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Abstract—We present a system for learning audiovisual inte-
gration based on temporal and spatial coincidence. The current
sound is sometimes related to a visual signal that has not yet been
seen, we consider this situation as well. Our learning algorithm
is tested in online adaptation of audio-motor maps. Since audio-
motor maps are not reliable at the beginning of the experiment,
learning is bootstrapped using temporal coincidence when there
is only one auditory and one visual stimulus. In the course of
time, the system can automatically decide to use both spatial
and temporal coincidence depending on the quality of maps and
the number of visual sources. We can show that this audiovisual
integration can work when more than one visual source appears.
The integration performance does not decrease when the related
visual source has not yet been spotted. The experiment is executed
on a humanoid robot head.

I. INTRODUCTION

The integration of auditory and visual information derived
from the same event can enhance the representation of the
external world. Therefore, audiovisual integration is used in a
broad range of applications, such as speaker recognition and
speaker tracking in robotics, as well as speaker indexing in
multimedia data [1]–[3]. It is known that the brain performs
well in integrating related information from audition and
vision. Hence it makes sense to understand the way how the
brain integrates auditory and visual stimuli, and develop an
algorithm to describe the behavior.

There is evidence in support of the view that the connection
between human vision and audition is present already to some
degree at birth, and the integration ability is then developed
experience-dependent [4]. Temporal coincidence has been
identified as one of the most important factors determining
whether or not multisensory integration takes place [5]. If
only one auditory and one visual stimulus are temporally
coincident, they are perceptually coherent, even when they
are spatially disparate, such as in the ventriloquism effect [6].
If more than one source exists, we need other information
such as position information to avoid ambiguity. The closer a
visual stimulus is to an auditory stimulus, the more probable
they are perceived as having a common cause [7]. Actually,
it is known that prior spatial correlation between auditory and
visual stimuli is not required for audiovisual integration in
baby cats and young barn owls [8], [9]. When the animals
are raised in artificial environments where auditory and visual
stimuli are temporally coupled but spatially not coherent,

multisensory neurons in the superior colliculus (SC) are also
able to integrate these stimuli. Spatial coincidence appears to
be learned early in life adaptive to the environment of an
animal to deal with that environment well later in life.

Hershey et al. [10] use only temporal coincidence between
lip motion and speech for audiovisual integration. The ap-
proach works when the sound sources are always in the view.
Our learning algorithm is based on both temporal and spatial
coincidence, and we consider the situation where the current
sound is related to a visual signal that has not yet been seen.
The algorithm is tested in online adaptation of audio-motor
maps. Audio-motor maps describe the relationship between
audio cues and sound position in motor coordinates (azimuth
and elevation). These audio cues such as interaural time dif-
ference (ITD) and interaural intensity difference (IID), result
from the interaction of the head and ears with the incoming
auditory stimulus [11]. Using audio-motor maps we can obtain
sound source positions from measured audio cues. Since vision
plays an important role in calibration of audio-motor maps in
humans and animals [12]–[14], it is used as the feedback signal
for precise position information. It is then necessary to match a
visual signal to the current sound using audiovisual integration,
which is challenging when more than one visual source exists.
If an unrelated visual signal is selected for the adaptation, the
quality of audio-motor maps can deteriorate, such as in the
ventriloquism aftereffect [15]. Given precise measurements of
visual position and audio cues, the quality of maps depends
on the performance of audiovisual integration.

Natale et al. [16] use temporal coincidence between motion
and sound to integrate auditory and visual stimuli for learning
both saccade maps and audio-motor maps. Their regime works
only under the assumption that no object except the current
sound source moves in the view. Other methods adapt audio-
motor maps using visual feedback [17], [18]. The approach in
[17] fails when more than one visual source or an unrelated
visual source appears. Nakashima et al. [18] attempt the online
adaptation of audio-motor maps in a simplified environment,
where a red marker is attached to the sound source and no
other red object exists. In comparison to these methods, we
intend to adapt audio-motor-maps in more complex environ-
ments using audiovisual integration.

Since audio-motor maps are not reliable at the beginning
of the experiment, learning is bootstrapped using temporal



coincidence when there is only one auditory and one visual
stimulus. This may be seen as analogous to biology where
many animals already have audio-motor maps at birth, but the
maps are very rough and need to be calibrated by experience
[13]. Similarly, our system can automatically decide to use
both spatial and temporal coincidence in the course of time
depending on the quality of maps and the number of visual
sources.

II. AUDIOVISUAL INTEGRATION

In this section we introduce audiovisual integration in
scenarios where the current acoustic signal is to be related to
one out of many visual signals, for instance we hear a sound
and see many faces. Position is used as correlation information
between auditory and visual signals. The difference between
the position of the current sound source pa and the position of
a visual signal pvi (i ∈ [1,N]) is denoted as d(pa, pvi), where
N stands for the number of visual signals. Then the relative
probability that the visual signal at position pvi belongs to
the current auditory signal is approximated by a Gaussian
function:

Pcommon(pa, pvi) = exp
(
−d(pa, pvi)

2

2 ·δ 2
AV

)
, (1)

where the standard deviation δAV represents the average differ-
ence in estimated position between an auditory and a visual
signal which are caused by the same physical object. Next,
we check the entropy of the set of normalized probabilities
to confirm that the maximal probability Pcommon is valid. If
one visual signal shows a very high probability and all other
visual signals have low probabilities, this expresses a low
entropy indicating a reliable integration. Conversely, when all
visual signals have quasi equal probability, the entropy is high
and the integration is unreliable. We calculate the entropy of
normalized probabilities in a manner similar to that found
in speech recognition [19]. All probabilities Pcommon(pa, pvi)
are normalized such that they sum to 1, and the normalized
probability is denoted as P̂common(pa, pvi) :

P̂common(pa, pvi) =
Pcommon(pa, pvi)

N
∑

i=1
Pcommon(pa, pvi)

. (2)

The entropy is then computed as follows:

H =


0 if N = 1,

N
∑

i=1
P̂common(pa,pvi )·log2 P̂common(pa,pvi )

log2 N if N > 1,
(3)

where the division by log2 N ensures that the maximal value
of H is 1. If entropy H is larger than a threshold ΘH , the
current auditory signal is not linked to any visual signal. ΘH
is set to 0.8 empirically.

Now we take account of the situation where the current
auditory signal is related to a visual signal that has not yet
been seen. For convenience, we denote the position of the
unseen visual signal as pvN+1 . The probability that the current

Fig. 1. System architecture of online adaptation using audiovisual integration.
APO: audio proto-object, VPO: visual proto-object.

auditory signal is associated with the visual signal at position
pvN+1 is described by:

Pcommon(pa, pvN+1) =

∑
p

U(p) ·Pcommon(pa, p)

∑
p

Pcommon(pa, p)
. (4)

Here, U(p) stands for a view memory with elements between
0 and 1 for each position p. The larger the value U(p) at p
is, the longer the time since position p has not been attended.
U(p) = 0 means that position p is currently in the field of
view. The normalized probability and entropy become:

P̂common(pa, pvi) =
Pcommon(pa, pvi)

N+1
∑

i=1
Pcommon(pa, pvi)

, (5)

and

H =

N+1
∑

i=1
P̂common(pa, pvi) · log2 P̂common(pa, pvi)

log2(N +1)
. (6)

Note that if Pcommon(pa, pvN+1) is larger than the maximal
Pcommon(pa, pvi) (i ∈ [1,N]), the matched visual signal is not
seen, and the audiovisual integration can not be executed. Fur-
thermore, if N = 1 and Pcommon(pa, pvN+1)→ 0, then entropy
H→ 0. This means that if only one visual signal appears, and
positions near the current sound have been recently attended,
the auditory and visual signals are assumed to have a common
cause. In this situation, only temporal coincidence is employed
for audiovisual integration.

III. TEST IN ONLINE ADAPTATION OF AUDIO-MOTOR MAPS

The presented algorithm of audiovisual integration is em-
ployed in online-adaptation of audio-motor maps to find the
visual position matching the current sound. Firstly, auditory
and visual signals are represented in form of proto-objects.
The concept of proto-object is explained in Section III-B.
Visual proto-objects for the common origin (the same speaker)
are grouped together in short-term memory (STM). Then the
audiovisual integration method described in Section II is em-
ployed to find the matched visual proto-object. Finally, audio-
motor maps are adapted using the matched visual position. Fig.
1 schematically illustrates the system architecture of online
adaptation using audiovisual integration. The experiment is
conducted using a humanoid robot head with a pair of cameras
and a pair of microphones. The head is mounted on a pan-
tilt unit, and just the left camera is employed to capture the
visual signal. Moreover, a Gammatone Filterbank (GFB) is



Fig. 2. An example of the IID map at 30◦.

employed in the auditory preprocessing [20]. The GFB has
100 frequency channels that span the range of 100 -11000
Hz.

A. Audio-motor map

In this work an audio-motor map represents the relationship
between population-coded cues and position evidence vectors.
To ease the description, only the azimuth is considered. Az-
imuth positions between −90◦ and 90◦ are taken into account
because of the mechanical constraint of the robot head. An
audio-motor map is denoted as M which contains for each
azimuth angle p (-90, -80, ..., 0, ..., 80, 90), each cue l
(l = 1 for IID, l = 2 for ITD) and each frequency channel
f (1− 100) a population code vector M(p, l, f ,n). Nodes n
have response centers at (−0.9,−0.8, ...,0, ...,0.8,0.9). Fig. 2
illustrates an example of an IID map M(30,1, f ,n) at 30◦. For
more information on audio-motor maps see [20].

B. Visual and auditory representation

Various auditory and visual features are collected in audio
and visual proto-objects respectively. A proto-object is a
psychophysical concept and is considered here as a com-
pressed form of a set of features. A proto-object can be
tracked, pointed or referred to without identification. For more
information on proto-objects see [20], [21].

In the camera field of view we use a face detection algorithm
based on [22] to extract visual proto-objects. For each of
these proto-objects, the center of the segment in the camera
image is computed. Participants are placed approximately 1m
away from the robot. Within one visual proto-object we store
the position of the face in camera image and in 3D world
coordinates. Next, visual proto-objects for the common origin
are grouped together in short-term memory (STM). When a
new proto-object appears, the procedure of entering it into
STM can be described as follows:

1) If the STM is empty, the new proto-object is added to
the STM.

2) If the STM already contains one or more proto-objects,
the distance or similarity of selected grouping features
are computed between the new proto-object and all
proto-objects in the STM. If the distance between the
new proto-object and the closest proto-object in the STM
is smaller than a threshold, these two proto-objects are
merged (averaged). Otherwise the new proto-object is
inserted into the STM.

Fig. 3. An example of a position evidence vector, where the estimated
azimuth angle is 50◦.

3) Proto-objects that are not updated for more than a certain
period (T = 100s in our experiment) are removed from
the STM.

Using such a STM it is not necessary to store all the incoming
visual proto-objects for processing, for instance when the same
face appears in different image frames. Moreover, we can
match the current audio proto-object to a visual proto-object,
even if it is out of sight for some time. The number of visual
proto-objects in STM, N, is described in Section II.

Object position in 3D world coordinates is used as the
grouping feature. Euclidean distance of positions between
the new proto-object and each proto-object in the STM is
calculated and the threshold is set to 30 cm, so that slight
movements of participants such as head shaking are tolerated.

To form audio proto-objects, we first segment audio streams
based on energy. An audio proto-object begins when the signal
energy exceeds a threshold and ends when the energy falls
below this threshold. Since short or low power auditory signals
are very probably noise, a filtering of audio proto-objects based
on segment length and energy is performed, as per [20]. In
our experiment an audio proto-object contains a start time,
segment length, energy of a segment, population-coded cues
(IID and ITD) and a position evidence vector. For encoding of
audio cues, the same set of nodes n as in audio-motor map M is
used and every measured cue IID or ITD leads to an activation
in the nearest nodes. All measurements are added over time
for an audio proto-object. For each frequency channel in
encoded cues, the population code vector is normalized to
mean 0 and norm 1. Let us denote the population-coded cue
l in frequency channel f , at node n as C(l, f ,n). To acquire
position evidence vector E(p), population response C(l, f ,n) is
compared with audio-motor maps M(p, l, f ,n) for all positions
p by computing scalar products. The peak in position vector
E(p) is taken as the estimated sound source position. Fig. 3
shows an example of a position evidence vector.

C. Audiovisual integration in online adaptation

Position is used as correlation information for audiovisual
integration. Thus auditory position evidence vectors and visual
positions in world coordinates must be converted to the same
metric, for which motor coordinates are preferred. Participants
are placed about 1m away from the robot. The azimuth angle
of an audio proto-object is taken as the peak position in its
position evidence vector, while the azimuth angle of a visual



Fig. 4. Examples: left: both visual sources have been seen; right: the matched
visual proto-object V2 has not yet been seen. A is the current audio proto-
object, V1 and V2 are visual proto-objects. The field of view (FOV) is 60◦.

proto-object is estimated using saccade maps (see [23], [24]).
We denote the current audio proto-object by A and a visual
proto-object in the STM as Vi (i ∈ [1,N]). In the following
subsections, we first introduce two methods of audiovisual
integration. One (see Algorithm 2) considers the situation
where the matched visual proto-object is not in the STM, while
the other (see Algorithm 1) does not. The performance of these
two methods will be compared in Section IV. We then take
account of the uncertainty of an adaptation step to accelerate
the online adaptation process.

1) Basic approach: Assuming all visual sources have been
seen as the example shown in Fig. 4 (left), we compute the
uncertainty of the current audiovisual integration using entropy
H in Eq. (3). During the learning of the audio-motor maps, the
standard deviation δAV as per Eq. (1) is dynamically updated
depending on the quality of the current audio-motor map.
We obtain δAV by calculating the average difference between
estimated azimuth angle in audio and visual proto-objects over
time using the following update rule:

δ
s
AV =

{
d(pa, pv) ·w+δ

s−1
AV · (1−w) if N = 1,

δ
s−1
AV otherwise.

(7)

Here, s and w stand for update step and update factor respec-
tively. We set w = 0.1 ·β dependent on the fixed adaptation
rate of audio-motor maps β , which controls the degree of
adaptation for a single step (see also Eq. (13)). The difference
of azimuth angles between the audio and the visual proto-
object in the current adaptation step is denoted as d(pa, pv).
If only one visual proto-object is in the STM, δ s

AV is updated.
The basic approach is also described in Algorithm 1.

2) Consideration of unseen visual proto-objects: We con-
sider now the situation where the current audio proto-object
A is related to visual proto-object VN+1 that is not stored
in the STM, as the example shown in Fig. 4 (right). The
process is described in Algorithm 2. The probability that A
and VN+1 are caused by the same speaker is calculated using
Eq. (4). The view memory U(p) in Eq. (4) is computed with
U(p)= 1−a(p, tv). For each azimuth angle p, activity function
a(p, tv) is defined as:

a(p, tv) = e−
tv
T , (8)

where tv represents the time in seconds since position p has
been viewed the last time. The initial value of tv is set to
∞, so that a(p, tv) = 0 if position p has never been attended.
Parameter T = 100s is used to decay the activity.

Algorithm 1 Audiovisual integration: Basic approach
1: for i = 1 to N do
2: Calculate Pcommon(pa, pvi) based on Eq. (1)
3: end for
4: for i = 1 to N do
5: Calculate P̂common(pa, pvi) based on Eq. (2)
6: end for
7: Calculate entropy H as in Eq. (3)
8: for i = 1 to N do
9: Search for the visual proto-object VMax that has the

maximal Pcommon(pa, pvi)
10: end for
11: if H < ΘH then
12: Integrate A with VMax
13: end if
14: if N = 1 then
15: Update standard deviation δAV as in Eq. (7)
16: end if

Standard deviation δAV in Eq. (1) is updated only if just
one visual proto-object exists and positions near the current
proto-object have been recently visually attended. The update
rule is described as below:

δ s
AV ={
d(pa, pv) ·w+δ

s−1
AV · (1−w) if N = 1 AND Pu < ΘPu ,

δ
s−1
AV otherwise.

(9)
Here, Pu = P̂common(pa, pvN+1) is the normalized probability
that A and VN+1 have a common cause, as described in Eq.
(5). ΘPu is the threshold of Pu and is set to 0.1.

Algorithm 2 Audiovisual integration: Consideration of unseen
visual proto-objects

1: for i = 1 to N do
2: Calculate Pcommon(pa, pvi) based on Eq. (1)
3: end for
4: Calculate Pcommon(pa, pvN+1), the probability that A and

VN+1 have a common cause, as in Eq. (4)
5: for i = 1 to N +1 do
6: Calculate P̂common(pa, pvi) based on Eq. (5)
7: end for
8: Calculate entropy H as in Eq. (6)
9: for i = 1 to N +1 do

10: Search for the visual proto-object VMax that has the
maximal Pcommon(pa, pvi)

11: end for
12: if H < ΘH AND VMax 6=VN+1 then
13: Integrate A with VMax
14: end if
15: if N = 1 AND Pu < ΘPu then
16: Update standard deviation δAV as in Eq. (9)
17: end if



3) Uncertainty of an adaptation step: Comparing entropy
H with threshold ΘH , we can decide whether the current audio
proto-object A and the visual proto-object with the maximal
probability (Pcommon) are integrated. However, it is found in the
experiments that a candidate visual proto-object, which is not
related to the current sound source but which is positioned
near the correct visual proto-object, can also enhance the
quality of audio-motor maps, particularly when the quality
of maps is poor as during initialization. Thus, if entropy H
exceeds the threshold ΘH , but the position distance between
the visual proto-objects with maximum and second maximum
probability P̂common is small, audio-motor maps can be updated
nonetheless. The uncertainty of an adaptation step can be
described by the following equation:

H ′ = H ·d(pv1 , pv2), (10)

where pv1 and pv2 stand for the positions of visual proto-
objects with maximal and second maximal probability respec-
tively. If uncertainty H ′ is below threshold ΘH ′ or H < ΘH ,
a confidence factor c is set to 1 and the map is adapted.
Otherwise c = 0 and the map is not updated in the current
step. The confidence factor c is given by:

c =
{

1 if H < ΘH OR H ′ < ΘH ′ ,
0 otherwise. (11)

In this manner the adaptation process is accelerated. The
threshold ΘH ′ depends on the standard deviation δAV (ΘH ′ =
2 · δAV ), since the system has a high tolerance for the visual
position difference when the quality of audio-motor maps is
poor.

D. Online adaptation of audio-motor maps

By means of population-coded cues C(l, f ,n) in the current
audio proto-object and the matched visual position pv′ , audio-
motor map M is updated by:

Ms(p, l, f ,n) = Ms−1(p, l, f ,n)−F(p) ·
(Ms−1(p, l, f ,n)−C(l, f ,n)), (12)

where p, l, f ,n and s stand for position, cue index, frequency
channel, node and update step, respectively. Learning param-
eter F(p) is given by:

F(p) = c ·β ·δp,pv′ , (13)

where c and β represent the confidence of the matched process
and the fixed adaptation rate respectively. In our experiment
β = 0.2. Position evidence vector δp,pv′ is defined by a delta
function:

δp,pv′ =

{
1 if p = pv′ ,
0 if p 6= pv′ .

(14)

Here, pv′ represents the matched visual position. The online
adaptation algorithm is described in Algorithm 3.

IV. RESULTS

Our approach was tested in real world scenarios where par-
ticipants dynamically entered and vacated the room. Offline-
calibrated maps were used as reference.

Algorithm 3 Online adaptation of audio-motor maps
1: Given C(l, f ,n) in the current audio proto-object and pv′

in the matched visual proto-object
2: if H < ΘH OR H ′ < ΘH ′ then
3: c← 1
4: else
5: c← 0
6: end if
7: for p =−90 to 90 step 10 do
8: if p = pv′ then
9: δp,pv′ ← 1

10: else
11: δp,pv′ ← 0
12: end if
13: Calculate learning parameter F(p) based on Eq. (13)
14: end for
15: for p =−90 to 90 step 10 do
16: for l = 1 to 2 step 1 do
17: for f = 1 to 100 step 1 do
18: for n =−0.9 to 0.9 step 0.1 do
19: Update Ms(p, l, f ,n) based on Eq. (12)
20: end for
21: end for
22: end for
23: end for

A. Offline-calibrated audio-motor maps as reference

We first calibrated audio-motor maps offline and used them
as reference for performance estimation. For the calibration,
a loudspeaker was placed in front of the robot (0◦), at a
distance of 1m and at the same height, as shown in Fig. 5.
The head changed its orientation ph every 10◦ from −90◦

to 90◦, so that the azimuth angle of the loudspeaker (−ph)
changed correspondingly in robot-centered coordinates. At
each position, 47 sound files were played and mean population
responses of IID and ITD were measured. A similar offline-
calibration approach, as per [25], uses ground truth positions
provided by a motion capture system. The performance of
online-adapted audio-motor maps can be estimated by compar-
ison with offline-calibrated maps using normalized Euclidean
distance:

d(M,M′) =

√√√√∑
p

∑
l

∑
f

∑
n
(M(p, l, f ,n)−M′(p, l, f ,n))2

K
, (15)

Fig. 5. Sketch of the experimental setting: offline calibration.



Fig. 6. Scenario 1: Sketch of the experimental setting in temporal phases
I-VI. A is the current audio proto-object, V1 and V2 are visual proto-objects
of the simulated participant and the additional person respectively.

Fig. 7. Scenario 1: Comparison of three methods using Euclidean distance
from offline-calibrated maps.

where M and M′ represent online-adapted and offline-
calibrated maps respectively. K is the total number of elements
in an audio-motor map and satisfies K = kp · kl · k f · kn, where
kp = 19, kl = 2, k f = 100 and kn = 19 are the numbers of
positions, cues, frequency channels and nodes respectively.

B. Online scenarios

In online scenarios, audiovisual integration was learned with
and without consideration of the situation where the matched
visual proto-object is not in the STM respectively, as explained
in Section III-C. To simplify the description, Algorithm 1 and
Algorithm 2 were denoted as “AVU” and “AV”, respectively.
They were also compared with a heuristic method denoted
as “HEU” which considers the last seen face as the matched
visual position to the current sound source. If more than
one face appears in the camera image, the heuristic method
randomly chooses one. HEU is similar to methods in [17],
[18] for linking auditory and visual signals. Audio-motor maps
were initialized with random numbers in the range [−0.5,0.5]
using a uniform distribution.

In the first scenario, we simulated a participant with a

Fig. 8. Scenario 1: Percentage of update steps where a wrong visual proto-
object (W), no visual proto-object (N) or a right visual proto-object (R) is
chosen for audiovisual integration in each phase.

Fig. 9. Scenario 2: Euclidean distance between online-adapted and offline-
calibrated maps in a natural dialog scenario. AV is used in online adaptation
of audio-motor maps.

loudspeaker on which a picture of a face was attached. The
loudspeaker was placed on the same position as in offline
calibration. An additional person dynamically entered and
vacated the room, but did not speak, thus the only sound
source is the loudspeaker at 0◦. During online adaptation, the
robot head oriented itself to a random horizontal angle after
an update step was finished. Fig. 6 sketches the experimental
setting of the first online scenario. The head angle ph was
in the range [−90,90] except in phase IV when it was in
the range [−25,25]. In phase I, the person was visible in
the room (N = 2). Then the participant vacated in phase II
(N = 1) and entered the room again in phase III (N = 2).
In phase IV the loudspeaker was turned off. The additional
person stood outside the camera field of view and talked to
the robot (N = 1), hence the matched visual proto-object is
not in the STM. In phase V the person vacated the room and
the loudspeaker was turned on (N = 1). Finally, the person
entered the room again in phase VI (N = 2).

Fig. 7 shows a comparison of the three methods using
Euclidean distance from offline-calibrated maps in six phases.
Fig. 8 illustrates the percentage of correctly learned (R),
not learned (N) and wrongly learned (W) steps of different
methods in each phase. Online adaptation with HEU was as
good as that with AV and AVU when only one visual proto-
object was in the STM as in phase II and V, or when the quality
of maps was still poor as in phase I. If more than one visual
proto-object existed in the STM, AV and AVU performed better
than HEU, particularly when the maps were refined as in phase
III and VI. If the matched visual proto-object was not in the
STM as in phase IV, HEU and AVU selected the wrong visual
proto-object for audiovisual integration, so that the quality of
maps became poor. In comparison, AV refused audiovisual
integration and the performance of online adaptation did not
decrease. We also verified the quality of online-adapted maps
using them to localize sounds from the calibration database.
The average position error of 300 measurements using online-
adapted maps with AV after 1000 update steps and offline-
calibrated maps were 3.27◦ and 3.96◦ respectively. It is thus
evident that online-adapted audio-motor maps performed as
well as offline-calibrated maps, and that the results were valid
for different performance metrics.

In the second scenario the loudspeaker was not used. Up to
four participants talked to the robot alternatingly. They moved



slightly while talking, and dynamically entered and vacated the
room. Fig. 9 shows that the Euclidean distance between online-
adapted and offline-calibrated maps decreased over time. It is
thus demonstrated that we can learn maps in a natural dialog
scenario.

V. CONCLUSION

We have suggested a system for learning audiovisual inte-
gration based on temporal and spatial coincidence in scenarios
where the current sound is to be related to one out of many
visual signals - for instance in the case where a sound is heard
and many faces are seen. Firstly, the probabilities that each
visual signal is related to the current sound are computed
using spatial coincidence. Then we confirm that the visual
signal with the maximal probability belongs to the current
sound. If one visual signal shows a very high probability and
all other visual signals have low probabilities, this indicates a
reliable integration. Conversely, when all visual signals have
quasi equal probability, the integration is unreliable and is not
executed. We have also considered the situation where the
current sound is related to a visual signal that has not yet
been seen.

The system was tested in online adaptation of audio-motor
maps. Since audio-motor maps are not reliable at the beginning
of the experiment, learning is bootstrapped using temporal
coincidence when there is only one auditory and one visual
stimulus. In the course of time the system automatically de-
cides to use both spatial and temporal coincidence depending
on the quality of maps and the number of visual sources.

We have shown that our audiovisual integration method
performs well when more than one visual source appears. The
integration performance does not degrade when the related
visual source has not yet been spotted. The audio-motor maps
which are online adapted using audiovisual integration can
reach the performance of offline-calibrated maps. We have
also shown that the online adaptation using our audiovisual
integration works in a natural dialog scenario.

Presently, if a visual target disappears for a certain time
and then reappears or moves quickly, it will be considered
as a new one. This is a shortcoming of using only spatial
coincidence to group visual proto-objects in the STM. We plan
to employ more grouping features such as color and size in
future work. Additionally, if Pcommon(pa, pvN+1) is bigger than
the maximal Pcommon(pa, pvi) (i ∈ [1,N]), the current sound is
very probably related to a visual proto-object that is not in the
STM. In this case we could trigger a search behavior such as
head orientation.
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