
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Intelligent System Architectures – Comparison
by Translation

Benjamin Dittes, Christian Goerick

2011

Preprint:

This is an accepted article published in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Intelligent System Architectures – Comparison by Translation

Benjamin Dittes and Christian Goerick

Abstract— System architectures are a central element to
enable construction of increasingly complex software systems
for intelligent artifacts. Scientific discourse about such architec-
tures requires means to compare approaches and identify com-
mon directions. In this contribution we put forth the hypothesis
that a meaningful comparison is possible only by translation
to a common language. We present SYSTEMATICA 2D as such
a common language, suitable for translation and comparison
of architectures because it is both formal in its description
and flexible in the range of systems which can be expressed.
Main result of this contribution is the translation and compar-
ison of three recent popular system architectures: the CogX
George system[1], the ALIS3 system running on the Honda
humanoid robot[2] and the iCub Cognitive Architecture[3].
Common patterns in all three system become apparent from
the two-dimensional ordering inherent in their SYSTEMATICA
2D translations and allow more founded discussions about
architecture approaches and the exchange of concepts between
real systems.

I. INTRODUCTION

In the strive to create complex artifacts with artificial
intelligence, an interplay of a great number of disciplines is
required. In addition to software and hardware for interfacing
with the physical world, cognitive architectures are receiving
increasing attention as necessary means to integrate several
(software) subsystems to an intelligent artifact system, see
[4] for a survey. This growing attention calls for a scientific
discourse about present and future system architectures,
comparing approaches, identifying reoccurring patterns and
providing best practices or posing scientific questions for
the next generation of intelligent systems. However, while a
scientific discussion about architecture approaches has been
ongoing for the last 30 years (see Subsumption[5], 3-Tier[6]
or CogAff[7], [8]), comparisons of architectures for real
systems are missing. The central problem, as Christensen
et al. precisely point out, is that

“[. . . ] there is no agreement on what the space of
possible architectures is like, nor on the terminol-
ogy for describing architectures or on criteria for
evaluating and comparing them.” [9]

This is not to say that comparing system architectures is
completely impossible at the moment. Usually, system archi-
tectures are designed in the framework of an architecture ap-
proach (such as 3-Tier or Subsumption) and thus inherit some
properties which allow comparison to systems built based on
a different approach. What such a comparison cannot capture
is a) that the reality of system construction may differ from
the followed approach, b) that the construction process itself
may reveal properties or necessities not considered in the
approach and c) that as a result, systems built according
to different approaches (e. g. CogAff vs. Subsumption) may

be much closer in their design than the comparison of the
approaches would suggest.

In this contribution we offer a more direct tool for com-
paring real, built system architectures to one another and to
architecture approaches: translation to a common language.
As such a common language we present SYSTEMATICA
2D which is both flexible enough to allow expression of
many different systems (and system approaches) and formal
enough to allow identifying similarities and differences as
well as deriving construction patterns. Sec. III will give a
concise overview of the concepts as well as the formal and
visual notation of SYSTEMATICA 2D (for more details see
[10]).

We will show that the language is able to express three
state-of-the-art system architectures by providing and dis-
cussing SYSTEMATICA 2D translations in Sec. IV. The
three discussed systems are: the CogX George system[1]
(‘George’), the ALIS3 system running on the Honda
humanoid robot[2] (‘ALIS3’) and the iCub Cognitive
Architecture[3] (‘iCA’).

The two-dimensional structure imposed by the SYSTEM-
ATICA 2D language in turn allows to easily identify certain
reoccurring pattern in the represented systems. Although all
three discussed systems were designed according to different
theoretical frameworks (George: CAS[11], ALIS3: SYSTEM-
ATICA [12], iCA: Enaction[3]), Sec. V will show by means
of comparing these patterns that all three system have strong
similarities in their architecture approaches. Based on these
similarities, an exchange of concepts and sub-architectures
for future systems is discussed.

II. RELATED WORK

Two areas of related work are relevant for this contribu-
tion: comparative reviews of intelligent systems and formal
notations or languages to express these systems.

As for the first, we see two comparisons of integration
approaches in intelligent systems: Vernon et al.[4] give a
survey of recent developments in cognitive architectures by
analyzing a wide range of approaches and sorting them
into three ‘paradigms’ of cognition (Cognitivist, Emergent
and Hybrid). The focus of this survey is on evaluating
qualitative properties of existing systems, where the relation
between system architecture and resulting property is not
the main focus. A different approach is pursued by Goerick
in [12], where a new framework for modeling hierarchical
architectures (‘SYSTEMATICA’, encapsulating the subsump-
tion architecture[5]) is used to express popular architecture
approaches in the same language and compare them on this
basis. Here, the concept of comparison by translation is



present but the chosen formalism imposes a very rough gran-
ularity on the formulated designs which makes it more suited
for comparing architecture approaches than final systems.

Formal notations or languages for intelligent systems
today come from three areas. First, there are mathematical
formalizations of system component interaction[13], [14],
but it is unclear whether they can express established cogni-
tive architectures such as 3-Tier[6] or CogAff[7]. Second,
architecture description languages are a popular tool in
the software engineering domain to describe large software
systems, such as Rapide[15] or the more generic xADL[16].
These languages contain all relevant elements for describing
an architecture but since, to the best of our knowledge, no
application of such an ADL to the intelligent system domain
has been attempted, it is unclear what can be said about an
intelligent system architecture by translating it to e. g. xADL.

Finally, there are specific notations used in intelligent
systems[8], [17], [2], [1], [3]. Among these notations, we see
two groups: on the one hand there are systems described in
ad-hoc formalisms used only once in the paper describing the
system — this usually implies that these notations were not
developed to allow generalization. On the other hand there
are systems described in independently introduced notations
such as 3-Tier[6], CogAff[7] and SYSTEMATICA[12]. These
notations are developed to express a certain architecture ap-
proach and therefore provide specific constraints or structural
bias towards this approach, which also makes them less
applicable as a common language — for a detailed review
of such formalisms see [10].

To conclude, we can say that there is a multitude of
notations used to describe systems and a very small num-
ber of attempts to compare built system architectures or
to establish a generic language so serve as a basis for
comparison. In the following, we will therefore start by
presenting such a common language. This language will then
be used to translate and compare the George, ALIS3 and iCA
architectures.

III. SYSTEMATICA 2D

The common language used for translation will be called
‘SYSTEMATICA 2D’ (short: ‘SYS2D’). It describes systems
on two levels: the functional and the descriptive. In set
notation, a system S = (U,A) is defined in SYS2D by a set
of functional units U , including interfaces, connections and
dependencies, and a set of sub-architectures A, including the
description of their sensory & behavior spaces. Fig. 1 shows
an example design, all relevant elements will be detailed in
the following.

A. Functional System Design

On the functional level, a SYS2D system is composed of
N > 2 processing units un ∈ U, n = 1..N . There is
always one unit u1 responsible for emitting sensor events
from exteroception Se and proprioception Sp as the full
sensor space S = Se × Sp. A second predefined unit u2

is responsible for receiving and executing motor commands
from the motor space M .

Processing Flow

B
u
ild
 O
rd
e
r

Deliberative

Reactive

Actuators
M

Belief Manager
GoalsX

Belief State

M

Goal Generator
X

Goals

Planner
Belief State M

Reactions
X M

Sensors
X

Fig. 1. Example of a SYSTEMATICA 2D system architecture, translated
from a CogAff design[8]. The system is composed of connected units (large
boxes) with attached ports (small boxes) which are arranged along the two
axes according to processing flow and build order. Port coloring is according
to Fig. 2, dashed lines between ports are pull connections, solid lines are
push connections. Surrounding gray boxes denote sub-architectures.

1) Formal Notation: Every unit un = {(Dn, In, On,
Pulln, Pushn)}, n = 1..N is described by the following
features (see Fig. 1):
• it has an internal dynamics Dn running independently

and asynchronously from all other units;
• it has an interface defined by a set of input ports In,

where each element is defined by its name, type and
input role, thus In ⊂ {(name, type, role)} and a set
of output ports On, where each element is defined by
its name and type, thus On ⊂ {(name, type)};

• it specifies the properties of each input port by assign-
ing one of three ‘roles’, which we will call Driving,
DrivingOptional or Modulatory — these roles define
dependencies between units, see Sec. III-A.2;

• it may pull data from another units output port o′ to one
of its input ports i, specified by a set of pull operations
Pulln ⊂ {(usource, o

′, i)} (visualized as dashed lines);
• it may push data from one of its output ports o to

another units input port i′, specified by a set of push
operations Pushn ⊂ {(utarget, i

′, o)} (visualized as
solid lines).

A description of a system as a set of units (with arbitrary
granularity), communicating over arbitrary connections is
intuitively very flexible. In order to allow a meaningful
comparison between SYS2D systems however, some level
of common constraints is required. SYSTEMATICA 2D uses
inputs roles, push/pull connections and a constraint on two-
dimensional sortability to enforce modeling of unit depen-
dencies. For brevity, Sec. III-A.2 will give only a concise
review of these concepts, please see [10] for a full discussion
of the theoretical foundations and implications.



2) Input Roles & Dependencies: Two formal elements
allow formulating dependencies: push/pull connections and
input roles. These two mechanisms are independent and
can therefore be used to specify dependencies along two
independent dimensions: the difference between push/pull
defines the ‘build order’ dimension (i. e. build first, build
later), the roles of input ports define the ‘processing flow’
dimension (i. e. from sensor to actuator).

Build Order: If unit un pulls data from or pushes
data to unit um then un has to be built after unit um

— in other words: only the newer unit needs to know
about the connections it makes to older or preexisting units
(although the older units must provide the ports to accept
these connections). Since every connection between ports
can be symmetrically formulated as either a push or a pull,
this sorting by build order is completely in the hands of
the designer, except for one constraint: The units must be
sortable according to build order, i. e. there must not be loops
of purely pull or purely push connections.

Processing Flow The concept of sorting units by their role
or function in the processing chain is old: from the Sense-
Plan-Act models, over the Controller-Sequencer-Deliberator
sorting in 3-Tier to the Bottom-Up and Top-Down channels
in SYSTEMATICA — not to mention the usage of these terms
in neurological studies.

In the SYS2D functional model, we chose to model this
quality locally, by specifying the ‘role’ of input ports as one
of the following three (see Fig. 2):

• Driving inputs are mandatory and indicate input data
from units prior to the recipient along the processing
flow — this is typically used for sensor preprocessing
results, representations, etc.

• DrivingOptional inputs are similar to Driving but op-
tional, i. e. the recipient can function without receiving
data on such ports — this is typically used for inputs
to data fusion units, motor commands, etc.

• Modulatory inputs are optional and indicate input data
from units further along the processing flow — this is
typically used for modulation of parameters or operation
modes

Input Roles

Mandatory

Optional

Driving Modulatory

Driving

DrivingOptional Modulatory

(Input Data, Representations, …) (Parameters, Operation modes, …)

(Loose Coupling)

(Strong Coupling)

Fig. 2. Input roles in SYSTEMATICA 2D. Two criteria are interleaved:
driving / modulatory inputs (sometimes referred to as bottom-up / top-down)
and mandatory / optional inputs. Three of these combinations are supported
by the designated roles, the combination ‘mandatory and modulatory’ is
excluded by design. See text for details.

One combination is intentionally missing: mandatory in-
puts from modules further along the processing flow (i. e.
mandatory modulation). This constraint does not prohibit
processing loops in a system but only requires some links
in a processing loop to be declared as loosely coupled, i. e.
DrivingOptional or Modulatory (see [10]).

Sorting along the processing flow is now straightforward.
If unit un receives (by push or pull) data to a driving
(Driving or DrivingOptional) input from unit um then unit
un is further along the processing flow than unit um.
Conversely, if unit un receives data to a modulatory input
from unit um then unit um is further along the processing
flow than unit un. Like for the ‘build order’ dimension,
SYS2D systems must be sortable along the ‘processing flow’
as well, i. e. there must not be loops of purely modulatory
or purely driving connections.

B. Descriptive System Design

In addition to the set of units, SYSTEMATICA 2D allows
definition of sub-architectures with groups of units and
additional semantic information, following the definition of
sensor and behavior spaces in [12].

This makes it possible to group a system into conceptual
subsystems at an independent level of description whose
granularity may not coincide with that of the units.

In a SYS2D design S = {U,A}, a sub-architecture ak ∈
A is a tuple ak = (name, Uk, Sk, Bk) with Uk ⊂ U and
∀(k, l) : Uk∩Ul = ∅ (a unit may not belong to more than
one sub-architecture), where Sk describes the sensor space
used by ak and Bk describes the behavior spaces emitted
by ak (see Fig. 1 for a complete SYS2D design).

IV. SYSTEM ARCHITECTURE TRANSLATIONS

Based on the presented common language, we will now
proceed to present translations of the George[1], ALIS3[2]
and iCA[3] systems. The translations of these three systems
are based on the more or less formal architecture descriptions
in the respective publications.

While these descriptions usually explicitly describe units
and connections, the connection types, unit interfaces and
input roles have been inferred from the system descriptions
or associated publications (ALIS3: [18], [19], iCA: [20]).
The build order, and thus the distinction of push/pull con-
nections, is usually implicit in the order of described system
elements or in previously published subsystems. The input
roles have been chosen based on the described role of a unit
in the processing flow (sensor-near or actuator-near). In the
following paragraphs, each system translation is presented
and discussed by itself, before the comparison in Sec. V.

A. CogX George

Fig. 3 shows the SYS2D translation of the George system,
together with a small version of the original system architec-
ture taken from[1]. The original architecture decomposes the
system into three sub-architectures, the SYS2D design splits
the ‘Communication SA’ into ‘Auditory SA’ and ‘Speech SA’



Original Description

Auditory SA

Binding SA

Speech SA

Visual SA

Actuators
Speech Output

Belief Construction
Belief (A) Belief Union Belief

Binding
FeaturesMeaning Belief Union

BU Attention
Image/Stereo

SOI

Dialogue Interpretation
Belief Union

Linguistic Meaning

Belief (A)

Dialogue Planning
Clarification Request

Linguistic Meaning

Object Analyze
oKDE

Proto object

Visual object

Parsing
Word Lattice

Linguistic Meaning

Sensors
Audition Image/Stereo

SOI Analyze/Segment
SOI

Proto object

Speech Recognition
Audio Signal

Word Lattice

Speech Synthesis
Linguistic Meaning

Speech Signal

Visual Learner
Learning Signal

Visual object oKDE

Visual Mediator
Belief

Visual object Clarification Request

Features

Learn Vision

Fig. 3. Translation of the George system architecture to the SYSTEMATICA 2D language. Original system description taken from [1], see text for details.

Original Description

Binding Loop

Reactive Loop

Action generation
Active Proto-Object Behavioral Bias

Robot Pose Tactlie Sensing

Active Behaviors

Motor Commands

Expectation confirmation / mismatch
Binding MatrixCluster ActivationsFeature Mask Behavior BiasSelect Next PO

Expectation generation
Binding MatrixCluster Activations Feature Mask

Feature binding
Active Behaviors

Feature Mask

Motion Position SizeSpeech Segments

Binding MatrixCluster Activations

Feature classification
ImagesProto-Objects

Select Next PO

Active Proto-Object

Motion Position Size

M
Motor Commands

Sensor pre-processing
Audio Samples Images Robot Pose

Proto-ObjectsSpeech Segments

X
Audio Samples Images Robot Pose Tactile Sensing

Fig. 4. Translation of the ALIS3 system architecture to the SYSTEMATICA 2D language. Original system description taken from [2], see text for details.

in order to separate sensor preprocessing from behavior gen-
eration along the processing flow. Descriptions of variables
have been re-interpreted as unit ports but have kept the same
function in the communication between units. Following the
description of ‘Visual SA’ and ‘Communication SA’ as stand-
alone entities, the input roles and push/pull connections have
been modeled to place the ‘Binding SA’ on top of the system
in terms of build order.

The resulting system fulfills all SYS2D constraints. At the
same time, the resulting two-dimensional structure represents
the idea of independent processing streams for audition,
vision and speech, coupled together by a central binding sub-
architecture.

B. ALIS3

Fig. 4 shows the SYS2D translation of the ALIS3 system
and it’s original architecture description from [2]. Although
the original description implied two main systems layers
and an explicit set of units, the lack of interfaces and the
occasionally unclear meaning of connecting arrows required
a strong consideration of related publications (see [18],
[19]). Interfaces and most input roles could then be derived,
based on described dependencies and bottom-up / top-down
information flow.

The resulting design fulfills all SYS2D constraints and
maintains the two-layer separation, highlighted by sub-
architectures, of the original design.



Episode Loop

Gaze Loop

Action Selection
State

Activation

Actuators
Motor Commands

Affective State
Episode State

Attention Selection
Attention Map Gaze Target

Egosphere
IOR

Salience

Attention Map

Endogenous Salience
Memory

ModulationSensor Input

Salience

Episodic Memory
Attended Spot

Modulation

Episode

Exogenous Salience
A-Priori-Features

Sensor Input

Salience

Gaze Control
Gaze Target

Motor Commands

Salience Target

Locomotion
Activation

Target Motor Commands

Procedural Memory
ActivationEpisodeMemory

Reach & Grasp
Activation

Target Motor Commands

Sensors
Exteroception Proprioception

Vergence
Sensor Input Gaze Target

Original Description

Fig. 5. Translation of the iCub Cognitive Architecture to the SYSTEMATICA 2D language. Original description taken from [3], see text for details.

C. iCub Cognitive Architecture

Fig. 5 shows the SYS2D translation of the iCub Cognitive
Architecture, together with the original diagram from [3]. As
with the other two architectures, the explicitly described units
were adopted almost one-to-one, while deriving interfaces
required consideration of the iCub project deliverables[20].
The sorting of units along the processing flow could be
derived from the publication, the sorting along the build
order was matched to subsystems presented in independent
publications.

The resulting design fulfills all SYS2D constraints and
allows a quicker visual understanding of the separate sensor-
actuator loops inherent in the original design.

V. COMPARISON & DISCUSSION

The previous section has presented SYSTEMATICA 2D
translations of the George, ALIS3 and iCA systems. Al-
though these translations already allow defining some simple
taxonomies (i. e. number of units, use of optional/mandatory
inputs, minimal height/width according to sorting dimension,
etc.) in order to perform a meaningful comparison we must
define specific criteria about which the comparison should
be performed. Since all considered systems are from the
intelligent artifact domains, we will compare them according
to the following, embodiment-related criteria:
• What sensor-actuator loops exist in in the system?

Which behaviors do they emit? How do they interact?
• What is the role of units in the system which are not

involved in these loops?
The answers to these questions can be derived from the
two-dimensional ordering of SYS2D units: sensor-actuator
loops are connected sets of units from lower left (sensor) to
lower right (actuator). Separate loops will typically differ in
build order and therefore be stacked on top of each other,
with interactions and involved units clearly visible. Units not

involved (directly) in these loops will be visible as input data
or modulation source for the loops.

Fig. 6 shows low-resolution SYS2D designs with manually
annotated arrows highlighting the main flows of information.
From them, we can derive specific answers to the questions
and attempt a comparison of the three systems.

A. Sensor-Actuator Loops

It is apparent from the designs that while George and
ALIS3 only have one sensor-actuator loop1, iCA has three:
reactive vergence, attention-triggered gazing and specific
behavior based on action selection. For the George system,
however, it is not clear whether any behavior would be visible
(or audible) without all four sub-architectures operational:
the sensor-actuator loop of visual and speech SA is closed,
but it will probably not issue clarification requests without
the binding SA providing belief, which in turn depends on
the auditory SA. The behavior spaces of ALIS3 and iCA
are similar (gazing, pointing, locomotion, grasping on a
humanoid robot) while George focuses on spoken communi-
cation with a tutor. The interaction of units is only relevant
for iCA: while Vergence is operating on its own, the two
higher loops are based on intermediate results of the same
processing chain.

B. Additional Units

In the George system, the binding and auditory SA are
not directly involved in a sensor-actuator loop. They provide
belief as a modulation signal to the ‘Visual Mediator’,
based on sensory preprocessing independent of the loop (the
auditory SA). ALIS3 defines a binding sub-architecture in
a similar way, but using the same preprocessing results as

1Actually, ALIS3 has two: the ‘Action generation’ unit is able to operate
without input from ‘Feature classification’, but this is only used for returning
the robot to starting position.



Fig. 6. Low-resolution SYS2D designs of the George (A), ALIS3 (B) and
iCA (C) systems, with arrows highlighting the main information flows. See
text for details.

necessary for the loop. The modulation produced in the
binding SA affects both preprocessing and action generation.
Finally, iCA has only one unit, the ‘Procedural Memory’,
which is not involved in any of the three loops but is
receiving episode and activation information and modulates
the ‘Episodic Memory’. In this respect it is very similar to
the ‘binding’ parts of George and ALIS3.

C. Common architecture patterns

As a result of this comparison, we can say that all three
systems share some common patterns in their architectures:
• All systems have at least one closed sensor-actuator

loop, involving sensory preprocessing and behavior
generation, and are thus able to operate on a physical
artifact in the real world.

• All systems have a concept of ‘proto-objects’ (George,
ALIS3) or ‘gaze targets’ (iCA) as a mechanism for vi-
sual scene decomposition in order to generate behaviors.

• All systems add a modulating or ‘binding’ sub-
architecture (iCA: ‘Procedural Memory’) responsible
for higher-level association or learning to modulate the
sensor-actuator loops.

These qualities could be summarized as an architecture
approach called ‘modulated loops’: one or more sensor-

actuator loops are modulated by a high-level binding sub-
architecture.

D. Implications of Differences

As a next step, we can isolate the architectural differences,
try to understand their causes in the design considerations of
each system and evaluate what implications for the cognitive
abilities of the respective systems these differences have.

The first main difference is the number of sensor-actuator
loops chosen. George and ALIS3 rely on only one loop with
strong modulation, iCA focuses on three separate loops while
the internal structure of the procedural memory is not fully
specified in existing publications. As a main cause for the
different number of loops we propose that the difference
in targeted scenarios is most plausible: George and ALIS3
are always operating with a tutor, iCA is intended first
for autonomous exploration and only later for interactive
scenarios. The presence of a tutor from the start requires the
former systems to emit behaviors on a relatively high level
so as not to bore or confuse the tutor — this in turn implies
the necessity for a more sophisticated preprocessing before
it is reasonable to close the first sensor-actuator loop. While
it would be beneficial for fault tolerance to have lower loops
which can ensure basic robot function, this is not as essential
in controlled scenarios as it is in autonomous exploration for
iCA.

The second main difference is the range of behaviors emit-
ted by the different systems. ALIS3 and iCA use an action
selection mechanism to switch between gazing, pointing,
grasping and locomotion while George only employs one
mechanism for emitting speech2. Most probable cause for
this difference is the kind of physical artifacts the systems
are running on: while ALIS3 and iCA use a high-DOF
robot, George uses a fixed-camera table-top scenario with
microphone and speaker. In terms of cognitive abilities, the
lack of different behavior modules in the George system
makes is difficult to imagine other sensor-actuator loops
without adding a new unit for behavior generation. On
the other hand, the behavior spaces spanned by the action
generation units in ALIS3 and iCA are sufficient for a variety
of loops, as iCA demonstrates.

E. Practical Implications for Future Systems

We have now looked at similarities and differences in the
three systems, based on their SYS2D translations. For the two
main differences (number of loops and structure of behavior
generation) we have identified their main causes in the
respective system’s design decisions (tutor-based/explorative
scenario, shape of physical artifact) and their implications in
term of cognitive abilities.

What makes this comparison relevant for future systems
is that despite these fundamentally different design goals,
the resulting SYS2D designs still share many architecture
patterns. This indicates that it should be possible to combine

2This is not to say that the complexity of speech production is higher or
lower than that of high-DOF motor control.



ideas or sub-architectures from different systems, main-
taining the overall ‘modulated loops’ pattern, in order to
overcome challenges in each systems. For example:
• To extend George to a mobile robot platform, lower

sensor-actuator loops are required to couple proto-
object detection to e. g. gazing behavior, as found in
ALIS3 and iCA.

• To allow exploratory behaviors in ALIS3, at least one
lower loop is required which, similar to the ‘Episodic
Memory’ in iCA, switches proto-objects autonomously
and learns bindings between different objects and pos-
sible actions.

• To enable voice communication in iCA, the George
Auditory SA could be added as an input to the pro-
cedural memory and the Speech SA could be added as
a possible behavior to the action selection.

We realize that constructing any of these extended sys-
tems is a major effort, mainly due to different software
infrastructures, data formats, computing hardware etc. The
ability to exchange ideas between systems described in a
common language is only a first step towards easier exchange
of software and hardware modules.

VI. CONCLUSION

In this contribution we have introduced translation to a
common language as a feasible, direct and valuable technique
to compare intelligent system architectures. As this common
language we have presented SYSTEMATICA 2D which is
suitable for this purpose because of its flexible but formal
notation and resulting two-dimensional unit arrangement.

Main aim was then to translate and compare three state-of-
the-art intelligent system architectures (George[1], ALIS3[2]
and iCA[3]). It was shown that these systems could be
expressed in SYSTEMATICA 2D, based on the original and
supplementary publications, and that these translated designs
allow evaluation of similarities and differences. Despite fun-
damental differences in the design goals of the three systems,
regarding tutor-based/explorative scenarios and mobile/fixed
platforms, we argued that the three designs share many
common patterns. Based on these common patterns, the
potential for exchange of concepts (on the design level) and
software modules (on the system level) was explored.

Looking at the strong similarities concerning sensor-
actuator loops in system architectures, it seems surprising
that much more effort is spent arguing for the value of
embodied intelligent systems than on discussing the next set
of questions which embodied systems are facing today:
• How many sensor-actuator loops are best for a certain

set of behaviors?
• Should modulation of these loops rely on the same pre-

processing used in the loops or on separate information?
• Which architecture patterns can integrate high-level

concepts like planning, goals, internal simulation etc. in
order to combine symbolic and embodied approaches?

We believe that eventually the ability to share concepts
among architectures expressed in a common language will

allow defining commonly accepted architecture patterns nec-
essary to achieve a new level of cognitive abilities.

REFERENCES

[1] D. Skočaj, M. Janiček, M. Kristan, G.-J. M. Kruijff, A. Leonardis,
P. Lison, A. Vrečko, and M. Zillich, “A basic cognitive system for
interactive continuous learning of visual concepts,” in ICRA 2010
workshop ICAIR - Interactive Communication for Autonomous Intel-
ligent Robots, Anchorage, AK, USA, May 2010, pp. 30–36.

[2] C. Goerick, J. Schmuedderich, B. Bolder, H. Janssen, M. Gienger,
A. Bendig, M. Heckmann, T. Rodemann, M. Dunn, H. Brandl,
X. Domont, F. Joublin, and I. Mikhailova, “Interactive online mul-
timodal association for internal concept building in humanoids,” in
IEEE-RAS International Conference on Humanoids 2009. IEEE,
December 2009.

[3] D. Vernon, “Enaction as a conceptual framework for developmental
cognitive robotics,” Paladyn, vol. 1, no. 2, pp. 89–98, 2010.

[4] D. Vernon, G. Metta, and G. Sandini, “A survey of artificial cognitive
systems: Implications for the autonomous development of mental capa-
bilities in computational agents,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 2, pp. 151–180, 2007.

[5] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal of robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[6] E. Gat et al., “On three-layer architectures,” Artificial Intelligence and
Mobile Robots, 1997.

[7] A. Sloman, “The cognition and affect project: Architectures,
architecture-schemas, and the new science of mind,” 2008.

[8] N. Hawes, “Architectures by design: The iterative development of an
integrated intelligent agent,” in Proceedings of AI-2009, The Twenty-
ninth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, 2009.

[9] H. Christensen, A. Sloman, G.-J. Kruijff, and J. Wyatt, Eds.,
Cognitive Systems. Springer Verlag, 2009. [Online]. Available:
http://www.cognitivesystems.org/cosybook/

[10] B. Dittes and C. Goerick, “A language for formal design of embedded
intelligence research systems,” Robotics and Autonomous Systems,
vol. 59, no. 3-4, pp. 181 – 193, 2011.

[11] N. Hawes and J. Wyatt, “Engineering intelligent information-
processing systems with cast,” Adv. Eng. Inform., vol. 24, no. 1, pp.
27–39, 2010.

[12] C. Goerick, “Towards an understanding of hierarchical architectures,”
Autonomous Mental Development, IEEE Transactions on, no. 99, p. 1,
2010.

[13] M. Scheutz and J. Kramer, “Radic: a generic component for the
integration of existing reactive and deliberative layers,” in 5th Intl.
joint conf. on Autonomous agents and multiagent systems. ACM
New York, NY, USA, 2006, pp. 488–490.

[14] G. Gössler and J. Sifakis, “Composition for component-based model-
ing,” in Sci. Comput. Program., vol. 55, no. 1-3, 2005, pp. 161–183.

[15] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann,
“Specification and analysis of system architecture using rapide,” IEEE
Transactions on Software Engineering, vol. 21, no. 4, pp. 336–354,
1995.

[16] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. Tay-
lor, “xadl: enabling architecture-centric tool integration with xml,”
in System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on. IEEE, 2002, p. 9.

[17] S. Wrede, J. Fritsch, C. Bauckhage, and G. Sagerer, “An xml based
framework for cognitive vision architectures,” in 17th Intl. Conf. on
Pattern Recognition, 2004.

[18] I. Mikhailova, M. Heracles, B. Bolder, H. Janssen, H. Brandl,
J. Schmuedderich, and C. Goerick, “Coupling of mental concepts to a
reactive layer: incremental approach in system design,” in Proceedings
of the 8th International Workshop on Epigenetic Robotics, Brighton,
England. Lund University Cognitive Science Studies 117, 2008.

[19] J. Schmuedderich, H. Brandl, B. Bolder, M. Heracles, H. Janssen,
I. Mikhailova, and C. Goerick, “Organizing multimodal perception
for autonomous learning and interactive systems,” in 8th IEEE-RAS
International Conference on Humanoid Robots, 2008. Humanoids
2008, 2008, pp. 312–319.

[20] C. von Hofsten, L. Fadiga, and D. Vernon. A roadmap for
the development of cognitive capabilities in humanoid robots.
[Online]. Available: http://www.robotcub.org/index.php/robotcub/
content/download/696/2497/file/RC DIST DV Deliverable D2.1.pdf

http://www.cognitivesystems.org/cosybook/
http://www.robotcub.org/index.php/robotcub/content/download/696/2497/file/RC_DIST_DV_Deliverable_D2.1.pdf
http://www.robotcub.org/index.php/robotcub/content/download/696/2497/file/RC_DIST_DV_Deliverable_D2.1.pdf

