each search iteration is then stored to create a database of uncertainties 
and corresponding worst-case fitness. The sequences of iterative searches are termi-
nated when the optimal solution of the kth sub-problem violates the inequality con-
straint in eq. (10), i.e. 

 
( )k

opt tf x f≥  (10) 

 
At the end of the sequences of searches for a chromosome, the maximum uncer-

tainty maxδ  that a design may handle given a defined ft can be determined by interpo-
lating from the database of uncertainties and worst-case fitness values previously 
archived, i.e., ∆k and ( )k

optxf . The search then proceeds with the standard evolution-
ary operators to create a new population and stops when the termination conditions 
are reached. Here, we further illustrate the procedure to locate the robustness fitness 
using an example in figure 3. Consider the design point at x=4 in the figure. Here, ft 
and ∆  are configured as 4.0 and 1.0, respectively. A sequence of bound-constrained 
optimization sub-problems are then conducted for x=4, which is terminated upon 
violations of the constraint in eq. (10). The labels A, B and C correspond to )x(f k

opt  
for k = 1, 2 and 3. At k=3, the worst-case fitness, indicated by C, has satisfied the 
termination condition. Then, the estimated maximum amount of uncertainty, maxδ  the 
design point x=4 can handle is determined by interpolating from A, B, and C. 

The computational complexity for establishing the robustness fitness, Rf(x) in 
SMIRE is of O(gnkl). Here, g is the number of generations for the EA search, n is the 
number of chromosomes evolved, k is the average number of iterations to reach maxδ  
for each chromosome and l represents the average number of function evaluations 
incurred in each bound constrained optimization sub-problems. It is worth noting 

that
∆

∝ 1k .   
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Figure 3. Robustness fitness in SMIRE for xi=4.0 and ∆=1.0 
 

 

3.2  Tri-objective SMIRE Design Optimization 
In this subsection, we proceed from single and bi-objective SMIRE design optimiza-
tion to consider higher number of objectives. In particular, we search for pareto-
optimal solutions when considering nominal, robustness, and opportunity fitness 
simultaneously. Here we present two tri-objective schemes for exploiting the benefits 
of uncertainty, i.e. opportunity in the design search. 
 
 
3.2.1 Three-objective SMIRE Scheme I 
 

A straightforward approach as in [18-20] is to formulate the search problem as a 
tri-objective scheme which treats all three objectives equally. The procedures to ob-

B
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tain the first two objectives, i.e., nominal f(x) and robustness fitness Rf(x) for each 
design vector remain the same as described in section 3.1 for the bi-objective IRE. 
The third objective, i.e. the opportunity fitness, is determined using an approach simi-
lar to establishing Rf(x) involving a series of nested optimization search as illustrated 
in Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Tri-objective SMIRE design algorithm, scheme I. 

The fitness of opportunity function Of(x) is defined as the minimum uncertainty the 
design variable x would require in order to acquire a performance improvement de-
fined by fv. In particular, for each chromosome, we solve a sequence of bound con-
strained optimization sub-problems in the form: 
 

BEGIN SMIRE (Consider a maximization problem) 
Initialization Phase: 

• Initialize worst-case permissible performance, ft  and minimum performance 
improvement, fv. 

• Initialize the step size ∆  for local search  
• Generate a population of design vectors 

Search Phase: 
While (termination condition is not satisfied) 
   For (each individual i in the population) 

• Objective-1: Obj-1 = f(xi)  
• Objective-2: Obj-2 = Rf(x) = i

maxδ ,  as outlined in Objective-2 of Figure 3. 
• Objective-3  

o Assign k=0 
o Repeat 

◊ k=k+1 
◊ Maximize: )x(f)x(f)x(d i

k −=   

subject to: k k
l ux x x≤ ≤ , where k

l ix x k= − ∆ , k
u ix x k= + ∆  

◊ Obtain k
optx  and ( )k

optd x  

◊ Store ( )k
optd x  and associate it with ∆k  in database Db 

until ( ) ( ){ } vi
k
opt

k fxf)x(fxd ≥−=  

o Estimate minimum uncertainty i
minβ  by interpolating from ( )k

optd x  and 

∆k  

o Obj-3 = Of(xi) = i
minβ  

   end For 
• Apply MOEA evolutionary operators to create a new population. 

  
end While   

END SMIRE 



Maximize: )x(f)x(f)x(d i
k −=  

                                   subject to: k
u

k
l xxx ≤≤  

 
(11) 

 
where k

lx  and k
ux  are the appropriate bounds on the uncertain parameters. 

Each kth optimization sub-problem locates the best-case fitness in the direct 
neighborhood of individual x within the bounds, k

lx  and k
ux  which are updated using 

eq. (8). The search for minimum uncertainty possible at x terminates when the best 
performance improvement possibly achieved has reached fv, i.e. 

( ) ( ){ } vi
k
opt

k fxf)x(fxd ≥−= . The minimum uncertainty i
minβ  is then interpolated 

from the database of uncertainties and best fitness improvement recorded previously, 
i.e., ∆k and ( )k

optd x .  
The expected computational costs for obtaining Rf(x) and Of(x) are equivalent. In 

effect, for the same number of search generations made, the tri-objective IRE scheme 
is approximately two times more computational expensive than the bi-objective IRE 
scheme described in section 3.1. 
 
3.2.2 Tri-objective SMIRE Scheme II 
 
Alternatively, one may consider the opportunity function as a secondary objective. In 
particular, the opportunity fitness is determined only after the robustness fitness is 
obtained. As a result, the secondary objective is defined as the maximum performance 
improvement permissive in the presence of uncertainty and given by: 
 
 

Maximize: ( ) ( )ii xf)x(fxOf −=   
        subjected to: max max

i i
i ix x xδ δ− ≤ ≤ +  

 
(12) 

 
where i

maxδ  is the maximum uncertainty defined by Rf(x). The pseudo-code for 
scheme II is also outlined in Figure 5.  

The computational cost for Tri-objective SMIRE, scheme II may be determined to 
be of O(gnl(k+1)). In comparison to other SMIRE schemes introduced earlier, 
scheme II incurs a higher computational cost than both the single and bi-objective 
IRE, i.e., O(gnkl), generally lower than the other tri-objective IRE counterpart, i.e.,  
scheme I  which is O(2gnkl). 
 
 
 
 

 
 
 
 
 

BEGIN SMIRE (Consider a maximization problem) 
Initialization Phase: 

• Initialize worst-case permissible performance, ft  
• Initialize the step size ∆  for local search  
• Generate a population of design vectors 

Search Phase: 
While (termination condition is not satisfied) 
   For (each individual i in the population) 

• Objective-1: Obj-1 = f(xi)    
• Objective-2: Obj-2 = Rf(x) = i

maxδ ,  as outlined in Objective-2 of Figure 3. 
• Objective-3: 

o Maximize:  ( ) ( )ii xf)x(fxOf −=  

subject to: i
maxi

i
maxi xxx δδ +≤≤−  

o Obj-3 = Of(xi)  
   end For 

• Apply standard MOEA operators to create a new population. 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Tri-objective SMIRE design algorithm, scheme II. 

 
 

4 Empirical Studies 
 
In this section, we present an empirical study on the proposed SMIRE schemes using  
five synthetic test functions plotted in Figure 6. These include a three 1D functions 
(f1, f2 and f3) and two 2D functions (f4 and f5) having the characteristics described 
in Table 1. It is worth noting that the selection of the low dimensional functions is 
merely meant for illustration purpose. The methodology can be simply generalized 
for higher dimensional problems. 
 
Table 1.  Five synthetic test functions were considered in the empirical study. 
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-1≤x,y≤ 13, ft=1.5 and fv=1 
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Figure 6. 2D and 3D plots of the test functions considered 
 
 

In the numerical studies, we employ a 16-bit binary coded standard GA for single 
objective SMIRE and NSGA [17] for multi-objective SMIRE. A linear ranking algo-



rithm is used for selection in the standard GA. The population size is kept at 100, and 
maximum generation count is set to 100 generations. Uniform crossover and mutation 
are applied at probabilities of 0.9 and 0.01, respectively. The step size ∆  is chosen 
empirically to be 3% from the range of search space, which is considered sufficient to 
minimize interpolation error. In the nested optimizations, a local search based on 
Feasible Sequential Quadratic Programming (FSQP) is utilized.  

4.1 Discussions on Different SMIRE Schemes 

Figure 7 and 8 show the different pareto-optimum solution sets in the parameter space, 
obtained when using the four SMIRE schemes on f1 and f2 respectively.  

When the single objective IRE is applied, it is as expected that the final global 
optimum solution will lie on the most robust peak, which is generally the highest 
point in the widest peak and having nominal fitness greater than ft. For instance, the 
most robust point is approximately at x = 4.0 for f1 and x = 8.0 for f2. Then, using the 
bi-objective IRE, the solution set now comprised of those with trade-off between the 
two objectives considered in the scheme. It is worth noting that in a low-multimodal 
function such as f1, the solution for the bi-objective scheme simply consists of one 
with best nominal and one with best robustness, which are located at different peaks 
in this test function. However, in high-multimodal function such as f2, it is generally 
the case that more trade-offs between the nominal and robustness fitness, hence more 
different solutions in the pareto-optimum solution set. Employing the tri-objective 
schemes, the solution set now is even more varied as more trade-offs between nomi-
nal, robustness, and opportunity fitness are expected. The difference between the 
solutions from tri-objective scheme I and II will be discussed further in next subsec-
tion. 

 
Figure 7. Pareto-optimum solutions of SMIRE on f1.  

 



 
Figure 8. Pareto-optimum solutions of SMIRE on f2.  

4.2 Comparison on Tri-objective IRE Scheme I and II 

To better illustrate the difference on tri-objective IRE scheme I and II, we study the 
pareto-optimum solutions obtained in f3, f4, and f5 at their parameter space. For f3, 
the pareto-optimum solutions obtained for both schemes are presented in Figure 9 and 
10. 

 
Figure 9. Pareto-optimum solutions of tri-objective IRE scheme I on f3. 
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Figure 10. Pareto-optimum solutions of tri-objective IRE scheme II on f3. 

 
In the first scheme as in Figure 9, the opportunity fitness is treated euqally to 

other robusness and nominal fitness, hence there might be solutions exist just because 
of its good opportunity fitness even though poor in other objectives. This type of 
solutions, usually exist in a steep peak, e.g. the solutions indicated by label A in the 
figure. In contrast, the second scheme (see Figure 10) requires a solution to be robust 
before the opportunity fitness is considered. Hence, we might expect that  solutions 
with good opportunity fitness in the first scheme might not appear in the second 
scheme, especially those located at a steep and not-robust peaks. As the result of the 
tri-objective scheme II, the solutions on the robust peaks have better opportunity to 
acquire benefits from uncertainty. This fact is again shown in the pareto-optimum 
solutions for 2D functions, f4 and f5 as presented in Figure 11, 12, 13, and 14. Figure 
11 and 13 demonstrate that applying tri-objective scheme I, there might be many of 
the pareto-optimum solutions exist near the steep peaks, without considering their 
robustness. Conversely, Figure 12 and 14 clearly exhibit the characteristic of tri-
objective scheme II which treat the opportunity fitness as secondary objective, hence 
most of the solutions still lie on the robust peaks. 

 



 
Figure 11. Pareto-optimum solutions of tri-objective IRE scheme I on f4. 

 

 
 

Figure 12. Pareto-optimum solutions of tri-objective IRE scheme II on f4. 
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Figure 13. Pareto-optimum solutions of tri-objective IRE scheme I on f5. 

 

 
Figure 14. Pareto-optimum solutions of tri-objective IRE scheme II on f5. 

 
 
Another important point to note in the application of the tri-objective IRE 

schemes is the computational cost incurred. This is shown in Table 2 which lists the 
comparison of the computational cost between the two schemes in terms of objective 
function evaluations incurred for the five test functions. It is generally the case that 
scheme I requires greater computational cost compared to scheme II.  

A 



 Table 2. Ratio of computational cost incurred in IRE scheme I and II. 

Test 
Function

 

Ratio of Computational 
Cost between Tri-objective 

Scheme I and II 

f1 1:0.78 
f2 1:0.66 
f3 1:0.75 
f4 1:0.81 
f5 1:0.62 

 

5 Conclusion 

In this paper, we have presented the single and multi-objective inverse robust evolu-
tionary design optimization in the presence of uncertainty. It proposes the use of 
inverse optimization technique in the field of robust optimization. Another important 
feature of the proposed methodology is that the solutions obtained were discovered 
without any requirement to make possible untrue assumptions about the structure of 
the uncertainties involved as what usually available in probabilistic methods. In addi-
tion, we have also presented the incorporation of the opportunity fitness to possibly 
explore the benefit of having uncertainty in design. Hence, the final solutions ob-
tained provide the decision-makers or designers with more design options considering 
the trade-offs up to three objectives: robustness, nominal fitness, and opportunity 
fitness. 

In evolutionary algorithms, many thousands of calls to the objective function are 
often required to locate a near optimal solution. While the algorithm proposed offers 
an effective approach to modeling of uncertainty in engineering design, a compelling 
limitation of the theory is the massive computational efforts incurred in the nested 
evolutionary design search. A simple solution to this issue would be to replace the 
nested global optimization with local search which is much cheaper as demonstrated 
in [16]. The computational efforts incurred would be even more devastating if the 
objective function is computationally expensive which is very common in complex 
engineering design problems. Nevertheless, it is worth noting here that a promising 
and intuitive way to reduce the search time incurred in solving the sequences of 
bound constrained sub-problems is to replace as much as possible the computation-
ally expensive high-fidelity analysis solvers with lower-fidelity models that are com-
putationally less expensive. The readers are referred to [22-24] for greater details on 
the algorithm available to achieve this cost savings. 
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