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Abstract In this paper we present a new robot control and
learning system that allows a humanoid robot to extend its
movement repertoire by learning from a human tutor. The
focus is learning and imitating motor skills to move and po-
sition objects. We concentrate on two major aspects. First,
the presented teaching and imitation scenario is fully in-
teractive. A human tutor can teach the robot which is in
turn able to integrate newly learned skills into different
movement sequences online. Second, we combine a num-
ber of novel concepts to enhance the flexibility and gener-
alization capabilities of the system. Generalization to new
tasks is obtained by decoupling the learned movements
from the robot’s embodiment using a task space representa-
tion. It is chosen automatically from a commonly used task
space pool. The movement descriptions are further decou-
pled from specific object instances by formulating them with
respect to so-called linked objects. They act as references
and can interactively be bound to real objects. When execut-
ing a learned task, a flexible kinematic description allows
to change the robot’s body schema online and thereby ap-
ply the learned movement relative to different body parts or
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new objects. An efficient optimization scheme adapts move-
ments to such situations performing online obstacle and
self-collision avoidance. Finally, all described processes are
combined within a comprehensive architecture. To demon-
strate the generalization capabilities we show experiments
where the robot performs a movement bimanually in differ-
ent environments, although the task was demonstrated by
the tutor only one-handed.

Keywords Imitation learning · Human-robot interaction ·
Robot control · Kinematics

1 Introduction

One of the key abilities of a cognitive robotic system is to
extend its own movement repertoire by learning new skills
from humans. While in the early days of this research field
this meant mimicking movements of a tutor, apparently this
is not enough to improve the abilities of a robot. More re-
cently, work has consequently turned towards researching
methods for learning and representing movements with the
goal of generalization. The robot’s target then is to learn the
important and invariant aspects of movements and to apply
this knowledge to new situations.

One way of learning these important aspects is the use
of probabilistic methods. For example, Asfour et al. (2006)
present a method to learn arm movements from a human
tutor. Features that are invariant in multiple demonstrations
of the same task are recognized and learned with Hidden
Markov Models (HMMs). The movement is encoded using
joint angles and the position and orientation of the Tool Cen-
ter Point (TCP). Also Calinon and Billard (2008) present a
system to learn a probabilistic representation of a demon-
strated task. There, the variance information encoded in
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Gaussian Mixture Models (GMMs) relates to different con-
straints of the task. Furthermore, the probabilistic represen-
tation allows to integrate social cues, such as speech and
gaze to scaffold the learning process. Eppner et al. (2009)
use Dynamic Bayesian Networks (DBNs) as more general
probabilistic models. In their system, the variances of task-
level and joint-level policies determine how accurate a mo-
tion should be tracked by the robot. Another interesting ap-
proach for learning object movements in 2D space using
HMMs is presented by Sugiura et al. (2010). Like us, they
are one of the few groups that include a selection of feasible
reference frames in their movement learning process.

Instead of encoding movement alternatives probabilis-
tically, Ijspeert et al. (2003), Schaal et al. (2003), Pastor
et al. (2009) use Dynamic Movement Primitives (DMPs)
to achieve robustness against spatial and temporal distur-
bances. The efforts of Khansari-Zadeh and Billard (2010)
extend this work by combining a probabilistic representa-
tion and DMPs with an optimization approach called SEDS.
This optimization allows to counteract possible instabili-
ties of the dynamical system in regions not covered by the
demonstrations. Kormushev et al. (2010) use information
from the kinesthetic demonstrations of a pancake flipping
task together with the POWER reinforcement learning ap-
proach introduced by Kober and Peters (2009). With this,
not only movement trajectories are reproduced but also the
stiffness parameters of the robot can be adapted to success-
fully reproduce the task.

A common difficulty for teaching movements to a robot
is the correspondence problem, which is the transfer of
movement skills to different embodiments. While kines-
thetic teaching circumvents this problem to some extent, it
is not applicable to every robot. Lopes and Santos-Victor
(2005) for instance address this problem by projecting the
observed movements into the tutor’s frame of reference us-
ing a viewpoint transformation. However, movement is rep-
resented and reproduced using a fixed mapping of visual in-
put to the degrees of freedom of the system. For mapping
movements between different body configurations Acosta-
Calderon and Hu (2005), Hersch et al. (2008), Stoytchev
(2003), Nabeshima et al. (2006) investigated the concepts
of body schema and body percept. In Azad et al. (2007) the
problem is addressed with an intermediate kinematic model,
the so-called Master Motor Map.

To achieve complex behavior of a robot it is not suffi-
cient to learn individual movement skills alone. They need to
be combined and sequentialized. For this, it is necessary to
bridge the gap to a more symbolic representation. Inamura et
al. (2004) propose a probabilistic framework based on Hid-
den Markov Models. Full body movement skills are learned
from a human tutor and a symbolic representation called
proto symbols emerges. Having such a symbolic representa-
tion, methods and frameworks like presented in Beetz et al.

(2010), Nicolescu and Matarić (2006) can be used for plan-
ning more complex movement sequences. Another possibil-
ity for abstracting movements to higher-level primitives is
proposed by Lopes et al. (2007). They use the concept of af-
fordances to build up a general world model in which effects
of actions can be observed by the robot. The robot therefore
can not only learn the movement itself, but also the effects
that it should achieve.

For organizing learned and predefined movement skills,
Burghart et al. (2005) suggest a state machine approach.
Tasks are divided into subtasks that have a goal and pos-
sible error states. Communication with the human is used to
solve errors. An alternative to classical state machines is pre-
sented by Toussaint et al. (2010). They propose a probabilis-
tic framework to combine movement and trajectory plan-
ning with higher-level symbolic reasoning. Yamashita and
Tani (2008) are pursuing a different approach. They present
a neural network representation in which a functional hier-
archy of movement primitives emerges automatically. How-
ever, their focus is more on biologically plausible models
instead of a real-time interaction between tutor and robot.

As learning always involves interaction between the
robot and the human tutor, most learning architectures em-
ploy methods that allow a dialog between both. A hybrid
architecture to instruct a robot in grasping tasks has been
proposed by McGuire et al. (2002), Steil et al. (2004). They
incorporate active vision, gestural instruction and a dialog
system and couple these elements with a hierarchical move-
ment generation system. Bohg et al. (2009) also present a
comprehensive architecture that includes higher-level sym-
bolic reasoning. They focus on grasp-oriented visual percep-
tion and also combine visual attention and different visual
cues with grasp planning and inference strategies.

Although many existing frameworks comprise sophisti-
cated methods for movement learning and robot control,
their focus is mostly on single specific aspects while post-
poning the investigation of a whole systems approach. We
go beyond such limitations by efficiently combining multi-
ple generalization concepts into one framework. With this
we give a robot the capability to learn as much as possible
from the tutor’s demonstrations and to perform the acquired
movement skill in different situations.

The architecture presented in this paper is based on prior
work in the area of imitation learning (Mühlig et al. 2009a,
2009b), movement control (Gienger et al. 2005), and opti-
mization (Toussaint et al. 2007). It follows up on our re-
cent publications (Gienger et al. 2010a; Mühlig et al. 2010)
and extends them by providing a more thorough description
of the system, by enhancing the object representation with
task-relevant feature points and by incorporating a mecha-
nism to determine the most appropriate task space into the
learning process. We will focus on learning and imitating
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object movement skills, and concentrate on two major as-
pects in this work: First, the presented system allows a hu-
man tutor to teach a robot new object movement skills in
interaction, and to instruct it to imitate them in a variety of
different styles with varying objects in changing scenarios.
Second, we combine several concepts for generalization:

– We address the correspondence problem of transferring
the demonstrated movement skills to different embodi-
ments using a flexible task space representation.

– Learned movement skills can be applied to different situ-
ations using an efficient optimization scheme that exploits
probabilistic information.

– A flexible kinematic description allows to imitate the
learned skills in different styles by changing the robot’s
body schema online.

– Learned movements generalize over different objects due
to an object feature point representation and the automatic
selection of feasible task spaces.

The remainder of this paper is organized as follows. In
Sect. 2 we begin with a structural overview of the learning
and control architecture. The subsequent sections explain
the elements in more detail. Section 3 presents the percep-
tual elements of the architecture, explains how the scene is
interpreted by the system and how interaction can be used to
influence this interpretation. Based on this scene representa-
tion, we perform movement segmentation, task space selec-
tion as well as movement learning, all explained in Sect. 4.

Subsequently, Sect. 5 presents how movement primitives
are sequentialized, optimized and executed by the robot. Fi-
nally, in Sect. 6 we show two experiments to highlight the
key abilities of the presented architecture. The paper is con-
cluded with a discussion and a brief outlook in Sect. 7.

2 System outline

The framework presented in this paper is depicted in Fig. 1
and consists of three hierarchical layers with modules
grouped into a perception and a control side. The framework
includes interaction modules as central elements. In this sec-
tion, we briefly summarize the framework layer-wise from
bottom to top. The subsequent sections elaborate on the in-
dividual modules in more detail.

2.1 Movement control layer

The bottom layer realizes a movement control system. Infor-
mation received from simulation or the on-board sensors of
the robot are processed in the Persistent Object Memory (see
Sect. 3.1). For the experiments presented in Sect. 6, the input
data is provided by the ego-motion-compensated, on-board
stereo vision system of the robot or a magnetic-field-based
motion tracking system.

The information on objects as well as the robot’s body
parts are represented within one single kinematic tree. This
makes it possible to define controllers for the robot that op-
erate directly on observed objects. We incorporate a flexible
inverse kinematics control scheme, which allows to define
tasks within egocentric or allocentric frames of reference.

2.2 Movement primitive layer

On top of the movement control layer, imitation learning ca-
pabilities are achieved. Task demonstrations of a tutor can
be recognized and segmented automatically using a kine-
matic model of a human. This segmentation is described in
Sect. 4.1.

In the first step, the acquired trajectories from several
demonstrations of the same task are projected into the task
space in which the movement should be learned. While such
task spaces are commonly predefined, we employ methods
for automatically selecting in which task space a movement
is represented best. Selecting an appropriate task space is
beneficial since it introduces invariance into the movement
representation (e.g., a bimanual task described in relative
frames of reference can be executed at various absolute po-
sitions). The demonstrated trajectories, represented in task
space, are stored in the Observation Memory.

The observed trajectories are then learned and stored in
form of movement primitives. In the presented framework,
the term movement primitive stands for a task-level repre-
sentation of a goal-directed movement with a defined start
and end condition and a fixed set of control (task) variables.
These learned movement primitives can be executed reac-
tively or be subject to an optimization procedure that re-
spects additional constraints (e.g., collision avoidance).

2.3 Sequence layer

To achieve complex tasks it is not sufficient to control the
robot based on single movement primitives alone. The se-
quence layer therefore allows to combine learned as well
as predefined movement primitives into complex sequences.
The movement primitives are organized in a hierarchical
state chart and interconnected by transitions that are trig-
gered by internal (e.g., a robot movement converged to a
given target) or external events (e.g., the tutor raised the
hand as a stop signal). This eases the modelling of com-
plex movement chains and the augmentation with learned
movements. The presented system is also able to predict
and plan across the movement primitives in such chains and
command them sequentially to the lower layers.

2.4 Interaction module

The Interaction module plays a central role in the presented
framework. Through interaction a tutor can demonstrate
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Fig. 1 System architecture
overview of the presented robot
control and imitation learning
framework

movements to the robot and highlight the objects that are im-
portant for the task. Further, the tutor can instruct the robot
to execute a certain movement sequence and again mark the
objects to which this sequence should be applied. Thus, the
interaction module influences many elements of the frame-
work such as the Segmentation, Movement Learning, Label-
ing and Sequence Selection.

3 Perception and interaction cues

An important ability of a cognitive system is the perception
and representation of perceived elements. This representa-
tion has a variety of functions. It needs to provide a stable
“image” of the world, fuse sensory signals and augment per-
ceived elements with stored information. Further, it has to

allow flexibility and generalization for the system by repre-
senting behavior-relevant information. These issues are ad-
dressed in this section.

3.1 Persistent object memory

The Persistent Object Memory (POM) is the robot’s per-
ceptual interface to the world. All sensory information (vi-
sion and proprioceptive information) is subsumed and rep-
resented in this memory. This representation is based on a
kinematic tree of the world including the robot, where all
entities can be updated through sensors. These sensory sig-
nals are stabilized using a combination of low-pass, median
and model-based filters.

When performing experiments with our humanoid robot
we can rely on a variety of input processing methods to de-
tect scene elements based on stereo vision only. Planes, like
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Fig. 2 Visualization of a scenario: The Persistent Object Memory
comprises the tutor and the objects present in the scene

tables and chairs, can be detected using methods such as
presented by Heracles et al. (2009). Simple color tracking
methods (Bolder et al. 2007) allow to detect uniformly col-
ored objects and skin color blobs. By applying some model-
based assumptions also more complex objects like baskets
are detectable (Schmuedderich 2010). Usually a set of pre-
defined objects is expected to be perceived during an exper-
iment. However, it is also possible to automatically generate
new object descriptions and insert them into the kinematic
tree as shown in Einecke et al. (2011). An example for the
3D visualization of the POM is depicted in Fig. 2.

The perceived scene can further be supplemented with
predefined, static elements such as a fixed table or wall. Fur-
thermore, additional information about object shapes can
be incorporated. For example, in the first experiment (see
Sect. 6) the system detected the colored objects using 3D
color tracking and augmented the perception with prede-
fined shape information.

All sensory inputs are processed in each frame and are
time-synchronized with the robot’s proprioceptive sensor
data. This allows to compensate the ego-motion of the robot
and to account for unreliable perception due to occlusion of
the visual field caused by the robot itself. The details of the
algorithms are beyond the scope of this paper, see Schmued-
derich (2010) for more details.

As sensor information might be noisy and unreliable the
system includes confidence values for each detected object.
If an object is not updated by new sensor values, then this
confidence decays over time. We apply a Sigmoidal function
of the time t that passed since the last sensor update. It is
parametrized in such a way that the confidence begins to
decay after 5 seconds without sensor update and becomes
almost 0.0 after 10 seconds (a = −2 and b = 15):

conf (t) = ς(a · t + b) with ς(x) = 1

1 + e−x
(1)

The POM further includes a short term memory that stores
the complete state information for a short time period (i.e.,
a few minutes). This allows to perform operations on past
experiences like segmentation and extraction of object tra-
jectories.

3.2 Tutor model

We assume that the robot interacts with a tutor. The POM

therefore also includes a model of the upper part of a hu-
man’s body. While quite sophisticated approaches have been
suggested (see e.g., Hecht et al. 2009), the model has been
kept simple in this work. It is an enabling element for the
human-robot interaction and has been realized to achieve the
required functions. Future work will focus on improving this
model. The tutor’s movement is computed using an inverse
kinematics algorithm based on Nakamura (1991): The 3D
position of tutor’s hands and head are determined using the
stereo camera system employing skin color detection and
depth computation. These values are augmented into a 9-
dimensional task vector, which is projected on the tutor’s
pose using kinematic redundancy resolution as in (13). The
camera’s field of view and the experimental setup allow to
track the tutor’s pose while gazing at the most salient ob-
jects.

The tutor model fulfills two tasks. First, it serves as a
model-based filter for the hands of the tutor. Joint limits and
joint speed limits prevent the body parts of the tutor from
moving unnaturally fast. Movements are therefore filtered
more realistically during phases where the input is missing
(e.g., because of occlusions). Second, the model is used for
recognizing simple postures (Sect. 3.3), which can trigger
transitions of the movement primitive state chart on the Se-
quence Layer (Sect. 5.1).

But, such a tutor model can be additionally useful.
A common problem when relying on vision input is the de-
tection of the hand orientation when grasping objects. The
hand is often hidden behind the object, which can lead to
a wrong estimation of the tutor’s pose. Assuming a power
grasp, the problem can be solved by aligning the grasp axis
of the tutor’s hand with the object’s major axis if hand and
object are close together. This results in a better estimation
of the tutor’s posture.

Furthermore, a tutor model allows the prediction of in-
ternal states of the tutor. In our previous work (Mühlig et
al. 2009b), we have shown that by defining cost functions,
such as effort (torque-based) or discomfort (based on joint
ranges), it can be possible to determine which elements of
a movement demonstration are important and which just re-
sult from a natural posture. This work is based on findings
about the mirror system in the human brain. It is claimed
that humans employ their own motor system for recogniz-
ing actions and intentions of others (see also Matarić and
Pomplun 1998).
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3.3 Posture recognition

Based on the tutor model, basic posture recognition is per-
formed to structure the interaction and communication with
the robot. This is mainly used to trigger transitions within
the hierarchical state chart on the top layer of the frame-
work. Postures are recognized by continuously evaluating
the positions of the hands relative to the head of the tutor.
For example, in the experiments described later, postures
like raising one or both hands are used to instruct the robot
to imitate movements one-handed or bimanually. The same
postures are used to indicate the robot to remember or ignore
a demonstrated movement.

3.4 Saliency mechanism

For human-robot interaction, an attention system to guide
the robot’s gazing behavior is essential. In the presented sys-
tem, it allows the tutor to highlight important scene elements
(e.g., the objects that are involved in a task demonstration).
On the other hand, the robot is able to give feedback to the
tutor by gazing at what it “believes” to be important.

The most common computational approaches to atten-
tion combine pixel-wise bottom-up feature channels into
saliency maps, from which the maximally activated pixel is
selected for gazing (Itti et al. 1998; Nagai et al. 2008).

We apply a more object-related account of attention that
has recently been substantiated by growing experimental ev-
idence (Scholl 2001) and also picked up in several com-
putational models (Wischnewski et al. 2010; Orabona et
al. 2007; Walther and Koch 2006). In accordance with our
object-related tasks, we directly assign saliency values si
only to detected objects. These values have a temporal de-
cay and they are increased when either moving or shaking
the objects or when a tutor is pointing at them. Addition-
ally, a list of all objects is maintained, sorted according to
their saliency values. The saliency computation includes a
small hysteresis to make a reorganization of the list insensi-
tive to sensor noise: A small constant value is added to the
more salient object within the sorting algorithm. Since the
saliency is defined for each object, regardless if it is visible
or out of view, the saliency list can consistently be com-
puted. Note that only the most salient objects are relevant
for segmentation and movement imitation.

This saliency list allows rapid access to the most salient
objects, which is utilized by the concept of Linked Objects,
explained in the next section.

3.5 Linked objects

A cognitive robotic system naturally operates within dy-
namic environments in which the number of objects as well
as their identities and geometrical shapes are not known in

Fig. 3 Linked objects Li are associated with perceived objects within
the Persistent Object Memory (POM) using the saliency mechanism.
The left part of the tree depicts the kinematic topology of the robot

advance. The representation of movement tasks must there-
fore be decoupled from concrete object identities. This in-
creases the reusability of learned tasks and decreases the
number of required task descriptions. To achieve this, we
introduce the concept of Linked Objects.

A linked object is best thought of as a virtual object that
can be associated with a perceived object within the POM.
Linked objects are the entities on which the object-related
tasks are formulated and which are constituting to the ob-
jects to be considered for collision avoidance.

The links are created using the attention mechanism ex-
plained in the previous section, which provides an ordered
list of salient objects. Salient objects of this list are directly
assigned to the linked objects in order: The linked object L1

refers to the most salient object, linked object L2 to the
second-most salient object etc. If an object’s saliency is be-
low a threshold, the association to a linked object is deleted,
and the linked object refers to the world reference. This is
depicted in Fig. 3. Linked object L1 is associated with ob-
ject 2 and has the highest saliency. L2 is associated with
object n.

During interaction, one can now use the attention mech-
anism to indicate the important objects to the system. The
tutor can increase an object’s saliency by shaking or point-
ing to it, and decrease the saliency by hiding it. If an object’s
saliency exceeds another object’s saliency, the list will be re-
sorted, and the link associations will be updated.

Linked objects allow interesting generalization capa-
bilities for the robot. Formulating a task that relates to
linked objects gives the flexibility to interactively change
the robot’s behavior. For instance, formulating a task to
gaze at linked object L1 leads to a behavior where the robot
will always track the most salient object in the scene. The
same applies for reaching or approaching an object. If the
robot should for instance reach for object 3, the tutor simply
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points to it before she/he makes the robot perform the reach-
ing movement with a task relating the hand position to the
linked object L1.

In this work, we give the tutor full control over the learn-
ing process. Therefore, we limit the saliency computation
to the mentioned interaction cues and ignore more sophisti-
cated features such as color or mass. Because the tutor can
restrict the robot’s focus, complex scenes with many objects
become tractable.

3.6 Attention-based gazing

The saliency mechanism also defines the gazing behavior of
the robot. A virtual gazing point is calculated according to
the confidence and saliency values of the detected objects.
The position of the gazing point pg is calculated according
to (2). The vector pi corresponds to the position of object i

and scalar si to its saliency value. Only objects with confi-
dences conf i that are high enough (larger than constant cs)
are involved in the calculation. If no object is salient, a de-
fault gazing direction is activated instead.

pg =
∑

i

pi siwi∑
i siwi

∀i: conf i > cs (2)

Additionally, we include a factor wi that increases the im-
portance of objects that are near to the border of the field
of view. This leads to a behavior in which the robot tries
to keep all important (i.e., recently highlighted by the tu-
tor) objects in its view. This reactive gazing behavior can
also be influenced by elements from the top layer of the
architecture. For example, if the robot needs a response
from the tutor, the weight for the tutor’s head whead is in-
creased. The robot then gazes at the tutor and continuously
tracks her/his head. This gazing behavior is motivated by
the selected scenario, and not particularly conform with
psychological findings, which revealed that humans cycle
their attention among the most salient objects. However, the
implemented gazing behavior is a good compromise be-
tween keeping objects in the robot’s field of view while
still enabling it to give feedback. Nevertheless, more bio-
logically plausible attention models will be subject to future
work.

Note that this way of including a task-driven mecha-
nism can be regarded as a simplified version of the well-
established Theory of Visual Attention (TVA, Bundesen
1990). TVA is capable of explaining a large range of psycho-
logical data and it has the hypothesis that attention is guided
by a product of a top-down task-dependent so-called per-
tinence value, here modelled as wi , and bottom-up object-
related so-called sensory evidence, here the si .

4 Movement learning

A key element of the presented architecture is the ability to
learn movements by observing a human tutor. We apply a
probabilistic movement representation to exploit the statis-
tical characteristics of a presented movement task in three
steps. First, multiple demonstrations of the movement are
segmented. Second, a feasible task space is chosen which
encodes the movement in a generic way. And finally third,
the demonstrations, projected into the chosen task space, are
learned using Gaussian Mixture Models.

4.1 Movement segmentation

For the movement segmentation, we exploit the assumption
of an interactive scenario with a human tutor to recognize
when significant object-related actions are performed.

We propose a movement segmentation that is based on
correlative features between the tutor’s hand and objects.
This is motivated by the chosen experimental setup. How-
ever, the concept is also applicable to other correlative fea-
tures, such as e.g. foot-object relations. The basic idea is
that if an object and a hand are close to each other and be-
gin to move coherently, the object is most likely in the hand
of the tutor and she/he is manipulating the object actively.
This marks the start of a segment. The end of a segment is
reached if both conditions become invalid. Such a segment
is taken as one demonstration of the movement task. This
concept works very well for tasks that involve picking and
placing objects. Note, however, that it is not suited to seg-
ment movements that depend on hand gestures, or in which
the hand movement differs from the object movement.

For the segmentation, a function f is calculated that con-
sists of two terms (3). The function describes the correlation
of the hand and object movement.

f (p1,p2,v1,v2) = 1

2
· g(|p1 − p2|) + 1

2
· h(v1,v2) (3)

The first term g (4) depends on the distance between the two
closest points p1 and p2 of hand and object, respectively.
We compute these distances using swept volume shape ap-
proximations of hand and object. Function g uses the Sig-
moid function from (1) to generate values close to 1.0 if the
hand is near the object.

g(d) = ς(c1 · (d − c2)) (4)

The second term h is similar to g but depends on the veloc-
ities of both points.

h(v1,v2) = α(v1,v2) · ς(c3 · (|v1 − v2| − c4)) (5)

The value of h increases if the difference of the velocity vec-
tors vi is low. The function h incorporates another term α
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Fig. 4 Calculation of the correlation of velocities of two correspond-
ing objects: Using the closest points makes the result independent of
the objects shape

that depends on the absolute velocities of hand and object.
It ensures that h cannot contribute to the value of f if hand
and object are not moving.

α(v1,v2) = ς(c5 · (|v1| − c6)) · ς(c7 · (|v2| − c8)) (6)

The constants ci are used to adjust the value ranges and de-
fine how smooth the individual Sigmoid functions transition
from 0.0 to 1.0. From the eight constants, those with an odd
subscript define the steepness of the transition, while those
with an even offset can be seen as a threshold for when this
transition occurs.

The values of function f follow a trimodal distribution. If
the hand and the object are not moving or are not near each
other, then f is a value near 0.0. If hand and object are close
to each other, but not or only slightly moving, f is around
0.5. If hand and object are close and their nearest points are
moving into similar directions with similar velocities, the
value of f increases towards 1.0. This behavior is very ad-
vantageous, because it allows to segment object movements
by simply applying two thresholds for start and end.

Concerning the velocities used in the calculations, the
naïve approach is to use the linear velocities of hand and ob-
ject. This, however, neglects the objects’ shapes and changes
of orientations and is a problem as e.g. depicted in Fig. 4.
When rotating the hand with the stick, their linear veloci-
ties v1a and v2a are very different although both are moving
together.

To overcome this problem, the angular velocities ωi and
the nearest points pi of object and hand are included in the
calculation. Computing the radii r i with a proximity com-
putation between hand and object, the overall velocities vi

of the nearest points can be calculated with:

vi = via + ωi × r i (7)

4.2 Task space selection

After movements have been segmented, a feasible set of
control variables needs to be chosen for each set of seg-

ments. In Sect. 5 a task-level control approach is presented
that allows to define tasks that relate any body in the kine-
matic tree representation to any other body. This flexibility
requires to find a good representation of an observed move-
ment task that is compact, describes the important elements
of the task, and does not constrain the robot more than nec-
essary. We therefore include the selection of a feasible task
space representation in our learning framework as first pro-
posed in Mühlig et al. (2009b). The idea is to evaluate com-
monly used task spaces (task space pool) and to select the
one in which the movement is represented most consistently.
The task space pool includes all relations between the ob-
jects that fulfill the following criteria.

The task spaces in the task space pool are predefined. The
system makes use of the attention mechanism and the linked
objects concept to restrict a possible task description to the
most salient objects. Only the first two most salient objects
L1 and L2 in the scene are regarded in the learning scenario.
Dealing with larger combinations of objects will be subject
to future work.

The frame of reference in which a movement is described
can play a major role for generalization. For each relation of
two objects we therefore include the both possible descrip-
tions: The movement of object L1 in the reference frame of
object L2 and vice versa.

Further, it can be useful to describe object movements
not as movements of their center points, but as movements
of specific feature points that are also inherent to other ob-
jects. For example, if the task is to learn how to place objects
on top of another, representing the movement in relative co-
ordinates of the center points of two objects does not gener-
alize over different object sizes. A better way is to describe
the movement of one object’s bottom wrt. another object’s
top. Such feature points (top, center, bottom) are included in
the object description of known objects and defined a priori.
In future this could be combined with mechanisms to detect
such features automatically.

We regard the positional and rotational elements of the
task space separately, where positions are represented in
Cartesian coordinates and orientations as one angle around
the normal axis of the camera plane.1

For choosing a good task space representation, multiple
demonstrations of the same task need to be shown by the tu-
tor. The idea is to compare task spaces and find the one in
which the movement is represented most consistently. This
is reflected by a low inter-trial variance of the movement
in this particular task space. For this, we calculate a con-
sistency score C for the projection of the object movement
into each task space in the task space pool individually and
finally choose the task space with the highest score.

1The restriction to only one angle results from the use of stereo vision.
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The first step is to project all trajectories of the demon-
strations into the task space (e.g., the task space relating
the bottom of the most salient object to the top of the
second-most salient). Then the trajectories are temporally
normalized using Dynamic Time Warping (Sakoe 1978;
Calinon et al. 2007). This is necessary because the tutor may
have presented the task at different speeds. After this nor-
malization the mean trajectory and the inter-trial variance
between the demonstrations is calculated. The score for the
task space then results from applying the following recipro-
cal function to the task space trajectory of length N :

C =
N∑

t=1

1

1 + s · σt

(8)

The scalar σt is the inter-trial variance of the demonstrations
at timestep t and s is a scaling parameter. We chose a fixed
value for s, but it can also be used to scale the variance for
each task space individually. The score can be interpreted
as the consistency of the task space for this specific task. It
reaches high values only if there are phases of low inter-trial
variance.

The suitability of each task space to represent the move-
ment is now characterized by this value and the task space
with the highest score is selected.

4.3 Probabilistic movement representation

After a feasible task space has been chosen and the task
demonstrations are temporally normalized using Dynamic
Time Warping, a representation is learned by means of
Gaussian Mixture Models (see also Calinon 2009; Mühlig
et al. 2009a):

p(xi ) =
K∑

k=1

πkp(xi |k) with p(xi |k) = N (xi;μk,Σk)

(9)

The vectors xi correspond to the time series of all demon-
strations, defined in the chosen task space with time as an
additional dimension. The symbols πk , μk and Σk represent
the prior, mean vector and covariance matrix of the Gaussian
distributions k = 1..K .

This GMM is learned for each primitive, which means that
the overall sequence is composed of primitives that have dif-
ferent GMMs and act on different sets of control variables.
The sequential flow of the primitives is however not affected
by this mechanism. The probabilistic representation allows
to store the mean movement and the covariance informa-
tion that can later be exploited by the robot. The idea is that
a high inter-trial variance corresponds to a less important
phase of the demonstrated task. With the movement opti-
mization scheme presented in the next section, we allow the
robot to diverge from such less important phases of the tra-
jectory to fulfill additional criteria.

The Gaussian Mixture Model is learned with a batch
learning approach using Expectation-Maximization and k-
Means initialization. The optimal number of Gaussian dis-
tributions K used for this representation is dependent on the
complexity of the movement and can be estimated using the
Bayesian Information Criterion (Schwarz 1978). This crite-
rion basically rates the model complexity versus the repre-
sentation quality. The system applies an efficient heuristic
using this criterion, which does not require to perform a full
EM learning for each possible number of Gaussians (for de-
tails see Mühlig et al. 2009a).

After learning, the movement is stored in form of a move-
ment primitive in the Movement Primitive Memory. The
learned task is not associated to specific objects, but stored
as a relation of linked objects in the task space chosen by the
task space selection.

5 Movement reproduction

The presented framework uses movement primitives as ba-
sic behavioral building blocks. These movement primitives
can be either predefined or learned using the techniques de-
scribed in the previous section. This section describes how
movement primitives are combined to perform more com-
plex tasks, the optimization-based adaptation of movement
primitives to new situations and the advantages of decou-
pling the movement task from the embodiment.

5.1 Sequencing of movement primitives

Most of the real world problems are to complex to be solved
with single movement primitives. To overcome this limita-
tion the system includes a hierarchical state chart on the top
level of the framework. In this state chart, movement primi-
tives that are either learned or predefined are connected us-
ing different kind of transitions. These transitions switch the
activation of one movement primitive to the next if certain
conditions are fulfilled. For example, such conditions can be
the reaching of the end state of a movement primitive or a
specific posture of the tutor (e.g., raising a hand). Usually,
movement sequences are defined in the procedural memory
which are later augmented with newly learned skills. Which
of the sequences should be used with a new skill is decided
by the interaction with the human tutor.

As for the experiments, we have manually designed the
flow of segments, so that the neighboring segments have a
meaningful transition of the selected task spaces. In general,
it is not fatal to remove or add a primitive. The system is
robust in this sense, since each primitive is implemented by
a movement converging to a vector of subsequent attractors.
The alignment is implicitly done by the transient behavior of
the attractor dynamics. However, it is sometimes necessary
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to check that certain preconditions are met. For instance,
when grasping an object, we must take care that the hand
has been opened before. Or before bringing the robot in its
resting pose, it needs to be made sure that it avoids collisions
with the table, either by using optimization, or by designing
a safe sequence.

It needs to be noted that the sequencing layer is not in the
focus of the current system and is rather an enabling func-
tional module. The sequencing layer primarily serves to en-
able the execution of the learned skills with new objects or in
different ways. Recently, much more sophisticated methods
of planning with movement primitives have become avail-
able (e.g., Toussaint et al. 2010) and may inspire future ex-
tensions of our system.

5.2 Movement optimization

For movement reproduction, the movement primitive layer
applies a linear attractor system to the selected task descrip-
tions. This leads to a smooth movement that converges the
robot’s pose to the attractor target values. We developed
movement primitives with different levels of complexity.
Simple movement primitives converge the robot’s trajectory
reactively, with mechanisms to locally avoid joint limits or
collisions. These primitives are used to realize the prepara-
tory movements like e.g. reaching and grasping an object.
This is however not enough to adapt complex, learned move-
ments to new situations. For instance if a stacking task has
been learned on an empty table, and is to be imitated in pres-
ence of an obstacle, the movement optimization modifies the
movement to avoid the collisions with the obstacle. Further,
criteria like actuator limits or collisions with obstacles need
to be incorporated. To account for this, we developed prim-
itives that are composed of several attractor vectors that can
be optimized with respect to a set of criteria, such as colli-
sion and joint-limit avoidance (for details see Toussaint et al.
2007). The employed optimization scheme works in an op-
timal control fashion and uses a modified version of the R-
Prop algorithm (Igel and Hüsken 2003). It is local in space,
but anticipates a future time horizon. The input is the current
state of the system (robot and object poses), the probabilis-
tic model of the learned movement (GMM), as well as a set
of weighted cost function terms. The chosen cost function
comprises terms to avoid collisions, joint limits, and to gen-
erate a smooth movement. With this input, the system com-
putes an optimal sequence of attractor vectors that governs
the overall movement. In decently complex environments,
this scheme allows to generate movements that are collision-
free and optimal in other respects. Imitation information is
included consistently as a cost function that describes the
similarity of a learned movement μ̂t to the movement of the

robot xt :

cim =
T∑

t=1

(xt − μ̂t )
T W t (xt − μ̂t ) (10)

The similarity is weighted with W t , which depends recip-
rocally on the covariance at the corresponding time point.
Both, information about the mean and covariance is ex-
tracted from the respective movement primitive by apply-
ing Gaussian Mixture Regression (GMR) to the previously
learned Gaussian Mixture Model.

Applying this optimization scheme results in imitated
movements that reflect the tutor’s characteristics precisely
in phases with low inter-trial variance, while phases with
higher variance weight the other criteria stronger. This
means the system imitates the movement as good as pos-
sible, but does adapt the movement to account for its con-
straints and limitations.

In order to assure a fluent interaction, we implemented
the possibility of parallel optimization. Using the informa-
tion of the state chart about predicted future states, it is pos-
sible to optimize movements in advance. Assuming a static
environment without the need of a re-optimization when the
optimized movement primitive is reached, this leads to a flu-
ent transition between the movement primitives.

5.3 Movement control and task coordinates

The robot’s kinematics is described in the form of a tree
structure depicted in Fig. 5. The individual links are con-
nected by degrees of freedom (joints) or rigid body trans-
formations. The tree also comprises links which represent
objects from the environment and are updated by the POM.
This allows to derive the kinematics not only with respect to
a heel or world reference frame, but also to formulate robot-
object or object-object relations.

Kinematic task descriptors are defined as the relative
movement of one link with respect to any other link. To
mathematically formalize this concept, we look at the rel-
ative kinematics of an articulated chain, such as depicted in

Fig. 5 Left: Kinematic tree, both robot and other scene elements are
represented in one consistent graph. Right: Coordinate systems to com-
pute relative body kinematics
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Fig. 5 right. Coordinate frame 0 denotes the root. Frame 1
is an arbitrary body which is connected to 0 through a set of
joints. Body 2 shall be represented relative to body 1 with
vector r12. The kinematic equations can now be written as
follows:

r12 = r02 − r01 ṙ12 = ṙ02 − (ṙ01 + ω1 × r12) (11)

The outer product term of (11) right is due to the angular
velocity ω1 of body 1. Introducing the coordinate system in
which the respective vector is represented as the left sub-
index and projecting the velocities into the robot’s config-
uration space with the respective translational ṙ i = J T,i q̇

and rotational Jacobians ωi = J R,i q̇ , the differential kine-
matics becomes

1ṙ12 = A10(0J T,2 − 0J T,1 + 0r̃12 0J R,1)q̇ = 1J T,relq̇ (12)

with r̃ = (r×) being a skew-symmetric matrix represent-
ing the outer product, and A10 being a rotation matrix from
frame 0 to frame 1. The task descriptors for a segment’s spa-
tial orientation can be computed accordingly, for instance in
Euler (3D) or Spherical angles (2D), or as the inclination
of one body axis with respect to any other (1D). With these
equations, one can formulate task descriptors that relate any
link of the tree to any other. Further, it is possible to compute
these descriptors element-wise, such as “position of body 2
with respect to body 1 in X-direction”, or “Euler α angle of
body 2 with respect to body 0”.

Similarly, we can derive dynamic task descriptors for the
overall linear and angular momentum and others, see Gien-
ger et al. (2010b) for details.

For a set of task descriptors, we augment an overall task
Jacobian, and compute the joint rates with an inverse kine-
matics scheme based on the concept presented in Liégeois
(1977)

δq = J #Δe − α(I − J #J )W−1
(

∂H

∂q

)T

(13)

where J # is a W -weighted Pseudo-Inverse of the augmented
task Jacobian, Δe is the feedback error of the task coordi-
nates, and H is a secondary objective (we chose a joint limit
avoidance penalty) whose gradient is projected into the null
space of the movement through the right term of (13).

The choice of the order of the relative coordinates yields
some interesting aspects. This is illustrated in Fig. 6 for a
simple planar redundant system described by task variables
(x y α). If the task variables are represented in the object’s
or robot’s frame of reference, different values are needed
to realize the depicted poses. If, like depicted, the orien-
tation between object and end effector is not important, it
may be more advantageous to represent the task variables
in the effector’s frame of reference. In that case, all three

Fig. 6 Different robot postures according to the same task represented
in effector coordinates: All three depicted poses correspond to the same
coordinates (x y α)T

poses can be realized with the same values (x = d , y = 0,
α = 0). This task description introduces an invariance with
respect to the relative pose between effector and object. Its
null space comprises the relative pose between effector and
object. When resolving redundancies with (13), the achieved
pose will correspond to a (local) optimum with regard to the
cost function H . This difference is exploited when selecting
a feasible task space as explained in Sect. 4.2.

5.4 Body schema adaptation

Kinematic structures as depicted in Fig. 5 represent a parent-
child hierarchy: The movement of a segment will affect
the movement of its children. In many practical situations,
changes to this kinematic configuration occur. An example
is a robot grasping an object and putting it at a different po-
sition. Another example is to put an object from a table on
a tray which is placed on the table. A common approach
to deal with such changes is to keep the kinematic config-
uration, but to compute the robot’s end effector coordinates
based on the desired object transformation. This way, the
movement can be controlled in end effector coordinates, and
collisions can be taken into account by applying avoidance
strategies based on the transformed object geometry.

We propose to address this problem by adapting the body
schema (or body image), which commonly refers to the per-
ception of a human’s physical appearance. In robotics, a
number of approaches to learn and adapt the body schema
have been proposed, for instance for proprioceptive mod-
els (Hersch et al. 2008) and for models including tools
(Stoytchev 2003; Nabeshima et al. 2006).

In the following, we assume the geometric properties of
the system to be known, and focus on dealing with structural
changes during interaction with the environment. We argue
that kinematic structure modifications can be modelled in a
higher abstraction of the movement generation system, such
as in actions or in action sequences. For instance if a robot
“grasps” an object, it is either known or it can be recon-
firmed by sensor feedback that the grasp is successful and
the object is held by the robot’s end effector.
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Fig. 7 Adaptation of the kinematic chain according to performed ac-
tion. The linked objects are denoted with Li , index i being the saliency
index

We suggest to exploit this knowledge and apply such
structural modifications based on actions like grasping or re-
leasing an object. This is depicted in Fig. 7. Applying an ac-
tion that grasps linked object L2 will modify its connectivity
so that it is connected to the grasping hand of the system. It
should be noted that this also accounts for the case where the
linked object refers to a parent-child structure like object 2
in Fig. 3. An example would be to grasp a tray on which two
objects are placed. In the same way, releasing the linked ob-
ject can be associated with connecting it to the world’s frame
of reference, or any other object at which it is positioned.

This approach is beneficial, since firstly, an abstraction
of the embodiment is introduced. Object movements are
generic, while the movement of an end effector always in-
corporates the knowledge about a specific transformation
between end effector and object. Secondly, representing
movements in object coordinates allows to introduce invari-
ance in the same line of argument as discussed in Fig. 6:
Stacking a cylinder on top of another can be described by
aligning the cylinders symmetry axis, while it is rather diffi-
cult to find a general end effector-object relation.

Figure 8 illustrates this for three examples. Let’s assume
a task descriptor that relates the transformation of linked ob-
ject L1 to the transformation of linked object L2. The target
values are determined to put L1 on top of L2. In example (a),
L1 is connected to the left hand, while L2 has a fixed trans-
formation. The system will generate a trajectory moving the
grasped L1 on L2 with its left arm. In case (b), both L1 and
L2 have been grasped. The result is a coordinated bimanual
movement, L1 is put on L2 which is held with the right hand.
In case (c), L2 has again a fixed transformation in world co-
ordinates, and L1 has been grasped with both hands. In this
case, the system will put L1 on top of the static object L2,
but this time generating a coordinated bimanual trajectory
with the grasped object L1.

Fig. 8 Kinematic chains for different body schemas. The gray lines
cover the joints and transformations that are involved in the movements

6 Experiments

In this section, we present two experiments to illustrate the
generalization concepts of the framework. The supplemen-
tary video (Online Resource 1) shows the two experiments
in different situations. It includes also an example where the
robot avoids collisions while imitating a movement, which
is not addressed in this paper (but see Mühlig et al. 2010).

6.1 Stacking objects

In the first experiment, the robot is taught how to put objects
on top of another. Figure 9 shows the setup and the interac-
tion flow between tutor and robot. In the beginning the tutor
taps on the red object to make it salient to the robot. Inter-
nally, this associates the red object to linked object L1 and
the green object to L2 since only two objects are present.
Then, the tutor puts the red object onto the green object. The
relevant movement is segmented by evaluating the correla-
tion of hand and object movement as described in Sect. 4.1.
After the demonstration the robot gazes at the tutor and waits
for a response. The tutor raises his left hand to confirm that
the movement shall be learned.

For brevity, only one demonstration of the task is de-
picted in the figure. The tutor demonstrated the task mul-
tiple times (between three and seven demonstrations have
been found to be reasonable for the selected scenario) and
with varying objects (see Fig. 10 top left). This allowed
the automatic task space selection to choose the most rea-
sonable task space, namely relating the bottom of the most
salient object L1 to the top of the second-most salient ob-
ject L2.

Next, the tutor raises both hands to instruct the robot to
perform the task bimanually. This starts several processes in
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Fig. 9 Illustration of the interaction and the interplay between internal
elements during an experiment. Note that the movement optimization
is done in parallel to the robot’s movement. The dashed line indicates

that the imitation phase may have to wait for the optimization to fin-
ish. During phases between “freeze objects” and “unfreeze objects”,
the scene is not updated by the vision system and assumed to be static

Fig. 10 Two experiments were conducted. Left: The tutor is stacking
various objects on top of another and the robot is able to reproduce
the movement with two objects not seen before. Right: The tutor is

demonstrating how to pour a beverage and the robot is successfully
able to reproduce the movement

parallel. Internally, the system first learns the movement us-
ing the probabilistic encoding explained in Sect. 4. Then the
optimization process is initialized with the predicted pose
of the robot. Thereafter the solution is computed while the
robot approaches the table. When the robot stands in front
of the table, it grasps the objects, performs the learned task
using the optimization result, puts the objects back on the
table and returns.

Note, that the learned movement was integrated into the
movement sequence for grasping both objects. If the tutor
would have raised only one hand instead of both hands, the
same learned movement primitive would have been inte-

grated into another movement sequence in which the robot
would have performed the task one-handed. We want to em-
phasize that the preparatory movements like approaching the
table or grasping the object have been pre-programmed and
are not learned. Imitating the task one-handed or bimanual
is encoded as separate sequences within the state chart. For
the one-handed case, the body schema is modified such that
the most salient (red) object is topologically assigned to the
left hand (Fig. 8a), while the second-most salient (green) ob-
ject has a fixed transformation to the world reference frame.
For the bimanual case, both objects are attached to the hands
(Fig. 8b).
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Fig. 11 Consistency scores for the stacking experiment. The task is
represented best by relating the bottom of the most salient object
(L1bottom) to the top of the second-most salient object (L2top). The
feature points “bottom”, “center” and “top” have been predefined to
match the object geometry

Figure 11 depicts a comparison of the calculated task
space scores. According to Sect. 4.2, 18 different task spaces
are compared. These are the positions of the feature points
of L1 and L2, projected into all possible task spaces. The
orientation has been excluded from the task space selection.
The second-best score corresponds to the same feature re-
lation as the best score, with the difference that the move-
ment is represented in the other object’s reference frame.
This results from the nature of the task, which makes both
representations equally effective, but is not always the case
as explained in Sect. 5.3.

For emphasizing the quantitative influence of choosing
a good task space, Fig. 12 compares the positional task ele-
ments of a typical representation relating object centers with
the chosen task space representation. The bottom row shows
the score value for each time step.2 It can be seen that the
chosen representation is less varying in the end of the move-
ment, especially in Z-direction (vertical direction).

Representing the task in these coordinates allows the
robot to apply it to unknown objects, if they comprise in-
formation about their top and bottom. This generalization
ability is demonstrated by instructing the robot to put a can-
dle on a candle holder (see Fig. 10 bottom left). The move-
ment was not learned with these two objects. Further, the top
of the candle holder is not above its center, as compared to
the cylindrical object the movement has been learned with.
If the task would have been learned in the coordinates of the
object center, the robot would not have been able to repro-
duce it correctly.

Additionally to the selection of a feasible task space, the
experiment shows how the body schema adaptation can be
used for generalization. In the experiment, the tutor demon-
strated only one-handed movements with the target object

2The term within the sum of equation (8) plotted for each time step.

Fig. 12 Comparison of the five stacking demonstrations in the naïve
representation relating object centers (left) with the chosen representa-
tion (right). Plots with the same line color belong to the same demon-
stration

remaining on the table. The robot however was able to per-
form the movement bimanually (see Fig. 9). This results
from the movement being represented in relative object co-
ordinates and the body schema adaptation. When grasp-
ing an object, it becomes attached to the kinematic tree of
the robot, such as described in Sect. 5.4. The optimization
process then adapts the robot’s motion to comply with the
desired object motion. Note that the movement primitive
for this bimanual task included an additional constraint for
holding the green object upright.

6.2 Pouring

In the second experiment, the robot had to learn how to pour
a beverage from a bottle into a glass (Fig. 10 right). The ob-
jects were tracked with a magnetic-field-based motion track-
ing system, whereas the tutor was still detected through vi-
sion. Further, we used millet as a replacement for liquid.

After the tutor presented the task five times, the system
automatically chose the most appropriate task space. As can
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Fig. 13 Comparison of the five pouring demonstrations in the naïve
representation relating object centers (left) with the chosen representa-
tion (right)

be seen in Fig. 14, the best representations for the task is to
relate the top of the bottle to the top of the glass or vice versa.
Again we show a comparison between the naïve represen-
tation relating object centers and the chosen task space in
Fig. 13. It can be seen that the chosen representation yields a
lower variance especially during the important middle phase
(the actual pouring phase).

Note that due to the task space selection, the top of the
bottle wrt. the top of the glass is always tracked precisely.
Even in difficult situations where the orientation of both ob-
jects cannot be reproduced as observed, the robot is still able
to pour correctly. This would not be the case with a repre-
sentation that uses the object’s center points.

Figure 15 also shows the necessity of the optimization
process (see Sect. 5.2) to adapt the movement to the robot’s
embodiment. The plot depicts the two most influencing cost
terms and the number of violated joint limits. Without opti-

Fig. 14 Consistency scores for the pouring experiment. The task is
represented best by relating the top of the most salient object (L1top)
to the top of the second-most salient object (L2top) or vice versa

Fig. 15 At the beginning of the optimization the learned movement
is not tracked precisely (high imitation costs) and violates joint limits.
After 50 iterations a valid movement emerges

mization, 213 joint limits were violated.3 After 50 iterations,
the optimization generated a valid movement that tracks the
learned movement as good as possible. For the movement
imitation, bottle and glass have been properly given to the
hands in order to match the reference points coming from
the observations.

7 Discussion and outlook

The presented system addresses the problem of object move-
ment learning from a whole systems perspective and thereby
provides a more comprehensive strategy than other, more
restricted systems. The main goal is to demonstrate gener-
alization of these learned skills to new objects and to new
ways of execution, e.g. with a different or both hands. For

3The number of joint limit violations is cumulative over all controller
steps of the movement and can therefore be higher than the actual num-
ber of joints.
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achieving this goal, a large number of functional modules
for visual perception, action generation, movement control,
movement representation and attention have been combined
and integrated. We are aware that for some of these compo-
nents there are more sophisticated and possibly more pow-
erful methods available, if considered in isolation. But when
building and describing a complete system, we had to use
shortcuts in certain functional modules and use heuristics in
favor of the overarching goal to reach the desired learning
and generalization behavior. However, there are important
novel concepts in our system, which in combination provide
a leap forward towards a more flexible learning and execu-
tion of learned skills. We elaborate more on these mecha-
nisms in the following.

From a cognitive point of view, each learning system
must comprise at least three major elements, regardless of
what kind of representation or learning is used. First, an ab-
straction process has to de-contextualize the invariants to be
learned from particular example data, which includes to se-
lect and acquire such data. Second, a representation of this
invariant has to be stored for later reuse, and third, adap-
tive processes to readjust the learned representation towards
new situations are needed for true generalization. Much of
the effort and novel ideas we have presented, serves to real-
ize these three steps in tight interaction with a user and we
discuss the three aspects in turn.

Many movement learning systems assume that example
trajectories are properly segmented and already recorded
in the appropriate space (e.g., Calinon and Billard 2008;
Kormushev et al. 2010; Pastor et al. 2009; Ijspeert et al.
2003). If user interaction to record data is provided, most
often explicit segmentation by the user is required (e.g.,
Nicolescu and Matarić 2003), i.e. the interaction follows
the special requirements of the robot learning system. In
the attempt to release these strong restrictions, we provide
the system with the segmentation mechanism described in
Sect. 4.1. It turns out that the articulated scene model, i.e. an
internal representation of the user and the relevant objects
is important to achieve the necessary robustness in this pro-
cess, because filtering for sensory noise, occlusions etc. need
to be resolved. On the representational side, we use a proba-
bilistic encoding of the example trajectories in a Gaussian
Mixture Model as several authors before (Calinon 2009).
The novel concept of linked objects in connection with the
encoding in relative coordinates however allows for a much
more flexible reuse, because the stored invariant is the shape
of the trajectory that is given with respect to a kind of place-
holder for concrete objects—the linked object. The system
further has the ability to choose the task space for encod-
ing autonomously, which yields great generalization possi-
bilities often neglected by other systems. Finally, one of the
biggest strengths of our system is to provide very flexible
means for re-adaptation of the learned representations to a

new situation. To be able to perform a task with different
objects, a different arm, or bimanually instead of single-
handed requires the combination of several ideas. The key
novel concept is our flexible scheme for reconfiguration of
the body kinematics (Sect. 5.4) that allows to resort to ex-
isting path planning and control methods even when one
or more objects are moved. To this end, the earlier intro-
duced flexible attractor based movement generation scheme
provides the required adaptivity to adjust the movement to
changed collision constraints and, as was already demon-
strated in our previous work Mühlig et al. (2010), to obsta-
cles. And finally the attentive mechanism that is based on
the internal model allows to interactively determine the con-
crete objects to manipulate.

Of course our system also has limitations, especially on
the perception side and in the movement sequencing layer.
First, we don’t track the visually perceived objects while
the robot imitates the movement. This is due to the prob-
lems imposed by occlusions and other inaccuracies, and
severely limits the system in dynamically changing environ-
ments. Second, the 3D object shapes and the feature point
locations (top, center, bottom) have been predefined for the
experiments. This could be improved by vision-based ap-
proaches. Another limitation is related to the observable sen-
sory modalities: The system can only learn the relation of
kinematic data, but can’t learn the force and torque inter-
action between objects. And finally, a more continuous and
parallel activation of movement primitives needs to be inves-
tigated. Although the currently applied state chart approach
eases the modelling of movement sequences, it creates other
challenges such as handling failures during task execution
in dynamic environments.

Despite these limitations, our system goes in its com-
plete realization beyond previous work in whole systems
robot learning of movement skills, because it has previously
not been demonstrated how a learned skill can be executed
with various object configurations and differently from the
demonstrations with both hands.
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