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Firing Rate Homeostasis

for Dynamic Neural Field Formation
Claudius Gläser and Frank Joublin

Abstract—Dynamic neural fields are recurrent neural networks
which aim at modeling cortical activity evolution both in space
and time. A self-organized formation of these fields has been
rarely explored previously. The main reason for this is that
learning-induced changes in effective connectivity constitute a
severe problem with respect to network stability. In this paper we
present a novel network model which is able to self-organize even
in face of experience-driven changes in the synaptic strengths
of all connections. Key to the model is the incorporation of
homeostatic mechanisms which explicitly address network sta-
bility. These mechanisms regulate activity of individual neurons
in a similar manner as cortical activity is controlled. Namely,
our model implements the homeostatic principles of synaptic
scaling and intrinsic plasticity. By using fully plastic within-
field connections our model further decouples learning from
topological constraints. For this reason, we propose to incor-
porate an additional process which facilitates the development of
topology preserving mappings. This process minimizes the wiring
length between neurons. We thoroughly evaluated the model
using artificial data as well as continuous speech. Our results
demonstrate that the network is able to self-organize, maintains
stable activity levels, and remains adaptive to variations in input
strength and input distribution.

Index Terms—Development, Dynamic Neural Field, Hebbian
Plasticity, Homeostasis, Topology Preservation

I. INTRODUCTION

Dynamic neural field theory provides a mathematical frame-

work by which cortical processing can be modeled at a

mesoscopic level. Thereby, neural fields constitute maps in

which activity is propagated via extensive lateral connections

between neuron populations [1]. Due to the variety in ex-

hibited dynamic behavior [2], neural fields have become a

popular technique for modeling spatio-temporal activity flow.

Originally developed as a model of pattern formation on the

neural tissue [3], neural fields later have been successfully

applied in various domains [4], [5], [6]. Even though dynamic

neural field theory describes a general network model, a lack in

understanding how neural fields can self-organize limits their

applicability. Particularly when considering autonomously de-

veloping systems, a self-organization of representations is

advantageous. This is because representations internal to a

developing system are not fixed. They rather are adaptive to

allow for a continuous incorporation of new knowledge. The

ability to learn and adapt, thus, plays a pivotal role in any

developing system.

Unfortunately, learning and adaptation have only rarely been

investigated in the context of dynamic neural fields. Learning

most often focuses on the synaptic weights of input projections
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to the neural field, thereby adapting the input-driven dynamics,

but leaving the self-driven dynamics unchanged. This is due

to the fact that even small learning-induced changes in the

connectivity of the field can result in a significantly altered

dynamic behavior of the network [7], [8]. Hence, the incor-

poration of synaptic plasticity is challenging with regard to

maintaining the network in stable operation modes.

The LISSOM model [9] constitutes a significant advance in

this respect. In contrast to conventional models it additionally

features lateral connections that undergo Hebbian plasticity.

More precisely, the LISSOM model uses an interaction kernel

that is initially wide and roughly Mexican Hat shaped. Sub-

sequently, however, activity-driven learning results in a die

off of synapses which sharpens and fine-tunes the kernel. The

development of the interaction kernel hence can be compared

to the gradually decreasing Gaussian neighborhood that is

applied when training the popular Kohonen maps [10]. Due to

a change in the within-field connectivity, the LISSOM model

is sensitive to the used parameter settings. This is why it

additionally comprises an adaptation of the neuron transfer

functions that follows a predefined regime.

In the recent years, significant progress has been made in the

understanding of homeostatic principles like synaptic scaling

[11] or intrinsic plasticity [12]. These principles describe

local adaptation mechanisms which regulate neuronal activity

following input variations. Homeostasis consequently gained

attention as self-regulation may ultimately lead a way to over-

come stability issues. The Adaptive LISSOM model (ALIS-

SOM) [13] constitutes an extension of LISSOM by means of

two homeostatic mechanisms. Firstly, it uses Triesch’s intrinsic

plasticity model [14] to adapt neuronal transfer functions

and thus replaces the previously predefined regime. Secondly,

ALISSOM applies activity-dependent synaptic scaling on the

afferent input connections. However, since ALISSOM does not

use homeostatic principles to alter the within-field connections,

it exhibits a similar parameter sensitivity as the LISSOM

model. This is due to the fact that activity propagation within

a neural field is largely affected by the balance between

excitation and inhibition within the field. The question how

a balanced lateral interaction can emerge from self-regulation

is consequently an open issue.

Similar to LISSOM our network model differs from conven-

tional neural fields insofar as we do not make any assumption

on the connectivity of the field. In other words, all synaptic

weights – afferent projections to the field as well as lateral

connections within the field – are plastic and change via

experience-driven learning. As a direct consequence, we have

to apply additional mechanisms to circumvent unfavorable

network behavior. We previously proposed homeostatic pro-
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cesses [15] which address this stability issue. These processes

operate purely locally with the objective of regulating the

average activity of individual neurons towards some target

level. The specific way in which self-regulation is implemented

within our model is based on recent findings on homeostatic

principles applied in the central nervous system. Similar to

ALISSOM we use an intrinsic plasticity mechanism as well

as synaptic scaling to adjust the network behavior. In contrast,

however, we not only scale afferent projections to the field,

but also lateral connections by which the excitation-inhibition

ratio is altered. The network hence dynamically balances

cooperation and competition between the model neurons in

an activity-dependent manner.

In this paper we recapitulate our model, justify it by

evidence from neurobiological findings, and further thoroughly

evaluate it in a series of experiments. We will show that the

combination of learning and homeostasis enables our network

to self-organize a dynamic neural field while keeping the net-

work in a proper dynamical regime. This increase in flexibility

not only allows the network to develop new representations,

but also to adapt existing ones to changed environmental con-

ditions. Since the developed mappings do not necessarily have

to be topology preserving, we further present an extension of

the model which facilitates topology preservation [16]. More

precisely, this is achieved via an additional process which

aims at minimizing the wiring length between model neurons.

This process is independent of learning and runs in parallel

to it. We will experimentally show, that the incorporation of

this principle significantly decreases the number of topological

defects within the developed mappings.

The rest of the paper is organized as follows. In section II

we present the structure of our network model and show

how learning is incorporated. In section III we then review

homeostatic principles applied in the brain and present a

specific implementation of them. Afterwards, we discuss our

approach for developing topology preserving mappings in

section IV. Finally, we present results of various experiments

in section V before we give a summary in section VI.

II. RECURRENT NEURAL NETWORK MODEL

A. Dynamic Neural Field Theory

Dynamic neural fields model the spatio-temporal evolution

of activity in the brain. Thereby, the neural tissue is considered

to be a two-dimensional plane on which neurons are dis-

tributed. The neurons are stimulated by externally applied in-

puts which evoke an activity within the field. Spatio-temporal

response patterns are obtained by propagating activity through

extensive lateral interactions between the model neurons. This

dynamic spread of activity can be formally described by

Amari’s field equation [1]:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
w(x, x′) · f(u(x′, t)) dx′

+ S(x, t) + h. (1)

Here t denotes time, u(x, t) the local membrane potential of

a population of neurons at position x of the cortical plane,

and S(x, t) the stimulus applied to this neuron population.

Fig. 1. The structure of the recurrent neural network.

Furthermore, neurons feature a rest potential h which is

approached in absence of any other input. The monotonically

increasing non-linear function relating the potential of neurons

to their activities is termed f . Finally, the lateral connectiv-

ity of neurons located at position x′ to neurons located at

position x of the neural tissue is defined by w(x, x′). This

interaction kernel is typically fixed and distance-dependent,

i.e. w(x, x′) = w(|x − x′|). In most previous models a

Mexican Hat connectivity is chosen. It implements an excita-

tion between nearby neurons and an inhibition between distal

ones. Hence, activity propagation within the field can result in

spatially focused regions of activity – also known as activity

bubbles.

By using a distance-dependent interaction kernel, models

inherently rely on the assumption that any input can be

adequately mapped onto the two-dimensional plane. Since this

is obviously not true, we propose not to use a fixed interaction

kernel. We rather suggest to use plastic lateral connections

which can undergo experience-driven changes in synaptic

strength. In other words, we believe that it is advantageous

not only to learn afferent projections to the field, but also to

develop interaction kernels which are appropriate for the inputs

that should be represented within the field. The network model

we present in the following consequently does not make any

assumption on the lateral connection strengths.

B. The Network Structure

Fig. 1 shows the structure of our recurrent neural net-

work model. Similar to the Wilson-Cowan model [3] it is

composed of interconnected excitatory units E and inhibitory

units I. The different types of units are distributed on a two-

dimensional grid mimicking the cortical plane. The difference

to the Wilson-Cowan model lies in the connectivity between

the units. Where Wilson and Cowan applied an all-to-all

connectivity, our model consists of the following connection

patterns: External input to the network is provided by afferent

projections (wEXT ) to the excitatory units. Activity within

the field can be propagated via connections between the

units. Thereby, the lateral connectivity consist of excitatory

connections from E-cells to other E-cells (wEE) as well as

I-cells (wIE). Additionally, E-cells receive inhibitory projec-

tions (wEI ) originating from I-cells.

By discretization of Amari’s field equation the spatio-

temporal evolution of activity within our network can be

described by two differential equations. We use the variables

u and v to describe the membrane potentials of the excitatory

and inhibitory units, respectively. We further subset an index i
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to refer to the unit located at position xi of the cortical plane:

τE

dui

dt
= −ui +

∑

j

g(dij) · w
EE
ij · f(uj)

−
∑

j

wEI
ij · f(vj)

+
∑

j

wEXT
ij · sj + hE (2)

τI

dvi

dt
= −vi +

∑

j

g(dij) · w
IE
ij · f(uj) + hI . (3)

Here, the membrane potentials are updated according to the

time constants τE and τI . In absence of any input the potentials

ui and vi approach the rest potentials hE and hI , respectively.

Furthermore, the synaptic weight of a connection from unit

j to unit i is denoted w∗

ij where ∗ ∈ {EE, EI, IE, EXT}
describes the type of connection. The relation between the

membrane potentials and the activities of units is described

by the sigmoidal transfer function f which is of the form

f(z) =
1

1 + exp (−γ(z − θ))
. (4)

Thereby, θ is the threshold value at which a neuron exhibits

an activity of 0.5, whereas γ is a gain factor which specifies

the dynamic range of membrane potentials a neuron is most

sensitive to.

In the update equations for the membrane potentials we

additionally incorporated a modulation factor g. This factor

affects the efficiency of excitatory lateral connections as a

function of the distance dij =‖ xi − xj ‖2 between the pre-

and postsynaptic units. More precisely, we use the following

function to implement an exponential decrease in connection

efficiency when distance increases:

g(d) = exp

(
−

d2

2σ2

)
. (5)

We consequently define that excitatory lateral connections

between nearby units are more efficient than those between

distant units. One possible interpretation of g is that of a

connection probability between neurons that becomes smaller

as their distance increases. Since inhibitory cells are supposed

to have a broader connectivity range, they are not modulated

by g in this model.

It is, however, worth noticing that the incorporation of a

distance-dependent modulation factor fundamentally differs

from using distance-dependent interaction kernels. The latter

implies that the synaptic weight values of lateral connections

are chosen as a function of the distance between the pre- and

postsynaptic units. This is not the case for our model, since

we do not make any assumption on the synaptic weight values

themselves. Large synaptic weight values can consequently

compensate for a decrease in connection efficiency.

Interestingly this also means that we withdraw the topolog-

ical constraints that drive other models to develop topology

preserving mappings. Hence, we hypothesize that our model

produces mappings which show more topological defects than

mappings developed by other approaches. For this reason, our

computational model incorporates an additional and indepen-

dently running process which explicitly addresses the issue of

how the development of topology preserving mappings can be

facilitated. We will later introduce this process in section IV.

A recent study of van Hooser et al. [17] provides evidence

in favor of our model. They found orientation-sensitive cells

in the primary visual cortex (V1) of a highly visual rodent,

the gray squirrel. These cells are similar to those found in

V1 of primates, but in contrast to primate V1 the orientation-

selectivity did not smoothly vary across the cortical surface.

This and other findings [18] suggest that a topology preserving

self-organization is not a fundamental principle of mammalian

cortical development; it rather seems to depend on other

mechanisms missing in rodents.

C. Hebbian Learning

As previously mentioned, all connections within our net-

work model undergo experience-driven changes in synaptic

strength. Thereby, the used learning regime is twofold: Firstly,

it incorporates a learning rule that adapts connection weights

according to the input patterns presented to the network.

Secondly, it also comprises self-regulatory processes that keep

the neural field in a stable state. The latter will be the focus of

the following section. Here, we describe how model neurons

develop appropriate representations of the input patterns via

Hebbian plasticity. The learning principle stated by Hebb’s

rule can be shortly summarized as cells that fire together, wire

together. In other words, if the postsynaptic cell repeatedly

fires following a stimulation by the presynaptic cell, the

synapse linking both cells is strengthened. To circumvent

unconstrained weight growth we apply Oja’s rule [19] which

incorporates an activity-dependent leakage term:

∆w∗

ij ∝ ηi · ξj − wij · η
2
i . (6)

Here, w∗

ij is the synaptic weight; ηi and ξj are the pre- and

postsynaptic activities, respectively. Since it can be shown that

Oja’s rule extracts the principal component from its inputs

[19], it constitutes a suitable learning technique for adapting

the synaptic weights of a neural field.

III. HOMEOSTATIC PLASTICITY

Homeostasis refers to the property of a system to regulate

its internal environment to compensate for fluctuations in the

external environment. It thus ensures system stability via self-

maintenance of a proper operation mode. For neural fields, a

stable operation strongly depends on balanced levels of exci-

tation and inhibition in the network. Too much inhibition will

obviously lead to vanishing activity whereas a high level of

excitation may result in runaway activity. This problem is even

more severe for developing systems as learning continuously

changes network connectivity [20], [21]. Computational mod-

els of network development consequently have to incorporate

homeostatic mechanisms to cope with these changes. In the

following we highlight recent advances in the understanding

of the processes regulating neuronal activity and show how

similar principles can be used within our network model.
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A. Homeostasis in the Central Nervous System

Self-regulation in the central nervous system is achieved by

numerous mechanisms which act at different network scales

[22]. At a macroscopic level the large diversity in neuron

types – particularly the heterogeneity of interneurons – plays

a vital role in activity control [23]. Similarly, activity can be

controlled at a microscopic level, e.g. by altering the strengths

of synapses via homeostatic synaptic plasticity [11] or by

varying internal neuron parameters which have an influence

on the excitability of the neuron [12]. In the following we

focus on these locally operating processes.

A stable network operation constitutes itself in proper levels

of network activity. Stability hence could be a consequence

of activity control. In fact, studies in neuroscience provide

compelling evidence for activity regulation at the level of

individual neurons. For example it has been shown that neu-

rons compensate for ongoing changes in input strength [24].

In these experiments, neuron cultures are typically placed in

pharmacological substances like tetrodotoxin (TTX) which de-

prives the activity of the respective neurons. When this block-

ade is released, neurons exhibit significantly increased firing

rates compared to control values. Reverse activity patterns are

obtained when inhibitive inputs are blocked. However, even

if an input blockade persists, cell activity gradually returns to

the control level again. It could be shown that this activity

regulation depends on synaptic scaling [25] as well as on

altering the function relating current to firing rate [26].

Synaptic scaling, i.e. the scaling of synapses of afferent

projections to a neuron, is mediated by the activity-dependent

release of the neurotrophin BDNF (brain-derived neurotrophic

factor) [27]. This has two important implications: Firstly, the

activity of (postsynaptic) inhibitory interneurons is regulated

based on the activity of the (presynaptic) excitatory cells

which release the BDNF [28]. Secondly, synaptic scaling

changes the ratio between excitation and inhibition within the

network. This is due to the opposite effects that BDNF has on

the scaling of excitatory synapses on pyramidal neurons and

interneurons, respectively [29]. In other words, a high BDNF

level weakens synapses on excitatory neurons, but strengthens

those on inhibitory neurons and vice versa.

The transfer function of a neuron describes a dynamic range

of input strengths to which a neuron is sensitive to. Learning-

induced connectivity changes can easily results in inputs that

do not match this dynamic range. For example inputs that are

too weak, such that a neuron will not fire, or inputs that are too

strong, such that firing saturates. That is why an adjustment

of the transfer function – so called intrinsic plasticity – is

reasonable as it shifts the sensitive region such that it matches

the average input level [21]. It is further known that this kind

of self-regulation is also effected by the release of BDNF [30].

B. Modeling Homeostatic Plasticity

In the following we describe how we implemented a bio-

logically inspired dynamic self-regulation in detail. Due to the

activity-dependent nature of homeostasis, we first estimate the

average activity level Āi of a neuron i via an integration of

instantaneous activities:

Āi(k) = (1 −
1

τH

) · Āi(k − 1) +
1

τH

· Ai(k) (7)

Here, k is a discrete time index, Ai(k) = f(ui(k)) the

instantaneous activity, and τH defines the time scale on which

integration takes place. Āi consequently can be related to

intracellular calcium concentrations as they provide a correlate

of a neuron’s firing statistic [31].

Next, we model the BDNF release of an excitatory unit i
(E–cell) given its mean activity ĀE

i and a target rate Â as

BDNFE
i (k) = 1 + βH

(
ĀE

i (k) − Â

Â

)
, (8)

where βH is a homeostatic learning rate. If an E-cell’s mean

activity exceeds its target level, the cell’s release of BDNF

will be greater than 1. Conversely, the BDNF value is smaller

than 1, when the cell is less active than the target level.

For the case of synaptic scaling in Kohonen-type SOMs,

DeSieno previously suggested an additive scaling factor based

on a neurons mean firing rate [32]. It is, however, known

that multiplicative synaptic scaling is performed in the central

nervous system [25]. This has the computationally attractive

feature of leaving the relative difference in synaptic weights

unchanged. A multiplicative scaling factor for SOMs, which

is similar to our modeled BDNF level, has been suggested

in [33]. However, even though our model uses the same

factor for the scaling of connection weights, the way in which

synaptic weights are adjusted differs fundamentally. Firstly,

our learning regime combines Hebbian plasticity in form

of Oja’s rule with a BDNF-mediated scaling. Secondly, we

further take the opposite effects of BDNF on the connections

to excitatory and inhibitory cells into account. In summary,

our model uses the following weight update equations:

wEXT
ij (k) =

wEXT
ij (k − 1) + α · ∆w̃EXT

ij (k)

BDNFE
i (k) · BDNFEXT

j (k)
(9)

wEE
ij (k) =

wEE
ij (k − 1) + α · ∆w̃EE

ij (k)

BDNFE
i (k) · BDNFE

j (k)
(10)

wEI
ij (k) =

[
wEI

ij (k − 1) + α · ∆w̃EI
ij (k)

]
· BDNFE

i (k)(11)

wIE
ij (k) =

[
wIE

ij (k − 1) + α · ∆w̃IE
ij (k)

]
· BDNFE

j (k).(12)

Here, α denotes a learning rate and ∆w̃∗

ij(k) the weight

change according to Eq. (6).

In addition to synaptic scaling we model homeostatic in-

trinsic plasticity by altering the transfer functions of indi-

vidual excitatory units. Given a sigmoidal transfer function

f according to Eq. (4), a neuron’s intrinsic excitability can

be changed by dynamically adjusting the gain and threshold

parameter γ and θ, respectively. In a recent work, Triesch

[14] derived an update formula for both parameters based on

information theory. The difference to the mechanism applied

by our model is twofold: Firstly, we restrict adaptation to the

threshold parameter θ and, secondly, we express the rate of



GLÄSER and JOUBLIN: FIRING RATE HOMEOSTASIS FOR DYNAMIC NEURAL FIELD FORMATION 5

adaptation in terms of the released BDNF level:

θE
i (k) = θE

i (k − 1) +
(
BDNFE

i (k) − 1
)

= θE
i (k − 1) + βH ·

(
ĀE

i (k) − Â

Â

)
. (13)

Homeostatic plasticity, as it is incorporated within our

network model, consequently can be summarized as follows. If

an excitatory neuron’s average activity level exceeds its control

level, the neuron releases a lot of BDNF. In turn, BDNF

mediates a downscaling of synaptic weights of excitatory

connections to the neuron, whereas those of inhibitory ones

are upscaled. The high level of BDNF additionally triggers

a decrease in the intrinsic excitability of the neuron by

increasing the threshold value of its transfer function. The

reverse is true when a neuron’s activity level lies below its

target level.

IV. DEVELOPING TOPOLOGY PRESERVING MAPPINGS

Dynamic neural fields, in contrast to self-organizing maps

(SOMs) like the popular Kohonen maps [10], are recurrent

networks in which activity is dynamically propagated. Even

though we consider dynamic neural fields advantageous over

Kohonen maps, we will discuss the issue of topology preser-

vation also with respect to Kohonen maps. This is because our

method for topology preservation is not limited to our network

model; it rather can be applied to Kohonen maps, too.

When training SOMs two goals are pursued simultaneously.

Firstly, SOMs perform vector quantization of the input space.

They consequently strive for a minimization of the quantiza-

tion error. Secondly, they incorporate topological constraints

into the vector quantization process in order to develop topol-

ogy preserving mappings (see Fig. 2 (a)). These constraints are

defined in terms of fixed neighborhood relations between the

map units. Unfortunately, when mapping higher-dimensional

data onto the two-dimensional output space the two objectives

most often can not be simultaneously satisfied. In such cases,

SOMs privilege the minimization of the quantization error at

the cost of an increase in the number of topological defects

within the developed mappings.

A. Existing Approaches

Over the past, various techniques for enhancing topology

preservation during map formation have been proposed. These

methods most often rely on fixed neighborhood relations

between map units, but adjust the width of an active neigh-

borhood over the course of training. This dynamic adjustment

is often based on global heuristics such as a gradual decrease

in the size of the active neighborhood. Alternatively, more

sophisticated local measurements like input novelty [34],

topology defects [35], or the degree of local folding [36]

can be used. Only a few approaches do not rely on fixed

neighborhood relation. These methods rather apply a two-

stage process in which vector quantization is performed first.

The result of vector quantization is subsequently used to

construct neighborhood relations. One example is the building

of tree-like neighborhoods via a hierarchical clustering of the

codebook vectors [37].

output

space

Topological

Constraints

Vector Quantization

input

space

(a)

output spaceoutput space

Topology Preservation p gy

Vector Quantization

input

spacep

(b)

Fig. 2. An illustrative comparison between (a) the conventional SOM learning
algorithm and (b) the proposed system for enhancing topology preservation
in SOMs.

B. Topology Preservation via Wiring Length Minimization

The technique we propose is related to this two-stage

method in different respects. The first one is the release

(or at least a relaxation) of the topological constraints from

the process of vector quantization. As already discussed in

section II this is due to the fact that our network does not

rely on a fixed lateral connectivity, but rather features plastic

within-field connections. Similarly to the two-stage model we

thus propose to incorporate an additional process which is

specifically concerned with enhancing topology preservation.

As it is illustrated in Fig. 2 (b) this means that the objective

function of minimizing topological defects is no longer implic-

itly defined via topological constraints, but rather explicitly by

a process running in parallel to vector quantization.

The key difference to the two-stage model is how this

process enhances topology preservation. Here, we suggest that

it changes the positions of the units in the output space. We

consequently consider model neurons not to be distributed on

a fixed two-dimensional grid, but rather allow them to move

on the cortical plane such that they get close to other neurons

with similar receptive fields.

In the following we assume neurons to be fully laterally

connected, i.e. each neuron features connections to all other

neurons of the SOM. Furthermore, we define the connection

weight wij between two units i and j to be proportional to

the similarity between the receptive fields (codebook vectors)

RFi and RFj of the units, e.g. by

wij ∝
1

‖ RFi − RFj ‖2

. (14)

Let dij =‖ xi−xj ‖2 denote the distance between two units i
and j. Then we suggest to adjust the position of a unit i based

on the local objective of minimizing the unit’s weighted wiring

length WLi to other units of the SOM.

WLi =
∑

j

wij · d
2
ij − λ ·

∑

j

ln(dij) −→ min (15)

Here, we include an additional penalization term (weighted

by a factor λ) which prevents units to coincide at similar

locations. Since the minimization of the distance between

units with large connection weights produces a map layout

where nearby units have similar receptive fields, wiring length

minimization enhances topology preservation.

The movement of neurons on the cortical plane does not

seem to be biologically plausible at a first glance. Even



6 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. X, NO. X, APRIL 2011

though neurogenesis [38] – the process of continuous neuron

creation from brain stem cells and their subsequent migration

to target areas – describes neuron movements in the cortex, it

is questionable whether neurogenesis can alter the layout of

whole maps. Wiring length minimization, however, seems to

be a biological principle. More precisely, it has been shown

that functional brain areas as well as neuron populations

within functional areas are positioned in an optimal way with

respect to the achieved wiring length [39], [40]. Furthermore,

a link between neuronal morphology and wiring length has

been established [41]. Whether neurogenesis or structural

plasticity arising from the outgrowth of axons and dendrites

constitute the biological underpinning of an optimal wiring

length remains an open question. Therefore, we consider our

framework as a reasonable abstraction of the real biological

mechanisms.

C. Implementation of Wiring Length Minimization

To minimize Eq. (15) the unit positions can be adapted

using multiple optimization techniques, e.g. gradient descent

or evolutionary algorithms [42]. Here we apply the gradient

descent method insofar as the position of unit i is updated

according to ∆xi = −γ · ∂WLi/∂xi with

−
∂WLi

∂xi

=
∑

j

2wijdij ·
xj − xi

dij

−
∑

j

2λ

dij

·
xj − xi

dij

. (16)

This formula illustrates that the map can be interpreted as

an elastic network in which units exert forces on each other

(see Fig. 3). Firstly, the lateral connections act like springs

with spring constants chosen proportional to the connection

weights wij . A connection between two units consequently

exerts an attraction force F+ on the units. Thereby, F+

gets stronger when the connection weight wij or the distance

dij between the units increases. Secondly, repulsion forces

F− act between the units. These forces are independent of

the connection strengths. They rather solely depend on the

distance dij between the units, i.e. F− gets stronger when the

distance decreases.

When wiring length minimization is applied to our net-

work model described in section II, the weight values of the

learned lateral connections can directly be used as connection

weights wij . This is possible, because lateral connections

learned via Hebbian plasticity constitute a measure for the

similarity between the receptive fields of different neurons.

We consequently obtain the following local objectives, where

(17) and (18) hold for an excitatory unit i and an inhibitory

unit i, respectively.

WLE
i =

∑

j∈E

wEE
ij d2

ij +
∑

j∈I

(wEI
ij + wIE

ji )d2
ij

−λ ·
∑

j∈E

ln(dij) (17)

WLI
i =

∑

j∈E

(wIE
ij + wEI

ji )d2
ij − λ ·

∑

j∈I

ln(dij) (18)

Here, it is important to note that our model does not in-

corporate repulsion forces between excitatory and inhibitory

output space

1

2

3

6
5

4

model unit

connections

synaptic weights

attraction forces

repulsion forces

i

ijw

i

+

F

−

F

Fig. 3. The attraction and repulsion forces exerted on model units depend
on the strengths of the connections as well as the distances between the units.

neurons. This is because both neuron types are considered to

be placed on separate layers of the neural map (cf. Fig. 1).

V. RESULTS

We performed a series of experiments to evaluate our recur-

rent neural network model. In the following we first present

results for a simulation where we applied the network to

learn an associative mapping between artificially created multi-

modal inputs. We further used the same kind of experiment

to investigate how changes in stimuli strength or stimuli

distribution affect neural field formation. Next, we estimated

the influence of different parameter settings, i.e. different target

firing rates, with respect to the developed mappings and,

finally, we assessed the use of wiring length minimization for

developing topology preserving mappings. The latter will be

done both in the context of multi-modal association learning

as well as for developing phoneme representations from con-

tinuous speech. In the following sections we provide details

on the obtained results.

A. Learning Associations between Multi-modal Inputs

Due to their competitive processing regime, dynamic neural

fields are particularly suited to learn multi-modal associations.

Here we applied our computational model to associative

learning in the domain of reference frame transformation,

which is a particularly important issue for robotic applications

involving eye-hand coordination. Artificial agents as well as

animals have to be able to flexibly transform between different

frames of reference, such as body-, head-, or eye-centered

coordinates [43]. Agents consequently have to be equipped

with an intermodal body calibration scheme which can either

be innately given to the system or, more importantly, be

autonomously acquired in the early stages of development

[44]. For the latter the key aspect is that simultaneously present

stimuli become associated in unified representations which can

later be used for the transformation from one modality into

another [45].

For modeling the body calibration process we restricted

ourselves to a one-dimensional eye-hand coordination task.

Thereby, a simulated agent performs random hand and eye

movements, i.e. target gaze and hand positions are randomly

chosen whereas a linear dynamic model produces smooth

transitions between subsequent target positions. This kind

of behavior emulates the self-exploratory actions that can

be observed in early infancy. The agent further perceives
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Fig. 4. The receptive fields of the neurons used for coding the gaze
position in body-centered coordinates (s1), the hand position in body-centered
coordinates (s2), and the hand-position in an eye-centered reference frame
(s3).

its resulting gaze and hand positions in different reference

frames. In the experiment we use three stimuli s1,s2,s3 with

s1, s2 ∈ [−1, 1] and s3= s1– s2, where s1 and s2 mimic the

gaze and hand position in a body-centered reference frame,

respectively, as well as s3 representing the hand position in

eye-centered coordinates. A specific body state consequently

yields stimuli that produce individually ambiguous activities

in each input modality. Their combination, however, provides

a unique description of the body state. In our setup each of the

stimuli is represented by a population of 21 neurons with partly

overlapping Gaussian-shaped receptive fields (see Fig. 4). For

s1 and s2 the receptive fields have a standard deviation of 0.1
and their centers were uniformly placed in the interval [−1, 1].
The centers of the receptive fields for s3 have been uniformly

sampled from the inverse of the cumulative density function of

the normal distribution with standard deviation 0.4. Thereby,

the receptive fields have a standard deviation that is half the

distance to their nearest neighbor.

To learn associations between the different modalities we

use the following system setup: Our recurrent neural network

is composed of 100 excitatory units and 100 inhibitory units,

both arranged on a 10x10 grid. The lateral connections within

the field are initialized with uniform weight values, whereas

the weights of afferent projections to the field are initialized

with small random values. The time constants of the model

are set to τE = τI = 5 and τH = 104. This large homeostatic

time constant τH ensures that average firing rates are based

on a long time interval and not affected by moment-to-

moment fluctuations in activity. We further use learning rates

of α = 10−3 as well as βH = 10−4, i.e. Hebbian plasticity

is faster than homeostatic plasticity. Finally, we apply a target

activity level of Â = 0.05. In the present experiment we do

not perform wiring length minimization between the model

units and learning is carried out at each time step, i.e. we do

not make any assumption on when learning takes place. This

is in contrast to the LISSOM models [9], [13], which also

feature plastic lateral connections. There the synaptic weights

were changed only after the network settled into a stable state

following stimuli presentation.

When applying the network to the sequentially arising

stimuli, different phases can be observed over the course of

development. Initially the model units cooperate via lateral

excitation such that the whole field grossly adapts to the

input pattern distribution. However, afterwards an increased
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Fig. 5. (a) The receptive fields of all excitatory units are shown. Here,
each subimage corresponds to the response pattern of a particular neuron
to different combinations of s1 (x-coordinate) and s2 (y-coordinate). Dark
colors represent strong neuron activity whereas light colors correspond to
weak responses. (b) The positions of the excitatory neurons in the feature
space as obtained by calculating the center of masses of their receptive fields.

lateral inhibition implements a competition between the model

units. More precisely, the excitatory units compete for the

representation of different input patterns. This competitive

learning facilitates a diversification of the units and results

in a specialization of the units to distinct input patterns.

After several input patterns have been presented, we fixed

the network weights and calculated the receptive fields of

the excitatory units. Therefore, we applied different stimuli

combinations and recorded the units’ activities after the field

activity settled into a stable state. The resulting receptive

fields are depicted in Fig. 5 (a) where we plot the response

pattern of each excitatory unit to different combinations of

s1 and s2. As can be seen, each neuron specializes to a

particular combination of the stimuli. We further calculated

the center of masses of the receptive fields. By doing so

we obtain the positions of the neurons in the feature spaces.

Fig. 5 (b) illustrates that the neurons cover the whole feature

space (the s1-s2-s3-plane), i.e. each input pattern is adequately

represented by the neural field.

Lastly, we investigated whether the incorporated homeo-

static mechanisms drive the individual neurons towards some

target firing rate. Therefore, we recorded how the average

activity levels of all excitatory neurons develop over time. This

has been done for two simulations using target firing rates of

Â = 0.05 and Â = 0.1, respectively. Fig. 6 plots the medians

of the resulting activity levels. The regions around the medians

depict the upper and lower quartiles of the activity level

distributions. The plot illustrates that the neurons’ average

activities quickly raise towards the specified target firing rates.

Additionally, we could previously show that the overall activity

within the field approaches a level which is proportional to the

target firing rate [15]. In summary this shows that the applied

locally operating mechanisms are suited not only to regulate

an individual neurons activity, but also to regulate the activity

within a population of neurons.

B. Effect of Changes in Stimuli Strength

Once neurons are equipped with the ability to regulate their

activity, the question arises whether the same homeostatic
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is plotted for two simulations using a target firing rate of Â = 0.05 and

Â = 0.1, respectively. Regions around the medians depict the upper and
lower quartiles of the respective activity level distributions.

processes are suited to adapt the dynamic neural field to long-

lasting changes in the input stimuli. This includes changes

in stimuli strength as well as changes in the input pattern

distribution. Here, we first concentrate on the former aspect.

The latter will be investigated in the next section.

To test the ability of our network to adapt to changing input

strengths we simulated a biological experiment in which the

input to a neuron is blocked [24] (see section III-A for a

description of the experiment). More precisely, we modeled

the blockade of excitatory inputs by an attenuation of the input

amplitude to 20% compared to normal operation. After a while

this blockade is released again. We recorded the evolution of

the BDNF level BDNFE
1 as well as the transfer function

threshold θE
1 of the respective neuron. The corresponding plots

are shown in Fig. 7. Here, time t = 0 denotes the onset of

stimulus depression, whereas at time t = 100 the blockade is

released. At both times, we further recorded the responses of

the neuron to a specific input pattern, once using normal inputs

strength and once using an input strength depressed to 20% of

normal operation. The inset plots at time t = 0 show that the

presentation of the input pattern without blockade produces

a stable and large response of the neuron. In contrast, the

depressed input pattern is too weak to produce a significant

increase in the neuron’s membrane potential such that the

neuron remains inactive. Due to this behavior, the neuron’s

mean activity level will decrease after the onset of blockade at

t = 0 (not shown). As a result, the neuron compensates for this

change in a similar way as biological neurons do: It decreases

its BDNF level, which results in an upscaling of excitatory, but

a downscaling of inhibitory synapses. It further decreases its

threshold and thus changes its transfer function towards higher

excitability. The result of this regulation is depicted by the

inset plots at time t = 100. The depressed input pattern now

induces the same response of the neuron as the normal pattern

did at time t = 0. However, if we release the blockade, i.e.

present the undepressed input pattern, then the neuron shows

a much larger sensitivity to the pattern. This reflects itself in

the significantly increased membrane potential evoked by the

input and consequently a faster and prolonged response of the
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Fig. 7. The evolution of a neuron’s BDNF level and transfer function
threshold following an input blockade at t = 0 as well as a release of the
blockade at t = 100. The blockade has been modeled by an attenuation of
input strengths to 20% of normal operation. The insets shows the response
of the neuron to the normal as well as the depressed input pattern when they
are presented at times t = 0 and t = 100, respectively.

neuron.

In summary these results show that the homeostatic mech-

anisms enable individual neurons to compensate for changes

in the strengths of their inputs. From a computational point

of view this is advantageous as it allows the network to cope

with inputs which may continuously change their amplitude

over a long time scale.

C. Effect of Changes in the Input Pattern Distributions

Next, we investigated whether our network model is able

to adapt an already developed mapping to a changed input

pattern distribution. Biological neurons can cope with such

changes [46]. They are even able to adapt to sudden and

significant changes such as those following the amputation

of a limb [47]. For example it has been shown that digit

amputation in raccoon forces affected neurons in primary

somato-sensory cortex to reorganize their receptive fields [48].

More precisely, neurons that become silent after amputation

(due to missing input) subsequently expand their receptive

field to large regions of adjacent digits or the palm and finally

shrink them again such that the neuron becomes selectively

responsive to inputs stemming from the new receptive field.

To test our computational model we perform an experiment of
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a similar kind. Therefore, we first let the network develop a

mapping, but subsequently we significantly change the input

pattern distribution at regular time intervals.

The results of this simulation are depicted in Fig. 8. Here,

the network initially has been trained with uniformly sampled

input stimuli, i.e. s1 ∼ U(−1, +1), s2 ∼ U(−1, +1), and

s3 = s1 − s2. As shown in the inset at time t = 0, the

network developed a mapping where the receptive fields of the

excitatory neurons are nicely distributed in the input space.

At time t = 0 we applied the first change in the input

pattern distribution. At subsequent time steps, stimuli with

s3 ∼ N (0, 0.09) have been sampled and presented to the

network. Neurons, which previously developed a receptive

field corresponding to large absolute values of s3, conse-

quently do not receive inputs anymore. In contrast, those

neurons, with receptive fields already lying close to s3 = 0,

now become activated by more input patterns than before

the change. This is reflected in the neurons’ average activity

level distribution which is plotted at the bottom panel of

Fig. 8. Since most neurons do not become activated anymore,

the median as well as the lower quartile of the distribution

decrease during the time steps following t = 0. However,

the change in the input pattern distribution also increases the

average activity level of some neurons, such that the upper

quartile of the distribution rises. The homeostatic processes

consequently try to compensate for these changes in order to

maintain stable activity patterns. More precisely, the less active

neurons increase their sensitivity such that they become active

for other stimuli as well. In other words, they expand their

receptive fields and step in competition for responsibility in

representing those other stimuli. The subsequent competition

between neurons lets the receptive fields shrink again such that

the neurons become selectively responsive to the new stimuli.

As a result of this adaptation process, the average activity level

of all neurons approaches the target level again. The inset at

time t = 5 shows the distribution of the new receptive fields

which nicely resembles the applied input pattern distribution.

In the following, we apply two more changes to the

input pattern distribution: The first change occurs at time

t = 5, where we start to sample input patterns according

to s1 ∼ N (0, 0.04) and s2 ∼ N (0, 0.04). The second

change is applied at time t = 10, from where on input

patterns get sampled according to (s2 − s1) ∼ N (0, 0.09).
Both disturbances are visible as changed activity levels of

the neurons. The homeostatic processes consequently force the

neurons to reorganize their receptive fields. The insets at time

t = 10 and t = 15 show that these reorganizations develop

receptive fields whose distributions resemble the applied input

pattern distributions.

These results illustrate the ability of the network not only

to cope with changes in stimuli strength, but also to adapt

to changes in the stimuli distribution. The latter is particu-

larly interesting for technical applications where stimuli may

suddenly change, e.g. due to failure of individual system

components. In such cases, neurons, which specialized for

inputs stemming from failed components, can develop new

receptive fields and consequently become responsive to outputs

of intact system devices.

D. Influence of the Target Activity Level Parameter

In the following, we evaluate the influence of different

parameter settings. Due to the incorporation of homeostatic

processes, the number of free parameters that have to be

controlled reduces to the time constants as well as the target

activity of individual neurons. We already discussed the time

scale at which homeostatic processes have to operate. More



10 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. X, NO. X, APRIL 2011

n
eu

ro
n

 i
n

d
ex

 y

n
eu

ro
n

 i
n

d
ex

 y
neuron index x neuron index x

Â = 0 . 0 7 5 Â = 0 . 1 5
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Fig. 9. The receptive fields of all excitatory units are shown for two

simulation runs: using a target activity of (a) Â = 0.075 and (b) Â = 0.15.
Here, each subimage corresponds to the response pattern of a particular neuron
to different combinations of s1 (x-coordinate) and s2 (y-coordinate). Dark
colors represent strong neuron activity whereas light colors correspond to
weak responses.

precisely, these processes have to be fast enough to com-

pensate for long-lasting activity changes induced by Hebbian

learning. However, they additionally have to be slow enough

in order not to destroy the moment to moment fluctuations

which carry the input signal information. What remains is an

evaluation on the influence of the target activity parameter.

As shown in section V-A, the target firing rate determines

the average activity levels of individual neurons as well as the

overall activity within the field. We consequently hypothesized

that the target firing rate has an influence on the size of the

developed receptive fields. In this case the parameter would

further have an effect on the overlap between the receptive

fields of individual neurons and therewith the sparsity of

the developed representation. To validate this hypothesis we

performed multiple simulations using different target activity

levels. The developed receptive fields for two of these simu-

lations are exemplarily shown in Fig. 9. In (a) we see that

at a target activity level of Â = 0.075 neurons specialize

to specific combinations of the three stimuli. In (b) we see

that an increase in the target firing rate to Â = 0.15 yields

significantly larger receptive fields. To reach the target activity

level individual neurons specialize to single input modalities.

This is shown by the horizontal (s1), vertical (s2), or diagonal

(s3) response patterns of the neurons. We further calculated the

overlap between the receptive fields for each parameter setting,

respectively. The corresponding result is plotted in Fig. 10.

Here, we observe a steady increase in the overlap when the

target activity is increased. These results validate our initial

hypothesis on the influence of the target firing rate parameter.

E. Topology Preservation

We next discuss the additional incorporation of the wiring

length minimization (WLM) process. As described in sec-

tion IV the process adapts the neuron positions such that neu-

rons with strong lateral connections become adjacent to each

other. Since a lateral connection between model units only

features a large synaptic weight when the neurons’ receptive

fields are similar to each other, WLM should facilitate the

target firing rate Â
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Fig. 10. The influence of the target firing rate parameter on the overlap
between the developed receptive fields is depicted.

Fig. 11. The final layout of the model units as obtained when using the
wiring length minimization process during neural field formation.

development of topology preserving mappings. When using

WLM in the multi-modal association learning experiment, we

finally obtain the spatial neuron layout depicted in Fig. 11.

To estimate the effect of WLM on the topology preserving

properties of the developed mapping, we compared the results

of two simulation runs: one using WLM and one not using

WLM. Here, we first investigate whether our interpretation of

a neural field to be an elastic net (with lateral connections

exerting attraction forces on units) is a suitable choice for

minimizing wiring length. To do so, we calculated the total

weighted wiring length (Eq. (15)) for both simulation runs. To

compensate for different spatial scales we further normalized

the distances between units by their mean. The evolution

of the resulting measure is depicted in Fig. 12. The total

wiring length of the simulation without WLM increases at the

beginning. This can be attributed to an initial rough adjustment

of the lateral connection weights. A competition between

the model units subsequently induces a ”die off” of many

synapses, which let the total weighted wiring length decrease

over time. When incorporating WLM we observe a similar

trend, except that the initial increase in total wiring length

vanishes. Most importantly, however, our implementation of

WLM results in a smaller total weighted wiring length. This

shows that an adaptation of neuron positions based on forces

exerted between units is appropriate for achieving WLM.

Given the ability of our model to reduce the weighted

wiring length between units, we now demonstrate that WLM

is suitable for improving topology preservation. Therefore,

we compare the mappings which have been developed by

the two simulation runs. To do so, we first calculate the

neighborhood relations between the excitatory units using

Delaunay triangulation of their positions after training. We

additionally calculate the positions of the centers of the de-
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Fig. 13. The center positions of the developed receptive fields are plotted.
Connections are drawn between those receptive fields, whose neurons are
adjacently positioned in the output plane. (a) shows the result of a simulation
where WLM has not been used, whereas the result depicted in (b) has been
obtained using WLM.

veloped receptive fields. The resulting receptive field positions

are plotted in Fig. 13, where we overlaid connections between

them according to the calculated neighborhood relations. For

a topology preserving mapping this would result in a plot

where neighboring receptive fields are connected (due to the

adjacent positions of their corresponding neurons). As shown

in Fig. 13 (b), this is the case for the neural field which has

been trained using WLM. In contrast, not using WLM results

in significant topological defects (see Fig. 13 (a)).

These qualitative results can be confirmed by a quantitative

analysis using the topographic function [49]. This widely used

measure characterizes the topology preservation of mappings

by analyzing the degree of topological defects on varying

scales: from local to global ones. The results are plotted

in Fig. 14. There, the normalized rank k determines the

effective neighborhood range, i.e. small |k| correspond to a

local neighborhood, whereas large |k| correspond to a global

one. The results show that WLM decreases the number of

topological defects on both a local scale and particularly on a

global scale.

F. Application to Speech Processing

We finally apply our network model in the domain of speech

processing. Therefore, we present results of simulations where

the neural field has been trained using continuous speech input.

The model consequently should develop a mapping where

individual neurons specialize to specific sounds, i.e. phonemes.

By incorporating the WLM process, the mapping should

further maintain topology, i.e. similarly sounding phonemes

should be mapped onto neighboring neurons.
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Fig. 14. The topographic function is plotted for neural fields which have
been trained with WLM or without WLM.

Since human speech perception relies to a large extent on

vocal tract resonance frequencies and their variation in time

[50], we decided to use formant frequencies as input to our

model. Thereby, formants refer to the energy concentrations

in the spectro-temporal domain (which are correlates of the

underlying vocal tract resonance frequencies). It has been

shown that formant trajectories can be robustly extracted from

continuous speech [51]. In the present experiment, however,

we use the hand-labeled trajectories provided by the VTRFor-

mant database [52]. As a subset of the widely used TIMIT

corpus, this database comprises a total of 516 utterances from

which we used all 322 utterances spoken by male speakers.

We use a population code of 128 neurons to represent the

formant frequencies at each time frame. Thereby, the response

patterns of the input neurons correspond to the transfer func-

tions of a 128-channel Patterson-Holdsworth auditory filter

bank [53]. This filter bank is based on neurophysiological find-

ings on the human auditory system and models the peripheral

processing as carried out by the cochlea, where sound is trans-

formed into spatio-temporal response patterns on the auditory

nerve. In our setup the filter bank is composed of Gammatone

filters whose logarithmically arranged center frequencies cover

the range from 80 Hz to 8 kHz. An exemplarily selected

speech utterance is shown in Fig. 15. There, (a) depicts the

time-domain signal, (b) the corresponding formant trajectories

coded by the population of input neurons, and (c) an example

input pattern at the specific time frame marked in (b). We

constructed the input samples using a sampling rate of 1 kHz.

The remaining setup of our network model equals the one

described in section V-A.

To illustrate the benefit of using WLM we once again

trained two neural fields on the speech data. The positions

of neurons in the first field have been fixed to a 10x10

grid, whereas neurons of the second field could change their

positions using WLM. After training we analyzed the response

of the fields to different input stimuli. More precisely, we

calculated the mean formant frequencies for each phoneme

transcribed in the VTRFormant database and recorded the

neuron responses to the corresponding input patterns. Finally,

this allowed us to label the neurons with the symbols of the

phonemes which evoke the largest response of the neuron. In

Fig. 16 we plot the final layout of the excitatory neurons as

well as their labels. For ease of interpretation we restricted

the labels in the plot to vowels and semivowels. The results

depicted in (b) illustrate that the incorporation of WLM

produces a topology preserving mapping where neurons with
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Fig. 15. In (a) the time-domain signal for a speech utterance is shown. The
corresponding formant trajectories are depicted in (b), whereas (c) shows the
population code of the formant frequencies at a specific time frame.
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Fig. 17. The field activity as evoked by the phoneme ”i”. The field depicted
in (a) has been trained without WLM, whereas the field in (b) has been trained
with WLM.

similar labels cluster together. Furthermore, the labels are

distributed over the map such that similar sounding phonemes

are close to each other. In contrast, a training of the field

without using WLM produces a map, where similar sounding

phoneme symbols are widely distributed.

The difference in using WLM and not using WLM also

becomes evident in the response patterns to single phonemes.

This is illustrated in Fig. 17 where we plot the field activity

following the presentation of an ”i”. More precisely, the field

constructed without using WLM produces multiple loci of

activity, whereas the use of WLM forces the formation of a

map exhibiting single activity bubbles.

The development of topology preserving mappings is par-

ticularly advantageous for the processing of speech. This is

because a continuously changing stimulus (e.g. formant trajec-

tories) evokes a continuous activity trace in the field. This is

illustrated in Fig. 18, where we plot the trace of neurons which

exhibit the largest response to the word ”money” [m-2-n-i]. In

(a) we see that a mapping with many topological defects does

not produce a continuous activity trace, whereas the topology

preserving mapping in (b) does. We further added jitter to

the plot. This allows us to estimate the time course at which

the activity bubble moves from one position to another. From

the plot it becomes evident that the activity bubble remains

at positions, which correspond to the phoneme cores, for a

relatively long period of time. In contrast, a fast movement

of the activity bubble is observed for transitions between

phonemes.

A higher-level processing of speech, e.g. a phonetic tran-

scription [54] or a speech synthesis [55], could be based on

such traces of activity.

VI. SUMMARY

The self-organized formation of representations – one of

the key abilities of developing systems – has seldomly been

discussed in the context of dynamic neural fields. The recurrent

neural network presented in this paper thus constitutes an

important advancement in this respect. In contrast to previ-

ously published approaches the network features a fully plastic

connectivity. In particular, Hebbian learning is not only used

to adapt the synaptic weights of afferent projections to the

field, but also those of lateral connections within the field. To

circumvent network degradation and maintain stable operation

we proposed to incorporate biologically inspired homeostatic

mechanisms, i.e. synaptic scaling and intrinsic plasticity. This

locally operating self-regulation aims at changing the activity

levels of individual neurons towards some target rate. Finally,

our model consists of an additional process for the enhance-

ment of topology preservation during map formation. This

process adjusts the positions of neurons based on the objective

of minimizing wiring length.

Due to the self-regulation applied within our network, the

number of free parameters that have to be controlled reduces

to the time constants and the target activity level of individual

neurons. Here, particularly the latter is very interesting. More

precisely, in our experiments we could confirm the hypothesis

that the target activity level of individual neurons defines

the overall activity in the field, the overlap between the

receptive fields of neurons, and therewith also the sparsity of

the developed representation.

The low number of controllable parameters further eases

the use of the network in applications of various domains.

Since the formation of appropriate input representations is

self-organizing and intrinsically regulated, the network is

particularly interesting for developing systems. This is because

learning and adaptation during development causes a contin-

uous change in system internals. It is thus feasible to use

network models which develop representations solely based

on the distribution of the applied input patterns. The proposed

network provides a method for achieving this.

We evaluated the performance of our network model in

different tasks. Firstly, artificially generated data has been used

to address multi-modal association learning in the domain of

reference frame transformation. Secondly, we investigated the
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Fig. 16. The positions of the excitatory units, when the field has been trained (a) without WLM and (b) with WLM. Phonemes (vowels and semivowels),
to which the neurons exhibit the largest response, have been used as labels for the neurons. Phoneme labels are from the IPA phonetic alphabet.

development of phoneme representations following continuous

speech input. Our results demonstrated that the network self-

organizes without any external supervision, develops appro-

priate representations of the input, and even adapts to sudden

changes in the strength or distributions of input patterns.

Finally, we could show that wiring length minimization signif-

icantly enhances the quality of the developed mappings with

respect to topology preservation.
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[15] C. Gläser, F. Joublin, and C. Goerick, “Homeostatic development of
dynamic neural fields,” in Proc. Int. Conf. on Development and Learning,
2008, pp. 121–126.

[16] ——, “Enhancing topology preservation during neural field development
via wiring length minimization,” in Artificial Neural Networks - ICANN

2008, Part I, ser. LNCS, V. Kurkova, R. Neruda, and J. Koutnik, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5163, pp. 593–602.

[17] S. D. V. Hooser, J. A. F. Heimel, S. Chung, S. B. Nelson, and L. J. Toth,
“Orientation selectivity without orientation maps in visual cortex of a
highly visual mammal.” Journal of Neuroscience, vol. 25, pp. 19–28,
2005.

[18] K. Ohki and R. C. Reid, “Specificity and randomness in the visual
cortex.” Current Opinion in Neurobiology, vol. 17, no. 4, pp. 401–407,
2007.

[19] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of Mathematical Biology, vol. 15, no. 3, pp. 267–273, 1982.

[20] G. G. Turrigiano and S. B. Nelson, “Hebb and homeostasis in neuronal
plasticity.” Current Opinion in Neurobiology, vol. 10, no. 3, pp. 358–
364, 2000.

[21] N. S. Desai, “Homeostatic plasticity in the CNS: synaptic and intrinsic
forms.” Journal of Physiology – Paris, vol. 97, no. 4-6, pp. 391–402,
2003.

[22] E. Marder and J.-M. Goaillard, “Variability, compensation and home-
ostasis in neuron and network function.” Nature Reviews Neuroscience,
vol. 7, no. 7, pp. 563–574, 2006.

[23] V. Santhakumar and I. Soltesz, “Plasticity of interneuronal species
diversity and parameter variance in neurological diseases.” Trends in

Neurosciences, vol. 27, no. 8, pp. 504–510, 2004.

[24] E. Marder and A. A. Prinz, “Modeling stability in neuron and network
function: the role of activity in homeostasis.” Bioessays, vol. 24, no. 12,
pp. 1145–1154, 2002.

[25] G. G. Turrigiano, K. R. Leslie, N. S. Desai, L. C. Rutherford, and S. B.



14 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. X, NO. X, APRIL 2011

(a) (b)

 

 

2 inm

Fig. 18. The trace of neurons which exhibit the largest response to the word ”money” [m-2-n-i]. (a) shows a non-continuous trace for the map developed
without WLM, whereas (b) depicts a continuous activity trace for the map developed with WLM.

Nelson, “Activity-dependent scaling of quantal amplitude in neocortical
neurons.” Nature, vol. 391, no. 6670, pp. 892–896, 1998.

[26] N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, “Plasticity in the in-
trinsic excitability of cortical pyramidal neurons.” Nature Neuroscience,
vol. 2, no. 6, pp. 515–520, 1999.

[27] L. C. Rutherford, A. DeWan, H. M. Lauer, and G. G. Turrigiano, “Brain-
derived neurotrophic factor mediates the activity-dependent regulation
of inhibition in neocortical cultures.” Journal of Neuroscience, vol. 17,
no. 12, pp. 4527–4535, 1997.

[28] Z. Kokaia, J. Bengzon, M. Metsis, M. Kokaia, H. Persson, and O. Lind-
vall, “Coexpression of neurotrophins and their receptors in neurons of
the central nervous system,” Proc. of the National Academy of Sciences

USA, vol. 90, no. 14, pp. 6711–6715, 1993.

[29] L. C. Rutherford, S. B. Nelson, and G. G. Turrigiano, “BDNF has
opposite effects on the quantal amplitude of pyramidal neuron and
interneuron excitatory synapses.” Neuron, vol. 21, no. 3, pp. 521–530,
1998.

[30] N. S. Desai, L. C. Rutherford, and G. G. Turrigiano, “BDNF regulates
the intrinsic excitability of cortical neurons.” Learning & Memory, vol. 6,
no. 3, pp. 284–291, 1999.

[31] M. J. Berridge, “Neuronal calcium signaling.” Neuron, vol. 21, no. 1,
pp. 13–26, 1998.

[32] D. DeSieno, “Adding a conscience to competitive learning,” in Proc. Int.

Conf. on Neural Networks, vol. 1, 1988, pp. 117–124.

[33] T. J. Sullivan and V. R. de Sa, “Homeostatic synaptic scaling in self-
organizing maps.” Neural Networks, vol. 19, no. 6-7, pp. 734–743, 2006.

[34] R. Phaf, P. Den Dulk, A. Tijsseling, and E. Lebert, “Novelty-dependent
learning and topological mapping,” Connection Science, vol. 13, no. 4,
pp. 293–321, 2001.

[35] M. Herrmann, “Self-organizing feature maps with self-organizing neigh-
borhood widths,” in Proc. Int. Conf. on Neural Networks, 1995, pp.
2998–3003.

[36] K. Kiviluoto, “Topology preservation in self-organizing maps,” in Proc.

Int. Conf. on Neural Networks, vol. 1, 1996, pp. 294–299.

[37] J. S. Kirk and J. M. Zurada, “A two-stage algorithm for improved
topography preservation in self-organizing maps,” in Proc. Int. Conf.

on Systems, Man, and Cybernetics, vol. 4, 2000, pp. 2527–2532.

[38] P.-M. Lledo, M. Alonso, and M. Grubb, “Adult neurogenesis and
functional plasticity in neuronal circuits.” Nature Reviews Neuroscience,
vol. 7, no. 3, pp. 179–193, 2006.

[39] C. Cherniak, Z. Mokhtarzada, R. Rodriguez-Esteban, and K. Changizi,
“Global optimization of cerebral cortex layout.” Proc. of the National

Academy of Sciences USA, vol. 101, no. 4, pp. 1081–1086, 2004.

[40] B. Chen, D. Hall, and D. Chklovskii, “Wiring optimization can relate
neuronal structure and function.” Proc. of the National Academy of

Sciences USA, vol. 103, no. 12, pp. 4723–4728, 2006.

[41] D. Chklovskii, “Synaptic connectivity and neuronal morphology: two
sides of the same coin.” Neuron, vol. 43, no. 5, pp. 609–617, 2004.

[42] D. B. Fogel, “An introduction to simulated evolutionary optimization.”
IEEE Trans. on Neural Networks, vol. 5, no. 1, pp. 3–14, 1994.

[43] Y. E. Cohen and R. A. Andersen, “A common reference frame for
movement plans in the posterior parietal cortex.” Nature Reviews Neu-

roscience, vol. 3, no. 7, pp. 553–562, 2002.

[44] R. Morgan and P. Rochat, “Intermodal calibration of the body in early
infancy,” Ecological Psychology, vol. 9, no. 1, pp. 1–23, 1997.

[45] L. E. Bahrick and J. S. Watson, “Detection of intermodal proprioceptive-
visual contingency as a potential basis of self-perception in infancy,”
Developmental Psychology, vol. 21, no. 6, pp. 963–973, 1985.

[46] F. Joublin, F. Spengler, S. Wacquant, and H. R. Dinse, “A columnar
model of somatosensory reorganizational plasticity based on Hebbian
and non-Hebbian learning rules.” Biological Cybernetics, vol. 74, no. 3,
pp. 275–286, 1996.

[47] P. W. Halligan, J. C. Marshall, D. T. Wade, J. Davey, and D. Morrison,
“Thumb in cheek? Sensory reorganization and perceptual plasticity after
limb amputation.” Neuroreport, vol. 4, no. 3, pp. 233–236, 1993.

[48] E. Foeller and D. E. Feldman, “Synaptic basis for developmental
plasticity in somatosensory cortex.” Current Opinion in Neurobiology,
vol. 14, no. 1, pp. 89–95, 2004.

[49] T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz, “Topology
preservation in self-organizing feature maps: Exact definition and mea-
surement,” IEEE Trans. on Neural Networks, vol. 8, no. 2, pp. 256–266,
1997.

[50] S. Furui, “On the role of spectral transition for speech perception,”
Journal of the Acoustical Society of America, vol. 80, no. 4, pp. 1016–
1025, 1986.
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