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Abstract—An amazing capability of the human visual system
is the ability to learn a large repertoire of visual categories.
We propose an architecture for learning visual categories in
an interactive and life-long fashion based on complex-shaped
objects, which typically belong to several different categories.
The fundamental problem of life-long learning with artificial
neural networks is the so-called “stability-plasticity dilemma”.
This dilemma refers to the incremental incorporation of newly
acquired knowledge, while also the earlier learned informa-
tion should be preserved. To achieve this learning ability we
propose biologically inspired modifications to the established
learning vector quantization (LVQ) approach and combine it
with a category-specific forward feature selection to decouple
co-occurring categories. Both parts are optimized together to
ensure a compact and efficient category representation, which is
necessary for fast and interactive learning.

I. INTRODUCTION

Humans are able to acquire and maintain knowledge during

their complete lifetime, which commonly is termed life-long

learning. In contrast to this, artificial neural networks typically

acquire knowledge only during their learning phase and are

fixed afterwards, so that the learned representation can not

be extended afterwards. Although this strict separation in

training and test phase can be powerful in constrained and

stationary environmental settings but may not be suitable for

applications like assistive robots or interactive agents. This is

because these systems require a continuous error correction

and need to enlarge their knowledge base to operate in

changing and unpredictable environments. The capability of

interactive learning is also important, making newly trained

knowledge quickly available for the operation of the agent.

The fundamental problem of life-long and open-ended

learning with artificial neural networks is the so-called

“stability-plasticity dilemma”. Here plasticity refers to the

ability of a learning system to incorporate new acquired

knowledge into its internal representation, while the learned

knowledge should be preserved to guarantee the stability of

previously learned information. This challenge occurs if a

network model is trained with a limited and changing training

ensemble that can be associated with the short-term memory

(STM) concept in biology. Such limitation of the training

ensemble is necessary, because it is infeasible to store all

experiences that are encountered during the complete operation

time of the system. Therefore we propose to incrementally

learn representations under the condition, where a particular

training vector can only be accessed for a limited time

period. As a consequence the training with such a changing

data ensemble typically causes the well-known “catastrophic

forgetting effect” (French, 1999). This means that with the

incorporation of newly acquired knowledge, parts of the pre-

viously learned knowledge is quickly fading out.

To enable life-long learning of arbitrary categories an

exemplar-based neural network is combined with a category-

specific feed-forward feature selection method, where the life-

long learning of both parts is the major novelty of our proposed

method. In this context a category is defined as a group of

physical objects that shares visual properties. The target of

the learning approach is to autonomously determine those

properties based on the set of extracted features, where we

assume independence of each single feature and that the cate-

gory properties are reflected in the overall feature set. Beside

life-long learning we are also targeting for fast interactive

learning that allows learning in direct interaction with a human

tutor. In the following we discuss related work addressing

the biological motivation and neural networks approaching the

stability-plasticity dilemma.

A. Inspiration from Psychology and Neuroscience

In the following we discuss major findings from psychology

and neuroscience that influenced the development of our

proposed interactive and life-long learning architecture.

1) Memory and Learning in the Human Brain: The sepa-

ration into short-term memory (STM) and long-term memory

(LTM) is an established biological concept (Izquierdo et al.,

1999). The major distinction between both memory systems

is the storage capacity, where in contrast to the LTM only

very few items can be memorized in the STM. One opinion

regarding the usefulness of this separation comes from the

research on artificial neural networks. Here the combination

of a fast learning STM and a slow learning LTM is considered

to be one solution to avoid the “catastrophic forgetting effect”

(French, 1999). We consider this memory separation important

for our approach, therefore in the following the memory

consolidation process for the information transfer between

these different memory systems is discussed in more detail.



2) Memory Consolidation: There is evidence that the me-

dial temporal lobe (MTL) is involved in the transfer of

information from STM to LTM (Scoville & Milner, 1957).

However, based on studies of patients with temporally-graded

retrograde amnesia the role of the MTL, including the hip-

pocampus, is only temporary. After the successful storage

of contents in the neocortex, the LTM becomes gradually

independent of the medial temporal lobe structures (Squire &

Zola-Morgan, 1991). This means that the human brain is able

to consolidate relevant information into its LTM representation

based on a limited and continuously changing STM.

3) The Cholinergic System: The cholinergic system is one

of the phylogenetically old modulatory systems that influences

the brain by a diffuse projection of acetylcholine (ACh) into

the extracellular space of many brain regions. In general it is

known that the concentration of ACh increases with attention

and novelty of sensory stimuli (Hasselmo & McGaughy,

2004). Of particular interest is its effect to the memory

formation and its modulatory influence on synapses.

The level of ACh is crucial for the memory formation

by switching between modes of acquisition (high ACh level)

and consolidation (low ACh level) (Hasselmo & McGaughy,

2004). Furthermore this modulatory influence is known to

reduce the interference of new representations with already

stored knowledge by stronger suppressing previously potenti-

ated synapses compared to naive synapses (Linster, Maloney,

Patil, & Hasselmo 2003). In technical terms this effect can

be interpreted as a modulation of the learning rate for each

synapse with the effect that the stronger a synapse was poten-

tiated in the past the smaller the learning rate gets. Therefore

this modulatory effect of the cholinergic system supports life-

long learning by reducing the “catastrophic forgetting effect”

in the neocortex.

B. Life-Long Learning Architectures

Life-long learning architectures typically utilize exemplar-

based learning techniques like learning vector quantization

(LVQ) (Kohonen, 1989). Such neural architectures are benefi-

cial for life-long learning, because for a specific input vector

the learning methods modify only small portions of the overall

network. Thus stability can be better achieved compared to the

multi-layer perceptron (MLP), where all weights are modified

at each learning step. Additionally for life-long learning ar-

chitectures often a node specific learning rate combined with

an incremental node insertion rule (Hamker, 2001; Furao &

Hasegawa, 2006; Kirstein et al., 2008) is used to approach the

“stability plasticity dilemma”. The major drawback of those

identification architectures is that they inefficiently separate

co-occurring classes. For the categorization of natural objects

we consider this co-occurrence of categories (e.g. red-white

car) as common. Therefore we propose a category-specific

forward feature selection method to overcome this limitation.

With respect to online and life-long learning of categories

the work of Skočaj et al. (2008) is of particular interest. It

enables learning of color and shape categories by selecting

a single feature that describes the particular category most

consistently. The corresponding category is then represented

by an incremental kernel density estimation using mixtures

of Gaussians (Skočaj et al., 2008). Although this architecture

shares some common targets with our learning method, the

restriction to a single feature only allows the representation

of categories with little appearance changes. This is basically

because more complex categories typically require several

features to adequately represent all category instances.

II. CATEGORY LEARNING VECTOR QUANTIZATION

We combine an incremental exemplar-based network with a

forward feature selection method to enable interactive and life-

long learning of arbitrary categories. Both parts are optimized

together to find a balance between the selection of features and

allocation of representation nodes. We refer to this architecture

as category learning vector quantization (cLVQ).

To achieve the interactive and incremental learning capabil-

ity the exemplar-based network part of the cLVQ method is

used to approach the ”stability-plasticity dilemma” of life-long

learning problems. Thus we define a node insertion rule that

similar to the human brain determines when and where the rep-

resentation has to be enhanced. The final number of allocated

nodes wk and the assigned category labels uk corresponds to

the difficulty of the different categories itself but also to the

within-category variance. Finally inspired by the cholinergic

system the long-term stability of these incrementally learned

nodes is considered based on an individual node learning rate

Θk as proposed in Kirstein et al. (2009).

Additionally a category-specific forward feature selection

method is used to efficiently separate co-occurring categories,

because it defines category-specific metrical “views” on the

representation nodes of the exemplar-based network. During

the learning process it autonomously selects an individual

subset of features for each category. Note that only these

selected category-specific features are used to decide whether

a category is present or not. For guiding this incremental

selection process a feature scoring value hcf is calculated for

each category c and feature f . This scoring value is only based

on previously seen exemplars of a certain category, which

can strongly change if further information is encountered.

Therefore the hcf values are continuously updated.

A. Distance Computation and Learning Rule

The learning in the cLVQ architecture is based on a

set of high-dimensional and sparse feature vectors x
i =

(xi
1, . . . , x

i
F ) with f = 1, . . . , F . Each x

i is assigned to a

list of category labels t
i = (ti1, . . . , t

i
C) with c = 1, . . . , C.

Each tic ∈ {−1, 0,+1} labels an x
i as positive or negative

example of category c. The third state tc = 0 is interpreted as

unknown category membership, so that all xi with tic = 0 do

not influence on representation of category c.
The cLVQ representative nodes w

k with k = 1, . . . ,K
are built up incrementally. Each w

k is attached to a label

vector uk where uk
c ∈ {−1, 0,+1} is the model target output

for category c, representing positive, negative, and missing

label output, respectively. The winning nodes wkmin(c)(xi) are
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Fig. 1. Illustration of the cLVQ Learning Rule. Based on a training
vector x

i and target vector t
i the winning nodes w

kmin(c) are calculated
for each category c independently. The distance computation is based on the
selected category-specific features f ∈ Sc. If the categorization decision was
correct the winning node wkmin(c) is shifted into the direction of the training
vector. Otherwise w

kmin(c) is moved in the opposite direction. If for an x
i

the membership of a category is unknown (tic = 0) no adaptation of the

prototype node w
kmin(c) is performed.

calculated independently for each category c, where kmin(c)
is determined in the following way:

kmin(c) = argmin
k

F∑

f=1

λcf (x
i
f − wk

f )
2, ∀k with uk

c 6= 0.

(1)

The category-specific weights λcf are updated continuously

and are inspired by the GRLVQ proposed by Hammer &

Villmann (2002). We denote the set of selected features for

category c ∈ C as Sc. We choose λcf = 0 for all f 6∈ Sc, and

otherwise adjust it according to a scoring procedure explained

later. Each w
kmin(c)(xi) is updated based on the standard

LVQ learning rule (Kohonen, 1989), but is restricted to feature

dimensions f ∈ Sc:

w
kmin(c)
f := w

kmin(c)
f + µΘkmin(c)(xi

f − w
kmin(c)
f ) ∀f ∈ Sc,

(2)

where µ = 1 if the categorization decision for xi was correct,

otherwise µ = −1 and the winning node w
kmin(c) will be

shifted away from x
i. This node adaptation is illustrated in

Fig. 1. Additionally Θkmin(c) is the node-dependent learning

rate as proposed in Kirstein et al. (2009).

B. Feature Scoring and Category Initialization

The learning dynamics of the cLVQ learning approach is

organized in training epochs, where at each epoch only a

limited amount of objects are visible to the learning method.

After each epoch some of the training vectors xi are removed

and replaced by vectors of a new object. Therefore for each

training epoch the scoring values hcf =
Hcf

Hcf+H̄cf
, used

for guiding the feature selection process, is updated. The

variables Hcf and H̄cf are the number of previously seen

positive and negative training examples of category c, where
the corresponding feature f was active (xf > 0). The score

hcf defines the metrical weighting in the cLVQ representation

space, with λcf = hcf for all f ∈ Sc and λcf = 0 otherwise.

We assume that not all categories are known from the

beginning, so that new categories can occur in each training

category c − stop learning occured − start learning
errors for category call errors solved for

until errors solved
or no features left

as new node

del feature

new feature
select and add

keep feature
keep nodedel node

gain > gain <= 

gain > gain <= 

select erronous vector

Fig. 2. Illustration of the cLVQ Optimization Loop. The basic idea of
this optimization loop is to make small modifications to the representation
of categories where categorization errors on the limited and changing set of
training vectors occur. If the gain in categorization performance is above the
insertion threshold the modification is kept and otherwise it is retracted.

epoch. Therefore if category c with the category label tic = +1
occurred for the first time in the current training epoch, we

initialize this category c with a single feature and one cLVQ

node. We select the feature vc = argmaxf (hcf ) with the

largest scoring value and initialize Sc = {vc}. The training

vector x
i is selected as the initial cLVQ node, where the

selected feature vc has the highest activation, i.e. wK+1 = x
q

with xq
vc

≥ xi
vc

for all i. The attached label vector uK+1 is

chosen as uK+1
c = +1 and zero for all other categories.

C. Learning Dynamics

Similar to the STM concept in biology all changes of the

cLVQ network are only based on the limited and changing

set of training vectors x
i. During a single learning epoch

of the cLVQ method an optimization loop (see Fig. 2) is

performed iteratively that is inspired by the memory consoli-

dation process. The basic concept behind this loop is to apply

small changes to the representation of erroneous categories

by testing new features vc and representation nodes w
k that

may lead to a performance increase. This optimization loop is

composed of the following processing steps:

Step 1: Feature Testing. For each category c with re-

maining errors a new feature is temporally added and tested.

If a category c is not present in the current training set or

is error free then no modification to its representation is

applied. This error-based learning is again motivated by the

memory consolidation process so that representational changes

are only applied if necessary. For interactive learning this is an

efficient mechanism to optimally use the limited resources for

learning. The feature selection itself is based on the observable

training vectors xi, the feature scoring values hcf and the e+cf
values. The e+cf is defined as the ratio of active feature entries

(xi
f > 0.0) for feature f among the positive training errors

E+
c of class c (see Kirstein et al. (2009) for further details).

For the feature testing a candidate vc is added to the

category-specific feature set Sc that potentially improves the

categorization performance of category c by having a high

scoring value hcf . Additionally the feature candidate should



also quickly resolve remaining errors of this particular cate-

gory. Therefore we choose vc = argmaxf 6∈Sc
(e+cf +hcf ) and

add Sc := Sc ∪ {vc}. The added feature dimension modifies

the cLVQ metrics by changing the decision boundaries of all

Voronoi clusters of category c, which potentially reduces the

categorization errors. Thus based on all vectors xi we calculate

the categorization performance of the erroneous categories c.
If the performance increase is larger than the prespecified

threshold ǫ1 the vc is permanently added. Otherwise it is

removed and is excluded for further iterations of this epoch.

Step 2: LVQ Node Testing. Similar to Step 1 we test

new LVQ nodes only for erroneous categories. We propose to

insert new LVQ nodes based on training vectors xi with most

categorization errors. This leads to a compact representation,

because a single node typically improves the representation

of several categories. In this optimization step we insert new

representation nodes w
k until for each erroneous category c

at least one new node is inserted. As categorization labels

u
k for these nodes only the correct targets labels for the

categorization errors are assigned. All other categories c are

kept unchanged by setting u
k
c = 0.

Again we calculate the performance increase based on

all currently available training vectors. If this increase for

category c is above the threshold ǫ2, we make no modifications

to the LVQ node labels of the newly inserted nodes. Otherwise

we set the labels uk
c of this set of newly inserted nodes w

k

to zero. If due to this evaluation step all uk
c become zero then

we remove the corresponding w
k.

Step 3: Stop condition. If all remaining categorization

errors for the current training set are resolved or all features

candidates f of the categories c are tested then the next training
epoch is started. Otherwise go to Step 1 and test further feature

candidates and LVQ representation nodes.

III. EXPERIMENTAL RESULTS

In the following section our proposed cLVQ architecture

is compared with a single layer perceptron (SLP) and an

incremental support vector machine (SVM) (Martinetz et al.,

2009). The comparison with the SLP network architecture is

done because this is the simplest neural network model that

fulfills the requirements of the categorization task. Therefore

SLPs are used to measure the baseline performance. For

each category one output node is used. The output outslpc =
1/1 + exp(−w

slp
c ∗ xi − θc), where w

slp
c is a single linearly

separating weight vector with bias θc for each category c. The
training is based on standard stochastic gradient descent in the

sum of quadratic difference errors between training target and

model output.

Additionally our proposed cLVQ method is compared with

the support vector machine (SVM) approach. So far this es-

tablished learning technique was mainly used for offline batch

learning, but recently Martinetz et al. (2009) proposed the

SoftDoubleMaxMinOver method enabling also an incremental

training of SVMs. This incremental learning capability of

the SoftDoubleMaxMinOver approach makes it interesting for

our life-long learning task. We expect that the categorization

Training Objects Test Objects

Rotation Examples

Examples of Multi−Colored Objects

Fig. 3. Object Ensemble. Examples of all training (left) and test objects
(right) used for our categorization task, where 15 different categories are
trained. As color categories red, green, blue, yellow and white are trained. The
shape categories are animal, bottle, box, brush, can, car, cup, duck, phone,
tool. Each object was presented in front of a black background and is rotated
around the vertical axis (bottom), resulting in 300 color images per object.

performance of our cLVQ ranges in between the simple SLP

and SVM. Nevertheless with the focus on interactive learning

the memory consumption and learning speed are as important

as the categorization performance. Furthermore we decided to

use linear kernels and a hard margin criterion for all SVM

experiments. In a pre-study we also tested rbf kernels, but

the linear kernels achieve a comparable performance and in

contrast to the rbf kernels the results are less affected by the

exact choice of the parametrization.

The chosen SVM method already supports incremental

SVM learning, but so far only growing training sets are

considered (Martinetz et al., 2009). In contrast to this we

train for each category one SVM with a limited and changing

set of training vectors. This means that at the beginning of

each epoch the oldest object in the training set (limited to

three objects only) is replaced by a new one. Furthermore we

reinitialize the SVMs at each training epoch with all support

vectors from the previous epoch and update them according

to the current set of training vectors. To our knowledge this

is the first attempt to train SVMs in this fashion and utilize

them in the context of life-long learning.

A. Image Ensemble

As experimental setup we use an image database shown

in Fig. 3 that is composed of 56 training and 56 distinct

test objects, containing five different color and ten shape

categories. Note that some objects are assigned to multiple

color categories. Each object was rotated around the vertical

axis in front of a black background. For each of the training

and test objects 300 views are collected. For the labeling of

each color category all views that cover > 30% of the object

surface are labeled as tc = +1, so that some objects are

assigned to multiple color categories. If the covered area is

below this value we choose tc = 0, while tc = −1 is used if

the category is not present at all. For the shape categories one



c is assigned to tc = +1 and all remaining shape categories

are labeled with tc = −1.

B. Feature Representation

For the representation of visual categories we combine sim-

ple color histograms with a parts-based feature representation,

but we do not utilize this a priori separation for our category

learning approach. We are particularly interested in discov-

ering the structure of the categories from the feature vectors

by using a flexible metrical adaptation. Therefore for each

object view all extracted features are concatenated into a single

structureless feature vector. We use color histograms because

they combine robustness against view and scale changes with

computational efficiency (Swain & Ballard, 1991). The parts-

based shape feature extraction (Hasler et al., 2007) is based

on a learned set of category-specific feature detectors that are

based on SIFT descriptors. Commonly these descriptors are

only determined around some highly structured interest points,

while the used feature extraction method applies them at all

image positions. This especially allows the representation of

less structured categories. For the final shape feature response

only the maximum detector value is selected, so that all spatial

information is neglected.

C. Categorization Performance

Typically for offline categorization tasks the generalization

to novel objects is the most important measurement. In contrast

to this for our desired interactive learning the required training

time is crucial, while for the life-long learning and the scal-

ability of the learning problem also the memory efficiency is

as important as the performance.

It can be seen in Fig. 4 that the categorization performance

of the SVM approach is distinctly higher compared to the

simpler SLP networks. This is astonishing, because both

methods learn a single linear hyperplane for each category

and therefore in principle can converge to a similar solution.

This large difference in categorization performance is partly

due to the additional large margin criterion of the SVM that

especially for our relatively small amount of high-dimensional

training vectors is beneficial with respect to a good general-

ization performance. Furthermore the incrementally collected

support vectors are a good memory of the most important

training vectors, because they are the vectors closest to the

decision hyperplane. Therefore the used incremental SVM

approach is suited for life-long learning. In contrast to this

the SLP estimates the linear hyperplane by directly adapting

the weights that typically causes the “catastrophic forgetting

effect” for the limited and changing set of training vectors as

used in our categorization task.

The performance of our cLVQ architecture and the SVM

approach is comparable for the color categories as can be seen

in Fig. 4. Thus for categories with a few stable and category-

specific features our proposed feature selection method can

capture the most relevant information of those categories. In

contrast to this for the shape categories the SVM outperforms

our proposed cLVQ learning method. The major reason for
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Fig. 4. Comparison of Categorization Performance. For this comparison
of our proposed cLVQ with SVM and SLP we performed ten different runs
with identical parameter set but random object order. The categorization
performance is calculated after each training epoch, based on all test objects.
This means that the performance is calculated based on the representation of
the objects seen so far, simulating an interactive learning session. For color
categories the performance of cLVQ and SVM almost identical, while the
SLP performance is distinctly worse. In contrast to this for shape categories
the SVM approach is superior to cLVQ and SLP. Although SVM reaches
the highest performance it requires most training time and representational
resources (see Fig. 5), whereas the cLVQ combines a good categorization
performance with an resource efficient representation.

this lower generalization performance is because we consider

only single features that are additionally less category-specific

compared to the color features. Therefore the overall feature

selection process becomes more difficult. This causes that for

the first presented exemplar of a shape category by mistake

often features of the co-occurring color category are selected,

because they are more stable than the extracted shape features.

Also the detection of combination features is difficult with the

current cLVQ approach, so that the selection of multiple fea-

tures is a promising future extension of our learning approach.

Although there is still potential for improving the feature

selection process, the cLVQ capture most relevant information

and reaches a higher performance than the SLP networks.

With respect to the required network resources, depicted in

Fig. 5, our learning approach is better suited for interactive

and life-long learning. This is because cLVQ is one order of

magnitude faster than the SVM approach and it is even faster

than the simple SLP networks. This computational efficiency

is caused by the selection of small sets of category-specific

features, where for SLP and SVM all extracted features are
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Fig. 5. Comparison of Network Resources. The total training time of the
cLVQ, SVM and SLP is most crucial with respect to interactive learning. The
cLVQ is one magnitude faster than the SVM and even two times faster than
the simple SLP. This computational efficiency is caused by the forward feature
selection process, where commonly only a small set of features is allocated
for each category. This learning speed of the cLVQ enables fast interactive
learning. Additionally the SVM approach has a memory requirement, which
is undesirable for life-long learning tasks.

used during the training process. Additionally our cLVQ

approach allocates much less representational nodes compared

to SVM, which again positively influences the learning speed.

IV. CONCLUSION

The proposed biologically inspired cLVQ learning approach

enables fast interactive and life-long learning of complex

categories. The major novelty of cLVQ compared to state-

of-the-art is the resource efficient and automatic allocation

of network resources by combining an incremental exemplar-

based neural network with a forward feature selection. This

automatic control of the architecture complexity is crucial for

our desired learning task, because an exhaustive parameter

search is not feasible for interactive and life-long learning. In

contrast to previous approaches on life-long learning manly

targeting for identification tasks, our proposed feature se-

lection method enables the cLVQ to separate co-occurring

categories. Although the cLVQ enables interactive learning

compared to the SVM there is still potential for improving the

categorization performance of shape categories. Therefore the

incorporation of some basic ideas from SVM into our feature

weighting and selection framework is a promising direction

for future work.
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