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Abstract. Finding a template image in another larger image is a prob-
lem that has applications in many vision research areas such as models
for object detection and tracking. The main problem here is that under
real-world conditions the searched image usually is a deformed version of
the template, so that these deformations have to be taken into account
by the matching procedure. A common way to do this is by minimiz-
ing the difference between the template and patches of the search image
assuming that the template can undergo 2D affine transformations. A
popular differential algorithm for achieving this has been proposed by
Lucas and Kanade [1], with the disadvantage that it works only for small
transformations. Here we investigate the transformation properties of a
differential template matching approach by using resolution pyramids
in combination with transformation pyramids, and show how we can do
template matching under large-scale transformations, with simulation re-
sults indicating that the scale and rotation ranges can be doubled using
a 3 stage pyramid.

1 Introduction

Image registration using template matching, either directly on a pixel image or
on an array of images that result from an appropriate preprocessing step on an
image, is a fundamental step that serves as basis for many vision algorithms. The
most straightforward way is to take the patch containing the template, overlay
it onto the search image at all desired transformations (e.g. positions, rotations,
etc.), and calculate a matching score that indicates how well the transformed
template matches with the search image for each particular transformation.

In visual object classification and detection, this is the case for connectionist
models that use nonlinearities alternated with correlation-based patch template
matching with feature-sets in a weight-sharing architecture [2–4]. The weight
sharing activity calculation basically corresponds to a feature search at all po-
sitions of the input image. More complex transformations of the templates (fea-
tures) are usually not considered or included explicitly by building all transfor-
mation variants of a basis feature.

In template-based tracking, the picture is similar, with the difference that we
can restrict the search to those templates and transformations that are likely to
occur according to the tracker state predictions. A third field of research where



template matching is important is motion processing (see e.g. [5]). Here, the task
is to find patch-to-patch correspondences between two images from consecutive
timesteps, in order to extract a displacement field that indicates how the different
patches move from one timestep to the next.

The main problem for template matching is the number of transformations
that have to be checked in order for the procedure to cope with deformations.
The appearance of real-world objects undergo severe changes as the objects
e.g. translate, rotate, come closer or rotate in 3D. Some of these transformations
can (and have to) by covered by the template matching procedure, while others
like true 3D appearance changes can only be captured as approximations and
only if the transformations remain sufficiently small. This is the case e.g. for
rotations in depth and approximately planar objects, whose transformation can
then be approximated by a projective transformation.

A popular approach is to introduce 2D transformations into the matching
process, in particular 2D affine transformations covering rotation, scaling and
shearing in addition to translation. That is, we then search the best match
between a search image and a template subject to its tansformations. In order
to achieve this, an extensively large number of transformed templates has to be
compared with the search image, corresponding to all possible combination of
transformations.

Three things can be done to alleviate the costs of matching under transforma-
tions. Firstly, not all transformations are equally important and interdependent,
so that we can sometimes search for separate transformation dimensions inde-
pendently. As a second point, we can assume small differences between template
and search image (introduced by small transformations), linearize and try to
calculate the template match for small transformations computationally more
effectively. And third, we can introduce search strategies for the transformation
parameters, e.g. by sampling the transformation parameter space first coarsely
to get a hint on the transformation range and then refining the search.

In this paper, we combine points 1, 2 and 3 by introducing a resolution
pyramid in combination with a transformation pyramid that allows to estimate
affine transformations for the image matching problem over a broad range of
parameters, calculating first the coarse transformations and refining them in
the successive stages of the pyramid. Although pyramidal approaches have been
proposed already a number of times in the vision systems community, here we
address explicitly the question of transformation pyramids for template match-
ing, analysing the potential of such methods for large scale transformations in
combination with Lucas-Kanade type 2D affine matching methods.

In the next section, we sketch the architecture of the approach. To this end,
we first summarize a popular differential approach for 2D affine template match-
ing and then show how we utilize it in a transformation pyramid. In the third
section, we show in simulations how the approach performs for large-scale trans-
formations. We show exemplar results of valid transformation ranges (since these
depend also on intrinsic object characteristics and generally cannot be formu-
lated for arbitrary objects).



2 Approach

2.1 Template matching with 2D affine transformations

A popular approach for template search under small transformations that works
well for the affine case has been introduced by Lucas and Kanade [1] and used
for many extensions like tracking of objects by means of point features and the
appearance transformations of the image patches around these points [6].

To compare two images we start with image points x = (x, y)T a template
T (x) and its “mask” resp. window of validity M(x) (either binary or continuous,
but zero outside of the region of validity of the template) on one hand, and the
search image I(x) with its warping transformation W(x) on the other hand. For
this paper, we restrict W(x) to be a linear transformation composed of an affine
transformation matrix A and a translation vector d, so that an image position
x transforms according to

x → W(x) = Ax + d . (1)

The target of the template match is to find the parameters A and d which
minimize a functional

F =

∫

[I(Ax + d) − T (x)]2M(x)dx , (2)

that is, which leads to the best Euclidean match between template and image
under consideration of the geometrical transformation eq. 1 of the search image
I(x).

The reason that we transform the search image I(x) and not the template
T (x) is that we consider the window M(x) to be attached to the template. If we
then transform the template, we would have to transform the window as well,
which makes the derivation more complicated (nevertheless, this is a matter
of interpretation of eq. 2 since template and search image are exchangeable).
For tracking applications, or if we are interested in keeping the template fixed,
the inverse transformation from the template to the search image can be easily
calculated according to A−1x − A−1d (e.g., if we want to say: “The pattern in
the search image corresponds to the template rotated by ... degrees”).

For small affine transformations it makes sense to write A = 1 + D (small
deviation D from the unity matrix 1), with the deformation matrix

D =

(

d1 d3

d2 d4

)

(3)

now completing the transformation parameters together with the displacement
vector

d =

(

d5

d6

)

. (4)

The 6 transformation parameters (4 for the deformation matrix D and 2 for
the displacement vector d) can be collected in a vector

z = (d1, d2, d3, d4, d5, d6)
T . (5)



A (local) minimization of the functional F (z) can then be achieved by using
gradient-descent. Nevertheless, since the warping of the image is the expensive
step, it is desirable to avoid too many iterations during the gradient descent. To
do few iterations, here we use the Newton method, setting ∇zF (z) = 0, with

∇zF (z) =

∫

2 [I(Ax + d) − T (x)]∇zI(Ax + d)M(x)dx (6)

and linearizing and solving the equation system repetitively for z, as indicated
in [7].

We assume smooth changes in the search image. Linearization with respect
to x then yields

I(Ax + d) ≈ I(x) + [∇xI(x)]T (Dx + d) (7)

which we use to get

∇zI(Ax + d) ≈ [∇xI(x)]T [∇z(Dx + d)] (8)

with the 2 ∗ 6-matrix (for a 2-dimensional vector v)

∇zv =

[

(∇zv1)
T

(∇zv2)
T

]

. (9)

It is straightforward to calculate

g(x) := [∇xI(x)]T [∇z(Dx + d)]

=

[

x
∂I(x)

∂x
, x

∂I(x)

∂y
, y

∂I(x)

∂x
, y

∂I(x)

∂y
,
∂I(x)

∂x
,
∂I(x)

∂y

]T

(10)

and setting ∇zF (z) = 0 and extracting z, we arrive at the 6-dimensional linear
equation system

Tz = a (11)

with

T =

∫

M(x)
{

g(x)[g(x)]T
}

dx and (12)

a =

∫

M(x) [T (x) − I(x)]g(x)dx (13)

that can be solved z = T−1a by inverting T.

2.2 Template matching in resolution and transformation pyramids

The problem of the method from section 2.1 is that it works well as long as
the gradients introduced by eqs. 7 and 8 and incorporated into the method by
eq. 10 provide sufficient information. For large transformation parameters, this
may not be the case any more. A remedy then is to use coarser resolutions
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Fig. 1. Transformation and resolution pyramid for the estimation of large-scale trans-
formations. On top of the pyramid coarse transformation estimates are calculated on
coarse resolutions of the search and template images In(x) and Tn(x), which are used to
warp the search image and refine the transformation estimate in the successively lower

stages of the pyramid. Atot
n

,dtot
n

is an initial transformation based on prior knowledge,

Atot
0 ,dtot

0 is the overall transformation gained from the entire transformation pyramid.

which smoothen the image, like in a Gaussian resolution pyramid, and combine
them with a transformation pyramid that allows to calculate the total transfor-
mation as a concatenation of single differential transformations for each stage.
(Transformation pyramids have been proposed repetitively in different contexts
but mostly in combination with translational transformations, see e.g. [8] for an
early proposal and [9] for an application of the same principle in a motion esti-
mation system. Here we show in simulations to what extent they can be applied
to the Lucas and Kanade type image matching procedures.)

The idea is to use a pyramid with n levels (1: original, n: coarsest resolu-
tion, images and templates at different resolutions Ii(x), Ti(x)), and apply the
procedure on the coarsest level n with In(x), Tn(x) to get a first, rough estima-
tion of the transformation parameters An, dn, from which we get the first total
transformation estimate Atot

n−1
, dtot

n−1
(the indices are chosen indicating that this

transformation is the currently best estimate for level n − 1). Afterwards, we
use the transformation parameters to warp the search image In−1(x) in order
to compare it with the template Tn−1(x) for a refinement of the transforma-



tion parameters. As a result we then get An−1, dn−1, which has to be composed
with Atot

n−1
, dtot

n−1
to get the improved estimate of the transformation parameters

Atot
n−2, dtot

n−2, with

Atot
i−1 := Ai A

tot
i

(14)

and

dtot
i−1 := di + dtot

i
. (15)

This has to be repeated until we arrive at the lower end of the pyramid which
works on the images at original resolution. The expectation is that, since each
stage of the pyramid already receives a search image that was moved closer
to the template image (in terms of Euclidean match), the matching procedure
from sec. 2.1 can be applied further to improve the transformation estimation,
allowing to find image matches over a much broader range of parameters.

Figure 1 shows a schema of the resolution and transformation pyramid with
the mentioned warping, transformation estimation and transformation concate-
nation steps. If we are e.g. in a tracking application, we usually do already have
some initial estimate (from previous steps) of the overall transformation to start
with, which we can include as Atot

n
, dtot

n
to warp the search image In(x) at the

top of the pyramid. On the lower end of the pyramid, we get our total trans-
formation estimate Atot

0
, dtot

0
. In the following examples, we used a Gaussian

resolution pyramid with 3 levels, applied on images of 128x128 pixel size, so that
at each level of the pyramid the resolution halfened. The change in resolution
has to be taken into accout in the calculation of the total translation since in
eq. 15, dtot

i−1
and dtot

i
were assumed to operate on the same spatial scale. For

different spatial scales, the translation vectors d have to be normalized, so that
for our case of the Gaussian pyramid, we used dtot

i−1
:= di + 2dtot

i
.

3 Results for large-scale transformations

The size of transformations that can be estimated with our method depend on
the particular structure of the template and search images. Two types of prop-
erties are beneficial for the estimation of large transformations: 1. There has to
be sufficient structure (so that there are pronounced minima in the functional
eq. 2) and 2. the structure has to be sufficiently smooth so that gradients can
drive the search towards a solution. Point 2 also implies that the minima are not
too narrow, which is the case e.g. for templates with no pronounced autocorre-
lation lengths (in the simple case of a random pattern template created using
white noise, there is basically no gradient information that can be used to find
the minimum, if search image and template are more than one pixel offset).

To quantify the results of simulations with the presented algorithm, we took
arbitrary single objects from the COIL 3 database. We chose not to average the
results over a large image database (e.g., the entire COIL or more complex image
databases) because of the dependency on the intrinsic object properties explained

3 Columbia Object Image Library
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Fig. 2. Typical template, mask, (cluttered) search image and match result. The task is
to find the transformation between the template and the rotated and scaled duck. On
the 2 rightmost images, the match on the search image (indicated by a black contour)
and the affine transformation error for different scaling factors and rotation angles are
shown. The cross indicates the current target transformation (-40 degree rotation and
scale factor 1.5) that was used to generate the search image. At the right, a logarithmic
scale (of basis 10: e.g. −2 are errors in the 10−2-range) indicates the transformation
error (Euclidean distance between the gained and the true affine transformation ma-
trix entries). Darker region correspond to good transformation matches, for the cross
position the transformation estimation error is already considerable, so that the match
is not perfect.

above. Nevertheless, even from single objects the benefits of the method for large
scale transformations can be evaluated.

We used 2 different paradigms: In the clean condition, we searched for a
match between the original and the transformed version of the object and in the
clutter condition, we searched a transformed version of the object in an image
with clutter.

In the following two figures, we evaluated the affine transformation matrix
error. We generated search images that were a rotated and scaled version of the
template and then run the method with a transformation pyramid of 1−3 layers.
The resulting transformation matrix at each of the layers was then compared to
the “real” transformation matrix, calculating the Euclidean distance of all its
entries, shown in fig. 3. For easier visualization, we restricted the plots to affine
transformations that are a combination of homogeneous scaling and rotation.
It can be seen that the transformation pyramid increases the validity regions
substantially.

To get a better quantitative idea of the estimation errors and to see how the
error distributes among scaling and rotation parameters, we extracted from the
affine transformation results a scaling parameter λ and a rotation angle α that
approximate A according to

A =

(

a1 a3

a2 a4

)

≈

(

λ 0
0 λ

) (

cos(α) − sin(α)
sin(α) cos(α)

)

. (16)

Afterwards, we calculated the absolute difference between the real scale and
orientation (used to generate the transformed objects for the search image) and
the results after applying the transformation pyramid. Figs. 4 and 5 show the
results for scaling and rotation separately.
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Fig. 3. Clean condition, Euclidean distance between real and computed affine transfor-
mation matrix for template matching pyramids consisting of 1, 2 and 3 stages, applied
on the duck picture. The x and y-axes show the scaling factor (log 2: -1 meaning half
size, +1 meaning double size) and the rotation angle of the template object in the
search image. Darker regions of the graphs denote more accurate estimations of the
affine transformation. Notice the increase in size of the dark region for an increasing
number of stages, indicating that the pyramidal matching procedure is able to cope
with scaling factors of nearly 0.5 − 2.0 and rotation angles of about ±20 degrees.
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Fig. 4. Clean condition, scaling error for a template matching pyramid consisting of 1,
2 and 3 stages. The x and y-axes again show the scaling factor and the rotation angle
of the template objects in the search image.

Figure 6 shows the results for a search image that contains a transformed
template object on a cluttered background. It can be seen that the gain (in
terms of a larger valid region where transformation parameters are accurately
estimated) is even larger than in the clean condition from fig. 3.

4 Conclusion

The translational parameters play a special role in the transformation estimation
process. In many cases, the estimation of the full system eq. 11 leads to spurious
or false minima, specially if the initial translational mismatch between template
and object in the search image is large [7]. Then it is beneficial to separate
the estimation of the translational parameters d from the estimation of the
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Fig. 5. Clean condition, rotation error for a template matching pyramid consisting of
1, 2 and 3 stages. The x and y-axes again show the scaling factor and the rotation
angle of the template objects in the search image.
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Fig. 6. Clutter condition, affine transformation error for a template matching pyramid
consisting of 1, 2 and 3 stages. The x and y-axes again show the scaling factor and the
rotation angle of the template objects in the search image. Although the absolute error
is larger than for the clean case (fig. 6), the increase of the region of valid transformation
estimations is even larger when going from 1 level to a 3-level pyramid.

affine transformation parameters A. This is something that we observed for the
pyramid method at all levels. We therefore estimated first the translation at each
level, and afterwards the affine transformation.

In the simulations we found that for the affine parameter estimation using
a pyramid with 3 levels, a single iteration of the Newton method from section
2.1 at each level already suffices to produce good matching results. The costly
part of the method, the warping of the search images at each pyramid level (see
fig. 1), therefore occurs only 3 times (and only once for the full resolution image).

Since the Euclidean match in the functional eq. 2 is sensitive to differences
over the entire region of the mask M(x), it is important that the mask matches
covers only the relevant parts of the template. In our case, we used a binary mask
calculated from the object itself by thresholding against a zero background (see
fig. 2). As soon as the mask and the template mismatch, the transformation
estimations degrade. Therefore, in tasks which require a template update, like
e.g. when a real object is being tracked which changes its appearance beyong 2D



affine transformations, care has to be taken that the mask is updated consistently
with the template.

The number of pyramid levels depends on the size and the structure/texture
of the template, since fine details are lost with increasingly coarse resolution.
In our case, the 3-level pyramid provided to be a good choice; with more levels
the results degraded since the highest level then did not have sufficient clues to
estimate its transformation correctly. One way to estimate the number of needed
pyramid levels without a fully extensive check is to regard the surface-averaged
reconstruction error of the highest hypothetical pyramid level only (the level
with the coarsest resolution), starting from the lowest possible resolution, and
increasing step-by-step the number of pyramid levels, searching for a minimum.

All shown plots were gained using the same image (see fig. 2), which provided
a good example with sufficiently detailed form but not too much resolution, so
that it still presented a challenge for the template matching process. For other
objects of the COIL database (which all have a comparable size), the gained
results were very similar in terms of gain of applicable transformation range.

Summarizing, we have shown that transformation pyramids considerably ex-
tend the range of transformations that can be covered by template-matching
procedures of the Lucas and Kanade type. Transformation ranges for objects
increased from approx. [0.65− 1.4] to [0.5− 1.75] for the scaling factor and from
[−15, 15] to nearly [−30, 30] degrees for the rotation angle, providing good results
for situations with cluttered background.
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