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Abstract
The motors of a robot produce ego-motion noise that degrades the quality of recorded sounds. This paper
describes an architecture that enhances the capability of a robot to perform automatic speech recognition
(ASR) even as the entire body of the robot moves. The architecture consists of three blocks: (i) a multi-
channel noise reduction block, consisting of microphone-array-based sound localization, geometric source
separation and post-filtering, (ii) a single-channel template subtraction block and (iii) an ASR block. As the
first step of our analysis strategy, we divided the whole-body motion noise problem into three subdomains
of arm, leg and head motion noise, according to their intensity levels and spatial location. Subsequently, by
following a synthesis-by-analysis approach, we determined the best method for suppressing each type of
ego-motion noise. Finally, we proposed to utilize a control module in our ASR framework; this module was
designed to make decisions based on instantaneously detected motions, allowing it to switch to the most
appropriate method for the current type of noise. This proposed system resulted in improvements of up to
50 points in word correct rates compared with results obtained by single microphone recognition of arm, leg
and head motions.
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1. Introduction

Mobile robots are intended to be deployed to environments in which many noise
sources are simultaneously present. Therefore, during an interaction with a human,
a robot audition system must be able to cope with various kinds of noises, including
the robot’s own noise (i.e., ego noise). One special type of ego noise, which is ob-
served while the robot is performing an action using its motors, is called ego-motion
noise. Owing to the complex characteristics of this particular type of noise, it has so
far either been treated with an Stop–Act–Sense loop [1] or circumvented by close-
talk microphones [2], because the problem is rather challenging. The complexity
of ego-motion noise is further increased when larger numbers of motors are used
for a motion, indicating that the noise is even more severe for moving robots with
high degrees of freedom. Since mobility is absolutely necessary to improve per-
ceptual capabilities of robots, autonomous robots require robust ego-motion noise
suppression abilities at any moment. Due to the increasing popularity of, and the
growing demand for, home/service robots, ego-motion noise is likely to become a
more significant problem in robotics in the near future.

Although sound source localization and sound source separation problems with
background noise or interfering sounds (e.g., human speech, music) have been stud-
ied extensively for a long time [3–8], automatic speech recognition (ASR) in the
presence of ego-motion noise has received little attention. This type of interfer-
ence is more difficult to cope with than background noise or static fan noise of the
robot, because ego-motion noise is non-stationary and, to some extent, similar to
the signals of interest. Therefore, conventional noise reduction methods like spec-
tral subtraction [9, 10] do not work well in practice in reducing ego-motion noise.
In addition, the noise sources are present in the near-field of the robot, considerably
reducing the performance of conventional far-field noise cancellation methods.

In this study, we propose a method to predict and remove ego-motion noise us-
ing templates (discrete audio segments associated with the current motor noise)
recorded in advance. Our technique, called parameterized template subtraction, uses
templates based on current motor status and the spectral energy vector to represent
the ego-motion noise for each time frame at any instance. It incorporates tunable
parameters to cope with noise template representations that do not match the instan-
taneous noise due to deviations in noise spectra. Although this method is effective
for removing noise, it suffers from the distorting effects of musical noise [10], sim-
ilar to all nonlinear single-channel-based noise reduction techniques, and reduces
the intelligibility and quality of the audio signal. To also cope with dynamically
changing environmental factors, such as background and stationary noise, we apply
a nonlinear noise reduction technique for stationary background noise, e.g., min-
ima controlled recursive averaging (MCRA) [9], prior to ego-motion noise reduc-
tion. The use of two consecutive nonlinear noise reduction operations (MCRA +
template subtraction), however, produces even more musical noise, eventually dam-
aging the acoustic features and reducing the recognition performance of ASR.
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To compensate for this effect, we extended the single microphone-based template
subtraction method to a hybrid system: (i) a multi-channel noise reduction block
consisting of sound source localization (SSL), sound source separation (SSS) and
speech enhancement (SE), and (ii) the previously mentioned template subtraction
block. While spectral enhancement techniques are the most suitable way to deal
with diffuse noise, source separation improves the signal-to-noise ratio (SNR) of the
noisy signal by removing directional noise components of ego noise from speech.

In this respect, the first contribution of our work is the integration of the above-
mentioned speech processing methods into a single framework to perform ego-
motion noise cancellation. Furthermore, we propose an original strategy to solve the
whole-body motion noise problem of a robot. Instead of tackling the whole-body
motion noise problem holistically, we utilized a synthesis-by-analysis approach. In
the first step, the whole-body motion noise problem was partitioned mainly into
three ego-motion noise categories: arm, leg and head motion noise, depending on
their intensity levels, diffuseness and directivity properties. We assumed that, in a
typical interaction scenario, most robots do not use all of their body joints at the
same time to perform a certain action, since that would make tasks like coordi-
nation of body dynamics, sensor processing and perceptual understanding of the
environment much more complicated and difficult. A certain degree of body sta-
tionarity (immobility) may improve the reliability of the accomplishment of the
task. Even humans, who have very high capabilities of multi-tasking, do the same
when focusing on a certain task. While performing task-related motions, humans
try to avoid unnecessary motions of the limbs not involved in the task (e.g., keeping
the legs fixed while washing dishes). By considering these aspects, we formulated
individual solutions to all three types of noise. Multi-channel noise reduction was
used to suppress arm and leg noises, because of their highly directional noise char-
acteristics, whereas template subtraction was used to suppress head noise, which is
very loud and has complex propagation characteristics. After presenting the results
of our analysis, we finalize our architecture by utilizing an ASR module that copes
with all kinds of ego-motions. This system was used to select the most appropriate
speech features refined by either of the two noise reduction techniques, depending
on the type of noise, and to utilize an ASR with the corresponding acoustic model.
The proposed system was able to suppress even the noise of motions performed
using multiple joints that operate in different categories. We demonstrate that the
proposed system improved ASR accuracy.

The rest of the paper is organized as follows. In Section 2, we discuss related
work on existing ego-motion noise suppression methods. Section 3 describes the
main challenges addressed in this paper and our solutions. In Section 4, we present
the details of a template-based ego-motion noise reduction method with spectral
enhancement parameters, an extended hybrid system supported by multi-channel
noise reduction modules and a switching module for ASR input selection. Section 5
describes our system and its implementation. We present the conducted experiments
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and demonstrate recognition capabilities of the proposed system in Section 6. We
give our conclusions and future work in Section 7.

2. Related Work

Nakadai et al. [11] proposed a noise cancellation method using two pairs of micro-
phones. One pair, in the inner part of the shielding body, records only internal motor
noise and helps the sound localizer to distinguish between spectral sub-bands that
are noisy and not noisy, and to ignore the sub-bands in which noise is dominant. In
contrast to our approach, this technique was not designed to remove the noise and
obtain refined speech. Its major drawback was that, by filtering out the noise, it also
eliminates useful signals. The ego-motion noise problem has also been addressed
by predicting and removing ego-motion noise using templates recorded in advance.
For example, Nishimura et al. [12] estimated the ego-motion noises of distinct ges-
tures of the robot. Using motion commands, the correct noise template matching
the corresponding motion was selected from the template database and subtracted.
In contrast to their small noise template database of limited and short motions, we
targeted the entire repertoire of whole-body motion noise generated by any possible
combination of the robot motors. Furthermore, a blockwise template prediction, as
in Ref. [12], which uses templates recorded from the onset until the offset time of
motor noises, fails completely when the exact onset of the template is not detected
properly or the trajectory/duration of the motion changes slightly. Our framewise
template prediction method can deal with these problems by representing the motor
noise in smaller fragments. Ito et al. [13] used an artificial neural network (ANN)
to develop a new frame-by-frame-based prediction to cope with unstable walking
noise. This ANN also solved the synchronization problem of Nishimura’s template-
based approach. The trained network was designed to predict the noise spectrum
from the angular velocities of the joints of the robot. However, they concentrated
on a small robot with limited degrees of freedom. For a huge dataset, ANN will
have a slow training speed and online adaptation will be difficult. Therefore, due to
its efficiency, we propose using a template database. Approximate search strategies
for selecting the appropriate templates make our method more suitable for online
learning. In addition, we enhance the accuracy of the templates further by incorpo-
rating more information related to the joints, such as angular acceleration. Previous
works [12, 13] were based mainly on estimating templates for different motions,
but did not focus on the possibility of quality improvement resulting from spectral
enhancement optimization factors.

In the field of ‘robot audition’, noise is suppressed primarily by using sound
source separation techniques with microphone arrays [5–8]. Neither a directional
noise model, such as that utilized for interfering speakers, nor a diffuse background
noise model [6, 7], is entirely appropriate for ego-motion noise. As the motors
are located in the near field of the microphones, they produce sounds that have
both diffuse and directional characteristics. In a related study, Even et al. [14]
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proposed to use semi-blind signal separation to obtain both external and inter-
nal noise by attaching additional sensors inside the robot. The predictions were
used to compute Wiener coefficients. After this suppression step, a delay-and-sum
beamformer enhances the refined speech. Although it improves speech recognition
accuracy considerably, the additional sensors inside the robot cover pose constraints
on implementation. For certain types of sensors, this method may require a body
cover made of high-quality or thick material so that external noise is definitely
not recorded by these additional sensors (i.e., microphones) or an accurate cor-
respondence model between different sensor signals may be required (i.e., tactile
or vib sensors). Besides, semi-blind signal separation methods demonstrate good
performance only if the interfering signal is known; however, our estimated noise
templates are not sufficiently accurate to be used in a semi-blind signal separa-
tion method. In contrast, our method has several advantages, including its ability to
be easily implemented on any mobile robot, regardless of the physical constraints
about the external shielding. By exploiting only existing microphones, it is also
cost-effective and applicable without any hardware modifications.

Several studies have focused on specific conditions for near-field sound sources.
For example, Mizumachi et al. described a model for sound sources in the near
field with spherical wave propagation and line sound sources in contrast to conven-
tional far-field assumptions like plane wave propagation and point-shaped sound
sources [15]. Zheng et al. proposed a spherically isotropic noise model for near-field
objects that achieves stronger reverberation suppression and reduced beampattern
variations for broadband signals like our motor noise signals [16]. However, these
proposed models are computationally expensive, can only deal with single sound
sources, and, more importantly, are designed for stationary sound sources. In a stan-
dard task with robot motions, acoustic properties of the noise such as the power and
frequencies of the motor noise spectrum as well as the location and number of the
active motors, dynamically change over time, thus, reducing its performance con-
siderably.

3. Issues and Approaches

Our goal was to develop a robot audition system that cancels whole-body motion
noise of a robot, thus improving the recognition performance. To be able to develop
this system, we had to deal with two issues:

(i) Automatic speech recognition in the presence of ego-motion noise. Conven-
tional ASR systems assume clean inputs of speech signals. Therefore, a speech
signal mixed with ego-motion noise must be refined due to the distorting ef-
fects of the noise. If the ego-motion noise is not suppressed, there would be a
mismatch between noisy signals and the trained acoustic models resulting in
degraded speech recognition performance.
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(ii) Applicability of ego-motion noise reduction to the whole-body motion of a
robot. The robot is expected to use different parts of its body to accomplish
certain tasks, including locomotion, object manipulation and object tracking.
Based on the complexity of each motion or behavior, the robot may perform
several tasks at one time or a task may involve motions of several body parts of
the robot, thus involving several joints at one time. We had to confirm whether
ego-motion noise could be suppressed regardless of the body part generating
the noise. Furthermore, it was necessary to suppress the whole-body motion
noise of a robot using a single framework.

We dealt with the above-mentioned issues using the following approaches:

(i) Ego-motion noise suppression. We integrated two different methods of ego-
motion noise suppression: a template-based ego-motion noise reduction method
with spectral enhancement parameters, and a multi-channel noise reduction
chain with SSL, SSS and SE stages. The former is suitable for dealing with
ego-motion noise problems, because the noise follows a similar pattern each
time the respective motion is performed. The templates are good representa-
tions of motor noise when the same action was performed during the training
phase. The latter method, however, is effective in suppressing directional sound
sources. Since the noise originates from the motors that move relative to the
positions of the microphones, the noise can be considered directional. Both
techniques cannot only be applied individually, but can also be merged into
a hybrid system. The output of the noise suppression was used as the input of
consequent audio processing stages for various purposes. In this study, we were
especially interested in one particular application: ASR.

(ii) Motion type-based selective ASR module. Instead of tackling the whole-body
motion noise problem holistically, we utilized a synthesis-by-analysis ap-
proach. We divided the whole-body motion noise problem mainly into three
ego-motion noise categories: arm, leg and head motion noise, depending on the
spatial locations of each relative to the microphones and their intensity levels.
Figure 1 illustrates three spectrograms of corresponding limb motions, show-

(a) (b) (c)

Figure 1. Typical spectrograms of three types of motor noise. (a) Arm motion noise. (b) Leg motion
noise. (c) Head motion noise.
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ing that they clearly differed in loudness recorded with the microphone array
located on top of the robot head (see Section 5 for details about the system).
We also observed an uneven energy distribution, with higher noise energy at
lower frequencies. These domains are distinctive in being the three main body
parts of a robot with end-effectors. To relocate one end-effector, it is usually
necessary to relocate a series of joints connected to the end-effector. Therefore,
the accumulated noise of the joints can be considered as originating from a cer-
tain area. In addition, some tasks can be performed without needing to use all
body joints at the same time. Tasks such as the coordination of body dynam-
ics, sensor processing and perceptual understanding of the environment can
become complicated and difficult. Since the immobility of distinct body parts
unrelated to the task is always desired to improve the reliability of accomplish-
ing the task, we provide individual solutions for all three types of noise. We
also assessed the performance of ASR for all three ego-motion noises and their
combinations. After presenting the results of our analyses, we propose a final
architecture that can deal with all types of ego-motions and their combinations
(whole-body motion), using a motion type-based selective ASR module with a
switching mechanism for ASR inputs.

4. Proposed Methods

In this section, we describe the theoretical background of the basic building blocks
of the proposed system architecture. Section 4.1 describes the details of the template
subtraction method. Section 4.2 illustrates how single-channel template subtraction
can be extended into a hybrid framework to suppress ego-motion noise by incorpo-
rating existing multi-channel noise reduction techniques.

4.1. Single-Channel Template Subtraction

The underlying motivation of using templates for noise reduction resides in the fact
that the duration of motor noise signals is similar for the same motions performed
repeatedly and the envelope of the signal does not deviate much from the mean
envelope. However, conventional blockwise template subtraction [12], which uses
templates recorded from the start to the end of motor noises, has several shortcom-
ings, including the need to start subtraction only after the detection of the exact
starting moment of the template — a task very hard to achieve. Another drawback
of this method is its requirement of a large collection of signal representations of
every possible motion trajectory, consisting of motor noise statistics, such as aver-
ages and standard deviations. Moreover, this method requires a huge amount of data
for each possible motion. Due to the impossibility of collecting and producing tem-
plates for each joint for each combination of origin, target, position, velocity and
acceleration parameters, this approach is simply not feasible in realistic scenarios
on humanoid robots with free motion selection.

To overcome these deficits, a new technique was implemented [17], which pa-
rameterizes discrete audio segments using motor status and results in a spectral
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energy vector representing the ego-noise at that instant. To implement this so-called
parameterized template subtraction, we needed a robot with joint angle sensors
(encoders) that measure the angular positions of each of its joints separately. In ad-
dition, this method can improve the quality of speech using spectral enhancement
parameters (see Section 4.1.3).

Before explaining the details of parameterized template subtraction, we define
S(ω, k) and D(ω,k) as the short-time cross-correlation spectra of useful signal
and distortion (motor noise only), respectively, where ω represents the discrete fre-
quency and k represents the time-frame. Thus, the spectrum of the observed signal
X(ω, k) can be described as:

X(ω, k) = S(ω, k) + D(ω,k). (1)

4.1.1. Template Database Generation
We utilize joint status information provided by the sensors on the motors under the
following assumptions:

• The noise of a motor is dependent on the position, velocity and acceleration of
that motor.

• Similar combinations of joint status will result in similar motor noise spectral
vectors at any instant of time.

• The superposition of single joint motor noises at an arbitrary time point is equal
to the whole-body noise at the corresponding time point.

Figure 2a shows the proposed template database generation scheme. During
the motion of the robot, the actual position (θ ) of each motor is gathered reg-
ularly. Using the difference between consecutive sensor outputs, velocity (θ̇ )
and acceleration (θ̈ ) are calculated. If J joints are active, 3J features will be
generated. Each feature is normalized to [−1 1], so that all features make the
same contribution to the prediction. The resulting feature vector is in the form,
[θ1(k), θ̇1(k), θ̈1(k), . . . , θJ (k), θ̇J (k), θ̈J (k)]. At the same time, motor noise is
recorded and background noise is removed from the recordings. The spectrum of

(a) (b)

Figure 2. Proposed template database generation and template prediction method for ego noise sup-
pression. (a) Flowchart of template database generation. (b) Flowchart of template prediction.
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the motor noise ([D(1, k),D(2, k), . . . ,D(F, k)], where F represents the number
of frequency bins) is calculated by the sound processing branch running in parallel.
Both feature vectors and spectra are continuously labeled with time tags so that the
corresponding templates are generated when their time tags match. Finally, a large
database of noise templates consisting of one-frame noise templates for many joint
configurations is created.

4.1.2. Motor Noise Prediction
The prediction phase starts with a search in the database for the motor noise tem-
plate that best matches the motor noise at that point in time (Fig. 2b). Finding the
correct template involves a search among all the templates in the database for the
most similar joint configuration. We implemented a nearest-neighbor (1 − NN)
search to accomplish this task. The spectral vector associated with the point in
the database with the shortest distance to the query point was selected as the tem-
plate. The prediction process is repeated for each time frame. In that sense, the
conventional ‘blockwise template’ for a single arbitrary motion can be regarded as
the concatenation of smaller templates that are predicted according to the above-
mentioned approach on a frame-by-frame basis.

4.1.3. Template Generation and Subtraction
The spectrum of the useful signal in (2) can be obtained using the inverse operation
of (1):

Sr(ω, k) = X(ω, k) − D̂(ω, k), (2)

where D̂(ω, k) denotes the estimated noise template and Sr(ω, k) represents the sig-
nal that includes both the useful sound and the residual motor noise. The presence
of this residual noise is due to a deviation between the original motor noise D(ω,k)

and the predicted motor noise D̂(ω, k). To compensate for this error, we utilized
a spectral subtraction approach that encompasses both an overestimation factor, α,
and a spectral floor, β . The parameter α, also called an aggressiveness factor, al-
lows a compromise between perceptual signal distortion and noise reduction level.
In contrast, β is required to deal with the problem called musical noise, which is
caused by nonlinear mapping of the negative or small-valued spectral estimates.
This produces a metallic noise, which sounds like the sum of tone generators with
random fundamental frequencies that are constantly turned on and off [9]. The pa-
rameter β reduces the effects of the sharp valleys and peaks in the spectrum caused
by smaller attenuations of frequencies compared with the relatively larger atten-
uations of their neighboring frequencies due to random fluctuations in magnitude
estimations. Finally, parameterized template subtraction can be introduced using
the formula:

ĤSS(ω, k) = max

(
1 − α

|D̂(ω, k)|
|X(ω, k)| , β

)
, (3)
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where ĤSS(ω, k) represents the gain coefficient and | · | represents the magnitude
spectra of the signals. A weighting operation of the signal X(ω, k) with this coeffi-
cient finalizes the template subtraction as:

Ŝ(ω, k) = ĤSS(ω, k) · |X(ω, k)| · ej arg(X(ω,k)). (4)

In contrast to previous methods in Refs [12, 13], our prediction, generation and
subtraction methods do not require any starting or ending signals. Thus, there are
no abrupt blockwise templates applied discontinuously to the noisy signals. Our
methods process data continuously, even when the robot does not move. Therefore,
our template database does not only consist of recordings of motor noise, but also
of recordings of the joints in resting positions. Each training session consisted of
uninterrupted sound recordings of a single continuous motion sequence consisting
of hundreds of consequent motions with short (less than 1 s) pauses between each
motion.

4.2. Hybrid Framework with a Switching Module for ASR Input Selection

Section 4.2.1 briefly discusses each module (SSL, SSS and SE) of the multi-channel
noise reduction block that we incorporated into our system. Further details are
provided by the given references published in various robotics journals and con-
ferences. In addition, the modules described in Section 4.2.1 can be replaced by
other multi-channel solutions capable of separating directional sound sources. In
Section 4.2.2, we explain the key module of our proposed architecture that results
in the hybrid system.

4.2.1. Multi-Channel Noise Reduction System [18]
To estimate the directions of arrival (DoA) of each sound source, we used a
popular adaptive beamforming algorithm called MUltiple SIgnal Classification
(MUSIC) [19]. This algorithm detects each DoA by performing eigenvalue decom-
position on the correlation matrix of the noisy signal, by separating subspaces of
undesired interfering sources and sound sources of interest, and finally by identify-
ing the peaks occurring in the spatial spectrum. A consequent source tracker system
performs temporal integration in a given time window.

Geometric source separation (GSS) [20], later extended to an adaptive algorithm
that can process the input data incrementally [7], makes explicit use of source loca-
tions to separate different sound sources. To properly estimate the separation matrix,
GSS introduces cost functions that must be minimized in an iterative way [7].
Moreover, we used adaptive step-size control, resulting in fast convergence of the
separation matrix [21]. Our GSS implementation also exploited a method called
optima controlled recursive averaging, which controls the window size adaptively,
causing smoother convergence and, thus, better separation results [5]. Specifically,
GSS has three distinct advantages for the ego-noise cancellation problem.

(i) The introduction of the concept of geometric constraints, which involves cal-
culations of current transfer functions based on the known locations of the
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microphones and the positions of the sound sources obtained from SSL. This
relaxes the limitations of Blind Source Separation (BSS), such as permutation
and scaling problems, and can, therefore, run in real-time.

(ii) Sound separation of moving sources is possible. This is especially important
since the part of the robot on which the microphones are mounted (e.g., the
head) can also move. Relative to a moving microphone array, even stationary
sound sources are regarded as moving objects.

(iii) Generally, an embodied robot has loud ego noises, such as the stationary oper-
ational noise of hardware and fan noise, which are located close to each other.
If the positions of these high noise emission sources are known, their direc-
tions can be specified, because our GSS module has a function that suppresses
stationary ego noise as a fixed noise source.

The separation process is followed by a multi-channel post-filtering operation,
enabling the sounds to be enhanced further. This module was based on the optimal
estimator proposed by Ephraim and Malah [22]. Since their method takes temporal
and spectral continuities into consideration, it generates less distortion than con-
ventional spectral subtraction-based noise reduction methods. By further extending
this idea, we were able to apply a multi-channel post-filter [7], which can cope
with non-stationary interferences as well as stationary noise. This module treats
the transient components in the spectrum as if they are caused by leaking energies
that may occasionally arise due to poor separation performance. For this purpose,
noise variances of both stationary noise and source leakage are predicted, with the
former computed using the MCRA [10] method and the latter estimated using the
algorithm proposed in Ref. [7]. The noise suppression rule also involves speech
presence probability calculations [23] and is based on the minimum mean-square
error estimation of the spectral amplitude [22].

4.2.2. Switching Module for ASR Input Selection
After initially analyzing the performances of multi-channel and single-channel
noise reduction methods (see Section 6), in the synthesis stage, we suggested pro-
cessing the speech feature outputs of both pathways in a single ASR module and to
use them interchangeably in a motion-dependent fashion, as in Fig. 3. This switch-
ing module is triggered by the output of the motion detector. As this system gathers
information about all joints at every moment of time, the switching module is able
to discriminate among joints that are and are not actively involved in the motion by
checking their velocities, and can, therefore, determine the motion being performed
at that moment. The module then switches between the outputs of single-channel
and multi-channel noise reduction-based speech features. As the multi-channel ap-
proach works better than the single-channel approach for the leg and arm noises
(Section 6.2), the switch feeds the acoustic features of this branch to the ASR mod-
ule whenever a leg and/or an arm motion is detected. It also utilizes the acoustic
model trained for the multi-channel approach. For a head motion, however, features
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Figure 3. Proposed noise cancellation system.

generated after template subtraction are more suitable (Section 6.3). We observed
similar recognition performance during simultaneous head and arm motion noises
(Section 6.3), indicating that head motion contributes to whole-body motion noise
more than any other motion from other domains. In summary, as long as head mo-
tion is present, we can suppress whole-body motion noise using single-channel
noise reduction methods; otherwise the multi-channel noise reduction method is
used. We implemented the following rule-based routing in the switch:

Decision(k)

=

⎧⎪⎨
⎪⎩

Acoustic features of single-channel
template subtraction, if any |θ̇HeadJoint(k)| > ε

Acoustic features of multi-channel
noise reduction, otherwise,

(5)

where |θ̇HeadJoint(k)| denotes the absolute velocity of the pan or tilt motion of the
head and ε is a speed threshold. We proposed to use ε, instead of zero, to pre-
vent the activation of the switch during the tail motion of the head; it is used as a
countermeasure to situations during which motion has stopped, but the joint sensors
continue to send very small differences in position.

5. System Architecture and Implementation

The overall architecture of the proposed noise reduction system consisting of three
blocks is shown in Fig. 3. The first block (Multi-Channel Noise Reduction Sys-
tem) starts with a module performing SSL and extracting the location of the most
dominant sources in the environment. The estimated locations of the sources are
processed by the linear separation algorithm, SSS, followed by a SE step. This mod-
ule attenuates stationary noise (e.g., background noise) and non-stationary noise
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that arises because of the leakage energy between the output channels of the previ-
ous separation stage for each individual sound source (speaker and directional fan
noise). The second block performs single-channel template subtraction [17]. To-
gether, both blocks are responsible for producing spectrograms for the extraction
of audio features in the last block, which performs ASR. The whole system (in-
cluding joint status acquisition, sound recording and sound processing stages) runs
synchronously based on a single clock. Data flow is realized mainly by means of
fixed-length audio frames.

This system was specifically designed for single-speaker speech recognition
tasks. This means that we have assumed that there is no directional sound source
other than the speaker, whose speech would be recognized. Therefore, external
noise is considered only as background noise, which is a diffuse noise by its na-
ture. Both branches of the hybrid system can deal with diffuse noise by utilizing
either background noise reduction (single-channel template subtraction) or MCRA
inside SE (multi-channel noise reduction). To tackle the motor noise, on the other
hand, we use either template subtraction (single-channel noise reduction for head
motion) or SSS (multi-channel noise reduction for arm and leg motion). Thus, both
branches can deal with internal and external noise in their own ways.

6. Evaluation

To evaluate the performance of the proposed techniques, we used a humanoid robot
developed by Honda. This robot is equipped with an eight-channel microphone ar-
ray on top of its head. We used two motors for head motion, five motors to move
each leg and four motors to move each arm, resulting in a total of 20 d.o.f. Rela-
tive to the microphone array configuration, the neck motors are the closest sound
sources, making them the most problematic, because the intensity of a sound wave
depends on its distance from its source:

Sound Intensity = Sound Power/(4πR2), (6)

where R denotes the distance. In addition, since all limbs of the robot operate in
different, non-overlapping coverage areas, which also help in differentiating noise
types by their spatial locations, we decided to handle the noise problem in different
domains, each covering a set of joints required for a certain type of interaction with
the robot’s environment. We, therefore, recorded motions performed by a given set
of limbs, which could be classified into three distinct categories, arm motion, leg
motion and head motion, in order of increasing noise intensity.

Based on these conditions, we present the experimental settings in Section 6.1.
Afterwards, we assess the performance of the noise reduction methods for arm and
leg motion noise (Section 6.2) and head motion noise (Section 6.3).

6.1. Experimental Settings

We recorded (i) random, whole-arm pointing motion within the reaching space of
the robot body as arm motion, (ii) stamping behavior and short distance walking
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as leg motion, and (iii) random head rotation (elevation = [−30◦ 30◦], azimuth =
[−90◦ 90◦]) as head motion. The average noise energies of leg and head motion
were 5.1 and 8.4 dB higher, respectively, compared with those of arm motions. For
the second part of the experiments involving template subtraction, we recorded two
additional sets of random motions (performed by the head only and by the head and
arm together) and stored a training database of 30 min and a test database 10 min
long (due to software constraints the joint positions of the legs cannot be acquired;
therefore, we could not apply the template subtraction method to leg motion noise).
Sensors determine the angle of the joints every 5 ms, with each audio frame being
10 ms in length. We used constant values for α = 1 and β = 0.5 as template sub-
traction parameters, because we previously observed that, compared with β = 0,
increased β improves ASR accuracy considerably (for detailed evaluations regard-
ing α and β , and their effects on ASR accuracy, signal quality and noise suppression
rates, see Ref. [17]).

As the noise recordings are longer than the utterances used in isolated word
recognition, we selected those segments in which all joints contributed to noise.
To generate precise amounts of noise and speech energy for various SNR condi-
tions before mixing them, we amplified clean speech based on its segmental SNR,
segSNR. The segSNR estimates the SNR level within each segment and averages it
over the entire signal, providing a better representation of energy distribution for
speech and noise within the relevant time interval under consideration:

segSNR = 1

J

J∑
j=1

10 log10

( ∑
n s2

j (n)∑
n d2

j (n)

)
, (7)

where J is the number of segments with speech activity, and s(n) and d(n) are the
nth discrete speech and noise samples, respectively. The noise signal, consisting
of ego noise (including ego-motion noise) and environmental background noise,
was mixed with clean speech utterances used in a typical human–robot interactive
dialog. This Japanese word dataset includes 236 words for four female and four
male speakers. Acoustic models were trained with the Japanese Newspaper Article
Sentences corpus, 60 h of speech data spoken by 306 male and female speakers,
making speech recognition a word-open test. The results for template subtraction
(TS) were evaluated using an acoustic model trained with MCRA-applied speech
data. In contrast, we used a matched acoustic model for multi-channel noise reduc-
tion (GSS+PF) methods. Both of these models were trained with data processed at
motor noise conditions of SNR levels ranging from −10 to 5 dB. We used 13 static
mel-scale log spectrum (MSLS) [24] features, 13 delta MSLS features and one delta
power feature. Speech recognition results are given as average word correct rates
(WCR) of instances from the noisy test set. The position of the speaker was kept
fixed at 0◦ throughout the experiments. The recording environment consisted of a
4.0 m × 7.0 m × 3.0 m room with a reverberation time (RT20) of 0.2 s. The imple-
mentation was run on HARK — an open-sourced software for robot audition [25].
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6.2. Speech Recognition with Arm and Leg Motion Noise

In this experimental setting, the microphone array and the head were kept sta-
tionary, allowing us to fix the direction of the ego noise (fan noise) originating
from the backpack of the robot at −180◦. Providing a fixed ego-noise direction
did not pose any hard constraints on robot audition scenarios or applications, be-
cause the robot was already equipped with sensors to transmit the positions of the
joints. Depending on the posture of the body, we were able to determine exactly
the source of the ego noise and transmit the direction automatically to our source
separation algorithm as input. We present the results for GSS and GSS+PF where
the position of the speaker was detected using our implementation. As an addi-
tional test, we also determined ‘GSS+PF with known source location’ results —
a condition where we assumed that the location of the sound source was estimated
precisely.

Figure 4 shows speech recognition accuracies for arm, leg, and arm plus leg
motions at the same time. Single-channel results without processing were used as
baseline. Template subtraction resulted in good ASR accuracy, but its performance
was inferior to that of GSS+PF (TS evaluation of leg motion was not possible).
Under all three conditions, the multi-channel noise reduction system resulted in an
up to 40 points improvement compared with single-microphone-based recognition.
In general, these results indicate that the directional effects of arm and leg motions
noise can be treated with GSS, and that residual noise (as diffuse components) can
be partially handled by PF. As the arms operate mostly on the right- and left-hand
sides of our humanoid robot, their noises can be separated well due to the spatial
(angular for GSS) distance between the arms and the target speaker standing in
front of the robot. In addition, the leg noise came from below the waist of the robot,
making its distance from the microphone array large enough for separating it from
the speaker. As long as the direction of the ego-motion noise is not the same as that
of the target speaker, this method works well to suppress all ego noise, both ego-
motion noise and fan noise. Furthermore, the recognition result curves in Fig. 4c
show very similar patterns to the curves in Fig. 4a and b. This very promising result

(a) (b) (c)

Figure 4. Recognition performance during arm and leg motions. (a) Arm motion noise. (b) Leg motion
noise. (c) Arm plus leg motion noise.
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indicates that GSS+PF is effective even when it is used against the combination of
arm and leg motion noise.

It is also noteworthy to mention that SSL fails in low SNRs due to its fixed thresh-
old operation. SSL estimates additional non-existing ‘ghost’ sources, decreasing
the performance of GSS and PF. In contrast, GSS+PF with known source location
demonstrates the upper performance limit of our proposed method.

6.3. Speech Recognition with Head Motion Noise

One consequence of head motion is the relative motion of sound sources with re-
spect to the microphones. Whenever the head moves, the microphone array also
moves. Since we tested only isolated word recognition, we hypothesized that the
effects of the moving sound sources on separation and speech enhancement per-
formance were rather small, but in fact not negligible. Nevertheless, to inspect
the capabilities of our proposed noise reduction system based on SSS, we did not
provide the ego-noise direction of the robot in advance; rather, the SSL system pre-
dicted it automatically.

Figure 5a illustrates the ASR accuracy for head motion noise. The multi-channel
approach provided poorer performance than the single-channel template subtraction
technique, because short-range reverberation effects and multi-path propagation in-
side/outside the head are properties of head motion noise that are very hard to
overcome with the current GSS+PF algorithm limits and settings. The neck mo-
tors are located inside the head cover, where the microphones are also installed. As
head motor noise propagates inside the head in a highly reverberant way in close
proximity to the microphones, the directional noise assumption is violated. Strong
noise sources in the very near field of the microphone array have highly complicated
propagation patterns. As a consequence, it worsens the separation quality. Thus, the
noise model used in the post-filtering is not applicable under these conditions. TS
resulted in better improvement, because it does not model the noise depending on its
directivity–diffuseness nature, but rather instantaneously predicts the current noise
template from a database, depending on the position and velocity of the joints. In
addition to being prone to modeling errors, it also suffers from musical noise com-

(a) (b)

Figure 5. Recognition performance during head motion. (a) Head motion noise. (b) Head plus arm
motion noise.
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Table 1.
Recognition accuracy (%) for different ego-motions achieved by single-channel template subtraction
and multi-channel noise reduction (SNR = −5 dB)

Arm Leg Arm + leg Head Head + arm

Single channel 73 50 58 37 30
Template subtraction 80 — — 69 69
Multi-channel noise reduction 96 90 90 53 50

(a) (b)

Figure 6. SNR improvements of the compared methods. (a) During arm motion noise. (b) During
head motion noise.

ponents caused by subtraction in the spectral domain. This distorts the spectrum
and degrades features, making the WCR improvement rather limited, but still better
than GSS+PF.

Table 1 shows that the proposed hybrid system highly improves the elimination
of all motor noise types and their combinations within the limits of our implemen-
tation conditions. Although Table 1 presents results for only one moderate SNR
level of −5 dB, the trend of improvement was true for all SNRs used in these ex-
periments. Our switching module always selects the noise suppression method that
yields the best performance for the undertaken action.

Finally, to assess the suppression capabilities of both methods, we also assessed
SNR improvement by calculating the differences in SNR before and after the appli-
cation of noise cancellation methods. Mean SNR improvements are shown in Fig. 6.
For head motion noise the template subtraction method resulted in higher suppres-
sion performance than GSS and GSS+PF for head motion noise, whereas GSS+PF
reduces the largest portion of arm motion noise. Although the trends of SNR im-
provements were consistent with the WCR curves, high suppression rates do not
necessarily indicate higher recognition accuracy for TS as long as noise templates
are not correctly estimated.
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7. Conclusion

We have described methods for eliminating whole-body motion noise from speech
signals. Since ego-motion noises arising from the motors of a robot are created in
the near field of the microphone array, these noises have both diffuse and direc-
tional characteristics. We used a synthesis-by-analysis approach to suppress this
noise. We divided whole-body motion noise into three domains, depending on their
spatial location and intensity levels: arm, leg and head motion noise. The system
we proposed extracts information about the motion type performed at that moment
and decides on the best choice of processing method for speech recognition by a
selective ASR module. We adopted two methods — multi-channel noise reduction
and single-channel template subtraction — which are switched depending on the
detection of the head motion. If no head motion is detected, the first method is
selected because it is effective for arm, leg, and arm plus leg motion noises. This
method utilizes SSL incorporating the MUSIC algorithm and SSS using the GSS
algorithm, finalized by a SE stage that suppresses both background noise and in-
terference/leakage noise. Source separation is particularly effective against noises
from the arms and legs, because the limbs are located away from the microphone
array and are separated from a speaker standing directly in front of the robot. On
the other hand, if head motion is detected, the second method is selected. It is more
appropriate for canceling head motion noise (or the combination of the head mo-
tion noise with arm and/or leg motion noise), because template subtraction makes
no assumptions about the nature of the noise and uses previously recorded noises.
We validated the applicability of our approach by evaluating its performance on
three different motor noise types and their combinations. Our method demonstrated
good performance in suppressing arm, leg and head motion noise, and their combi-
nations, as shown by ASR accuracy.

The optimal system structure for ego noise suppression depends solely on the
characteristics of the ego noise, as long as the ego noise is not picked up by
additional sensors and must be estimated. We found that single-channel noise re-
duction was far superior to multi-channel noise reduction in suppressing motor
noise recorded by closely located microphones. Owing to the complex characteris-
tics of motor noise propagation inside the robot cover, where the microphones are
mounted, blind source separation and speech enhancement perform very poorly in
these conditions (i.e., head motion noise). In contrast, when the motors are located
further from the speaker and microphones, both in distance and separation angle,
the multi-channel noise reduction was more effective (i.e., arm plus leg motion
noise). Therefore, the proposed parallel system architecture can be considered opti-
mal for any robotic system containing only robot-embedded microphones and with
the switch trigger design based on the locations of the microphones and motors.

We also investigated alternative combinations, including a cascaded version of
SSS+PF+TS, instead of our hybrid architecture. In practice, however, it was not
possible to create a template database for ego noise after the SSS+PF stages. One
reason is that the recording must be performed only when there is no external di-
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rectional sound source, but performing an SSS without any sound sources is not
possible. In addition, the template database must contain ego noise artifacts after
SSS+PF for all directions in which a candidate target sound source may be present.
It is almost impossible to create such a huge template database. We also evaluated
this combination in reverse order, PF+TS+SSS, but it yielded far worse results, be-
cause the spectral subtraction prior to SSS damaged the spectra of the microphone
signals, resulting in poorer performance of the SSS.

By changing the posture of the robot, so that its body is aimed directly at the tar-
get speaker, the robot can avoid the interference due to the ego-motion noise of the
arms with the target speaker’s utterances by maximizing their spatial distance. Our
system remains open for improvements. To apply template subtraction to leg noise,
we plan to make changes that will allow us to gather angular information from the
legs. One weakness of the current architecture is the fixed threshold operation used
in the SSL procedure, which determines if a source is present at that location. As
motor noise increases, the system becomes more susceptible to the threshold value.
Since no optimal threshold is effective for every kind of motor noise, we plan to
make it adaptive. Our multi-channel system in its current form can also deal with
four speakers. The next step is to design a system in real-time and in a real situation
involving speech recognition of several speakers simultaneously while the robot is
performing some motion.
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