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I. Introduction

F
rom our point of view current research in the area 
of Advanced Driver Assistance Systems (ADAS) is 
focused mostly on single, independent, highly spe-
cialized tasks. To this end, today’s Driver Assistance 

Systems are engineered for 
supporting the driver in clearly 
defined traffic situations like, 
e.g. keeping a specified dis-
tance to the vehicle in front. 
Some may argue that the qual-
ity of an engineered system in 
terms of isolated aspects (e.g. 
object detection or tracking) is 
often sound, but the solutions 
lack the necessary flexibility. 
Small changes in the task and/
or environment often lead to 
the necessity of redesigning the 
whole system in order to add 
new features and modules, as 
well as adapting how they are 
linked. 

Additionally, the combina-
tion of numerous dedicated 
algorithms for virtually all 
existing tasks/objects/classes 
(each focusing on a single 
aspect of an ADAS) is not fea-
sible in terms of processing 
power. From our point of view, 
a generic vision-based scene 
decomposition is necessary to 
cope with the limited amount 
of computational resources. 
Vision systems inspired by biol-
ogy turned out to be highly flex-
ible and also capable of adapting 
to severe changes in the task 
and/or the environment. One 
of our design goals on our way 
to achieve such an “all-situation” ADAS is to implement a 
biologically motivated, cognitive vision system. This vision 
system is the perceptual front-end of an ADAS, which can 
handle the wide variety of situations typically encountered 
when driving a car. For more information on this kind of 
vision system refer to [1]. 

Another important issue of system design is the proac-
tive nature of a system. In this context proactive means: 
the capability of a system to actively decide based on the 
current system state and sensor input, which task to handle 
next. Otherwise, it will be challenging to deal with all tasks 
at the same time. Therefore, an in-depth understanding of 
the current scene is necessary making scene analysis even 

more relevant. Details about the proactive extension of our 
biologically motivated system design can be found in [2]. 

The main intention of this contribution is to present 
a generic way for representing and combining extracted 
spatial knowledge of the environment. Spatial knowledge 

describes the relation between 
position, size, type and move-
ment of objects and road (e.g. 
relating a vehicle to a lane). 
Additionally, the incorporation 
of stored knowledge in form of 
digital map data is also intro-
duced. Recently, in the scien-
tific community the field of 
designing and researching spa-
tial representations has gained 
interest. In most of the related 
research some kind of proba-
bilistic grid is used to integrate 
information from sensors over 
time. Hence, spatial informa-
tion of occupied areas within 
the surrounding can be pro-
vided (see [3] for one of the early 
approaches). Also, numerous 
contributions have shown the 
extraction of moving objects, 
cars, etc. from an occupancy 
grid (see e.g. [4]). Neverthe-
less, in most cases the spatial 
representation is only capable 
of storing and interpreting the 
low level information of some 
kind of sensor like for example 
a laser scanner. Therefore, it 
is difficult to easily integrate 
results of other algorithms (like 
traffic sign recognition) in a 
generic way. As opposed to that, 
our aim is to provide a generic 
method for the combination of 

different processing results as well as stored knowledge, 
exploiting spatial relations on a higher level of abstraction. 

To put it differently, this contribution focuses on a generic 
way to combine the results of different processing modules 
in order to extract task-specific knowledge of the environ-
ment based on spatial representations. The goal is to develop 
a cognitive system that is able to combine spatial knowledge 
of the environment depending on the current task. The idea 
of using spatial representations was inspired by C. Colby [5], 
who showed that the human brain constructs multiple spa-
tial representations, because each eases a certain task. To 
our knowledge, there is no automotive approach that is able 
to integrate different types of processing results in a generic 

Abstract–State-of-the-art advanced driver 
assistance systems (ADAS) typically focus 
on single tasks and therefore, have clearly 
defined functionalities. Although said ADAS 
functions (e.g. lane departure warning) show 
good performance, they lack the general abil-
ity to extract spatial relations of the environ-
ment. These spatial relations are required for 
scene analysis on a higher layer of abstraction, 
providing a new quality of scene understand-
ing, e.g. for inner-city crash prevention when 
trying to detect a Stop sign violation in a com-
plex situation. Otherwise, it will be difficult 
for an ADAS to deal with complex scenes and 
situations in a generic way. This contribution 
presents a novel approach of task-dependent 
generation of spatial representations, allow-
ing task-specific extraction of knowledge from 
the environment based on our biologically 
motivated ADAS. The approach also incor-
porates stored knowledge in form of digital 
map data, introducing a new way of eHorizon 
integration. Additionally, the hierarchy of the 
approach provides advantages when deal-
ing with heterogeneous processing modules, 
a large number of tasks and additional new 
input cues. The results show the reliability of 
the approach and also the increase of perfor-
mance on the system level.
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sis, environment representation.



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  22  •  WINTER 2011

way. With such an approach the extraction of information on 
a higher level of abstraction becomes possible. The realized 
system is able to deal with complex scenes and generate spa-
tial expectations for the current task. The system is tested on 
real-world data and qualitative results as well as quantita-
tive performance improvements are shown. To this end, the 
performance increase of single algorithms if integrated in 
the system is shown by using generic temporal integration 
and fusion procedures. 

II. Related Work
The topic of researching intelligent cars is gaining inter-
est as documented by the DARPA Urban Challenge [6] and 
the European Information Society 2010 Intelligent Car Ini-
tiative [7] as well as several European Projects like, e.g., 
Safespot or PReVENT. 

The INSAFES project treats the integration of safety 
applications within the project PReVENT. Hence, Amditis 
et al. [8] provide an approach for the integration of ADAS 
functions, by using a single perception layer as well as a 
common action layer. The function layer in between the 
two layers is different, also allowing parallel applications 
that do not have a unified reasoning, therefore weakening 
the idea of integration. 

Publications that deal with spatial representations, in gen-
eral, are quite numerous. Nevertheless, a lot of these contri-
butions use an evidence grid to integrate sensor data over 
time (see e.g. [9]). An evidence grid provides a framework for 
a probability-based approach, where the occupancy of a cell 
is transformed to a likelihood. Therefore, the main task is to 
provide the free driving space. Other approaches focus on the 
fusion of two evidence grids as for example [10]. Additionally, 
the authors propose an efficient map data structure called 
Deferred Reference Count Octree (DRCO), solving storage 
problems when using 3D evidence grids. Also common is the 
extraction of knowledge from an evidence grid, as e.g. done 
by [11], proposing a method for distinguishing between static 
and dynamic objects when building an environment map. 
To this end, the focus of publications regarding probabilis-
tic grids is mainly on sensor fusion, temporal integration and 
knowledge extraction from sensor data. In contrast, our work 
allows a combination of results from different heterogeneous 
processing modules at higher processing levels. More spe-
cifically, we extract spatial relations from the combination of 

different processing results, instead 
of directly interpreting sensor data 
as done by other approaches. Nev-
ertheless, the free area from an evi-
dence grid can also be used as an 
input result for our task-dependent 
representation generation. 

Several publications deal with 
the modeling of the environment in 
a graph-based manner as for exam-

ple [12]. But mainly with the intention of a compact repre-
sentation for a digital map database, instead of extracting 
spatial relations from processing results in a generic way. 

As stated before, a novel approach of spatial represen-
tation is introduced, which is embedded into a biologi-
cally inspired ADAS. Turning to biological vision system 
as a part of this rather new domain of research multiple 
mildly related approaches exist. One of the most prominent 
examples is a system developed in the group of E. Dick-
manns [13]. It uses several active cameras mimicking the 
active nature of gaze control in the human visual system. 
But no tuneable attention system and no top-down aspects 
are incorporated as existing in the human visual system. 

An artificial vision system in the vehicle domain that also 
includes an attention system and that hence is somewhat 
related to our approach is described in [14]. The approach 
allows for a simple bottom-up attention-based decomposi-
tion of road scenes but without incorporating object or prior 
knowledge. Therefore, the system is not able of an in-depth 
scene analysis using spatial relations as the here proposed 
system. For a more detailed comparison to the state-of-the-art 
in human-like vision systems, refer to [15]. 

To our knowledge, in the car domain no biologically 
motivated large scale systems exists that allows task-
dependent evaluation based on spatial representations. 

III. System Description
The proposed overall architecture concept for a biologi-
cally motivated system design incorporating task-depen-
dent scene analysis is depicted in Fig. 1. It consists of four 
major parts: the “static domain-specific tasks”, the “what” 
pathway, the “where” pathway, and a part allowing “envi-
ronmental interaction”. 

The distinction between “what” and “where” processing 
path is motivated from the human visual system where the 
dorsal and ventral pathway are typically associated with these 
two functions (see, e.g. [16]). Among other things, the “where” 
pathway in the human brain is believed to perform the local-
ization and tracking of a small number of objects. In contrast, 
the “what” pathway considers the detailed analysis of a single 
spot in the image (see theories of spatial attention, e.g. spot-
light theory [16]). Nevertheless, an ADAS also requires con-
text information in the form of the road, its shape, and the 
current global scene context (e.g. inner-city), generated by 

Spatial relations allow for scene analysis on a higher 
layer of abstraction, providing a new quality of scene 
understanding.
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the static domain-specific part. Furthermore, for assisting the 
driver, the system requires interfaces for allowing environ-
mental interaction (i.e. triggering actuators). 

In order to allow an understanding of the proposed 
task-dependent representation generation a rough sys-
tem description is given (for more details on these system 
modules refer to [15] and the following references in the 
subsections). In Section III-D, the task-dependent repre-
sentation generation is explained in detail. 

A. The “What” Pathway

1. Detection
Starting in the “what” pathway (see Fig. 2) the 4003300 
pixel color input image (Fig. 3a) is analyzed by calculat-
ing the so-called saliency map Stotal (see Fig. 3b and c for 
a visualization of Stotal). The saliency map allows the com-
plexity-minimizing decomposition of the visual scene. It 
results from the so-called attention principle. The atten-
tion is a generic information preprocessing principle that 
is believed to exist in the visual pathway of the mammal 
brain. The involved brain areas allow the prefiltering of 
the sensed environment (e.g., visual, acoustic, olfactory 
channel) in order to minimize its complexity. It is believed 
that with (1) top-down respectively (2) bottom-up driven 
attention two separate preprocessing principles exist. 
These principles allow a (1) task-specific respectively (2) 
purely sensory, task-unspecific attention generation. 

The saliency map Stotal combines the task-specific and 
unspecific attention generation and results from a weight-
 ed linear combination of N 5 130 biologically inspired 
input feature maps Fi. More specifically, we filter the 
image using among others, Difference of Gaussian (DoG) 

and Gabor filter kernels that model the characteristics of 
neural receptive fields, measured in the mammal brain. 
Furthermore, we use the RGBY color space [17] as atten-
tion feature that models the processing of photoreceptors 
on the retina. 

The top-down (TD) attention can be tuned (i.e. parame-
terized) task-dependently to search for specific objects. This 
is done by applying a TD weight set wi

TD that is computed and 
adapted online. The weights wi

TD dynamically boost feature 
maps that are important for our current task or object class 
in focus and suppress the rest. The bottom-up (BU) weights 
wi

BU are set object-unspecifically in order to detect unex-
pected potentially dangerous scene elements. The param-
eter l [ 30, 1 4 determines the relative importance of TD and 
BU search in the current system state. For more details on 
the attention system please refer to [18]. 

2. Classification
Now, we compute the maximum on the current saliency map 
Stotal and get the focus of attention (FoA, i.e., the currently 
most interesting image region) by generic region-growing-
based segmentation on Stotal. In the following, with the FoA a 
restricted part of the image is classified using a state-of-the-
art object classifier that is based on neural nets [19]. Differ-
ent from the generic classifier concept present in the “what” 
pathway, traffic signs are treated separately with an array of 
weak classifiers for classification as described in [20]. The 
array of weak classifiers is similar to the idea of Viola and 
Jones [21]. Hence, a probability value for each of the sign 
classes is computed for all provided FoAs which were gen-
erated by the attention system. Therefore, j independent 
weak classifiers compute a probability Pj

FoA that indicates the 
existence of a certain traffic-sign-class-specific attribute at 

FIG 1 Overall system architecture for task-dependent scene analysis.
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each FoA. The weak classifiers are based on the following 
attributes of the traffic sign classes: color, corner matching, 
height in the world, pixel relation, excentricity, corner rela-
tion and shape (see [20] for details). 

The overall procedure (attention generation, FoA seg-
mentation and classification) models the saccadic eye move-
ments of mammals, where a complex scene is scanned and 
decomposed by sequential focusing of objects in the central 
2-3 8 foveal retina area of the visual field. 

3. Information Fusion
Internal information fusion processes improve the perfor-
mance of system modules. For example, the certainty for a 
recognized traffic sign can be improved by a fusion with the 
digital map data. The digital map data is also called elec-
tronic horizon (eHorizon), since it provides a cut-out of the 
complete digital map data based on the current position and 
driving direction. Therefore, the eHorizon provides informa-
tion of static objects and road in the current environment. The 
result of the array of weak classifiers can be compared with 
the eHorizon (see Section III-B) to boost the confidence. If the 
type of traffic sign matches between recognition and map data 
the confidence is increased with a non-linear distance metric. 
Furthermore, the detected road (see Section III-B) is fused as 
context information into the attention system. More specifi-
cally, the road is suppressed in all feature maps Fi before fus-
ing them in the overall saliency Stotal. This procedure makes 
the saliency map Stotal sparse and improves the TD weight 
quality. Additionally, TD-links are used for the modulation of 
the attention based on detected car-like openings in the found 
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drivable road segment. These car-like openings are detected 
by searching for car-sized openings in the road segment (see 
[15] for details). Additionally, the task-dependent layer com-
bination can further focus the searched road area to e.g. the 
ego-lane (see Section III-D). Also, the information of the digital 
map data is used to actively search for specific objects in the 
current scene as for example traffic signs and road markings. 

4. Long Term Memory
Finally, the “what” pathway contains a long term memory 
(LTM) that stores the generic properties of object classes. 
The LTM is filled offline with typical patches and correspond-
ing aggregated feature map activations for all supported 
object classes. Based on that data, an online computation of 
the TD attention weights wi

TD gets possible, thereby  allowing 
the active search for virtually all possible object classes. Cur-
rently, we use cars, signal boards and a number of traffic 
signs as LTM content, although our system is not restricted 
to these object classes (see [18]). It is important to note that 
multiple LTM object classes are searched at the same time, 

which requires several “what” pathways running in paral-
lel (depicted on Fig. 2 as multiple “what” pathways). In the 
default case, a specific “what” pathway searches for one LTM 
object type. This is done by computing the geometric mean 
of all TD weight sets of the specific LTM objects. 

B. Static Domain-Specific Tasks
In the following part, the domain-specific tasks are 
described. These are the marked and unmarked lane 
detection, a reliable scene classification and a digital map 
provider (also called eHorizon). 

1. Marked Lane Detection
The marked lane detection is based on a standard Hough 
transform whose input signal is generated by our generic 
attention system. The TD attention weights used here boost 
white and yellow structures on a darker background (so 
called on-off contrast), to which the biological motivated DoG 
filter is selective. The yellow on-off structures are weighted 
stronger than the white to allow the handling of lane mark-
ings in construction sites. The filtered result of the TD atten-
tion is transformed to the bird’s eye view (i.e., the view from 
above, refer to [22] for details) before applying the Hough 
transform. Therefore, a clothoid model-based approach for 
detecting the markings is used (see, e.g., [23], [24], [25] for 
related clothoid based approaches). But with the knowledge 
of the current scene context and eHorizon (see later in this 
sub-section) a prior for the scene- specific lane width/position 
is set for the evaluation of the Hough space (e.g. when using 
the scene context a lane width of around 3.7 m is expected for 
highways). To this end, the result of the marked lane detec-
tion is related to metric coordinates directly suitable for a 
task-dependent representation. 

2. Unmarked Lane Detection
The state-of-the-art unmarked lane detection evaluates 
a street training region in front of the car and two non-
street training regions at the side of the road. The fea-
tures in the street training region (stereo, edge density, 
color hue, color saturation) are used to detect the drivable 
road based on dynamic probability distributions for all 
cues. Additionally, region growing that starts at the street 
training region assures a crisp distinction between the 
road and the sidewalk. The region growing uses dynamic 
self-adaptive thresholds that are derived from the feature 
characteristics in the street training as compared to the 
non-street training region. A temporal integration proce-
dure between the current and past detected road segments 
based on the bird’s eye view is applied. The procedure is 
used to increase the completeness of the detected road by 
decreasing the number of false negative road pixels (refer 
to [26] for a comprehensive description of the overall pro-
cedure). The result of the unmarked road detection is also 
in metric coordinates. 
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3. Digital Map
Furthermore, a short introduction to the used digital map 
provider (eHorizon) and the data it is supplying is given. 
Different from the related work (as, e.g. [27]), our eHori-
zon does not provide map data in a preprocessed way (e.g. 
length of a road segment with curvature) as usally done 
when directly focusing on a specific functionality. To this 
end, our digital map database does not incorporate envi-
ronment models to reduce the amount of data. Hence, our 
eHorizon provides a metric map with a resolution of 0.1 m, 
in form of a local environmental map (see Figure 4c for a 
visualization). This has the advantage that no constraints 
regarding the road topology have to be made, which could 
lead to problems in inner-city areas. Additionally, the data 
of the eHorizon can be directly used as a virtual sensor. 
Therefore, the digital map (eHorizon) is not limited to a 
single functionality, but provides the basis for a number of 
tasks when used with the task-dependent representation 
generation. 

The digital map database is generated by manual anno-
tation of high resolution aerial images. Regarding the 
availability of the map data, one could also think of an 
automated way for the annotation by use of specific algo-
rithms, as recently shown by Pink and Stiller [28]. 

Similarly to other eHorizon providers a precise GPS posi-
tion, odometry data and map matching is used to generate 
a position and heading for the extraction of the information 

from the database (see e.g. [29]). To this end, the informa-
tion supplied by the eHorizon is a spatial map, which shows 
the environment ahead of the driving direction. 

The information which can be provided by the digi-
tal map is the following: geometry and direction of lanes 
(number), intersections, traffic signs and traffic lights. 
Nevertheless, also addtional information can be easily 
stored/encoded in the database. 

4. Visual Scene Classification
The final part of the static domain-specific tasks is the 
state-of-the-art visual scene classification. For being able 
to run different modes of operation the current scene 
context (e.g. inner-city, country road, highway) has to be 
known. Otherwise it is not possible to parameterize the 
processing modules, as well as the task-dependent repre-
sentation generation to the global characteristics and driv-
ing rules of the scene. For the computation of the scene 
classification only a single image is required as input, the 
processing is roughly the following: After the preprocess-
ing the resulting image is divided in 16 parts and each part 
is independently transformed to the frequency domain. In 
the following, each transformed part is sampled with an 
array of shifted and oriented Gaussian filters, resulting in 
an average power spectrum for each of the parts. Finally, 
the classification is done with the Hierarchical Princi-
pal Component Classification, having learned during a 

FIG 4 First qualitative evaluation example: (a) Image with results of all tasks based on the unmarked road detection result and data of the eHorizon. 
(b) Image with the unmarked road detection result in green. (c) Visualization for the spatial map provided by the eHorizon.

(a) (c)

(b)
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 training phase a classification tree structure, based on the 
average power spectra of all parts. For more information 
please refer to [30]. 

C. Environmental Interaction
The system can interact with the world via an actuator 
control module. For example, for an emergency braking 
depending on the distance and relative speed of a recog-
nized obstacle, the system can use a three phase danger 
handling scheme as shown in earlier versions of the here 
described ADAS (see [1]). 

D. The “Where” Pathway
The central element for the task-dependent representation 
generation is the “where” pathway, providing on the one 
hand the basic spatial representations by the short term 
memory (STM) with generic update, fusion and temporal 
integration procedures. And on the other hand, the task-
dependent combination of different representation layers. 
First the structure of the STM and its procedures will be 
described and afterwards the concept of task-dependent 
combination of different representation layers. 

1. Short Term Memory
Starting with the former, the STM contains different layers, 
which are used to store different classes (see Fig. 2, STM within 
the “where” pathway sub-graph). The update/fusion process 
is strongly simplified due to the fact that only elements of the 
same class have to be treated. Furthermore, each layer has the 
same size and is a metric representation of the current environ-
ment (for one particular class) as seen from above. Therefore, 
the height of elements will not be depicted, but the different 
class layers roughly reflect different height levels of the world. 
The hierarchical order of the classes is the following, starting 
with the unmarked road layer as the lowest layer and finally, 
the highest layer is the object layer. At each time step (on the 
basis of the image recording frequency) all elements (on each 
layer) will be shifted and rotated according to the ego move-
ment of the car, based on a Kalman filter prediction. 

2. Object Fusion
The next step is the fusion between a newly detected object 
Onew and the already known ones. Depending on the class 
of the newly detected object either the traffic sign layer or 
the object layer is chosen. Based on the 3D position and size 
of Onew, a radius in the corresponding class layer of the STM 
is searched. If there is no other object within the radius, 
the layer is updated with the newly detected object. Oth-
erwise, the object Of  found within the radius is compared 
to the new object Onew by means of the distance measure 
d 1Of , Onew 2  that is based on the Bhattacharya coefficient (a 
measure for determining the similarity between two histo-
grams) calculated on the histograms of all N  object feature 
maps Hi

Of  and Hi
Onew (see Eq. (1)). 

 d 1Of , Onew 2 5 a
N

i51
"1 2 g 1Hi

Of, Hi
Onew 2

  g 1Hi
Of, Hi

Onew 2 5 a
4x, y
"Hi

Of 1x, y 2Hi
Onew 1x, y 2 . (1)

If the similarity exceeds a certain class-specific threshold, 
the new position will be stored in the associated layer of 
the short term memory (STM). Despite the initial validity 
of an object (after a first recognition) also a temporal inte-
gration scheme can be used. If activated an object has to be 
found a predefined number of times in consecutive frames 
before it is valid, reducing false positive detections. The 
valid objects in the STM are then suppressed in the current 
calculated saliency map to enable the system to focus on 
new objects. The principle of suppressing already detected 
and hence known objects was proven to exist in the human 
vision system and is termed inhibition of return (IoR), refer 
to [31] for details. 

3. Object Tracking
All valid known objects and traffic signs are tracked using 
a 2D tracker that is based on normalized cross correlation. 
The tracker gets its anchor (i.e. the 2D pixel position where 
the correlation-based search for an object will be started in 
the new image) from a Kalman-filter-based prediction on 
the 3D representation taking the ego-motion of the camera 
vehicle and tracked object into account. This is a generic 
process and therefore, can be applied to any newly added 
class layer (see [2] for details). 

A comparison between the current Kalman-fused 3D 
object position and the predicted object position (derived from 
the measured vehicle ego motion) allows the classification of 
detected objects as static/dynamic (see [15] for details). 

If the tracker has re-detected the object in the current 
frame the 3D representation is updated. In case the tracker 
looses the object, the system interrupts the standard pro-
cessing in the specific “what” pathway and searches for the 
lost STM object in the following frames. This is realized by 
calculating a TD weight set that is specific to the lost STM 
object Os. The object Of  found by the STM search is then 
compared to the searched object Os again by means of the 
distance measure d 1Of , Os 2  based on the Bhattacharya coef-
ficient as already described (see Eq. (1)). 

4. Task Dependent Representation Generation
In the following, the concept of task-dependent combina-
tion of different representation layers is explained. There-
fore, Fig. 5 shows the strongly simplified system structure 
with the used hierarchy for the layer combination. The 
system structure of Fig. 2 is visually simplified to five 
processing modules providing the input for the STM on 
Fig. 5. Nevertheless, the functionality remains as already 
described. Therefore, the subsequent task-dependent com-
bination of layers is shown in more detail. 
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The unmarked road layer (LUR), marked road layer (LMR) 
and eHorizon layer (LeH) are always combined as 1st layer 
combination (L1

com, see Fig. 5, 1st layer), whereas the follow-
ing combinations (2nd/3rd layer) only depend on the cur-
rent task. The eHorizon provides detailed information on 
the area as well as driving direction of the lanes, therefore 
the desired lane(s) can be simply queried from the LeH layer. 
Since, the 1st layer combination is based on redundant infor-
mation, different modes for the combination exist depend-
ing on the available data. Nevertheless, the combination is 
always realized with Eq. (4) to Eq. (6) independent of the 
information the layers can provide. To this end, four differ-
ent modes can be distinguished: all layers can provide infor-
mation, thereby the lane information from the LeH layer can 
be refined by the LMR layer and is underlined by the LUR layer. 
Second, only the LeH layer together with the LUR layer have 
data, providing information about lanes and directions but 
not with the precision of the LMR layer. Third, only the LMR 
layer together with the LUR layer provide information, where 
the driving directions of the lanes can only be inferred from 
other sources (e.g. the current scene context). Finally, just 
the LUR layer provide information about the unmarked road, 
which is the basis information. 

The combination of the LUR and LeH  layer is a simple 
multiplication where LeH  is reduced to a binary matrix of 
the desired lane(s). If the information is not available the 
resulting matrix is just filled with ones having no impact 
on further processing steps. 

The marked road layer is so far shown as one layer, 
actually it is divided in six sub-layers corresponding to 
three lane markings to the left (Mi

L) and three to the right 
(Mi

R) of the current ego position (with i 5 51, 2, 36). Addi-
tionally, not only the position of the road marker for each 
sub-layer Mi

D is set to one in the sub-layer, but also the area 
left of a lane marker to the left and right of a lane marker to 
the right. This will generate a mask for further processing. 
In mathematical terms a function providing only the lane 
markers 1omi

D 1x, y 22  is checked for all points p that satisfy 
the corresponding condition, which is given by: 

 4p # x with omi
L 1x, y 2 5 1 is mi

L 1p, y 2 5 1 (2)

 4p $ x with omi
R 1x, y 2 5 1 is mi

R 1p, y 2 5 1. (3)

Hence, the following lanes can be extracted, the ego lane 
1Laneown 2 : 

 L1
com 1Laneown 2 5 1LUR

# LeH 
1Laneown 22 2 M1

L 2 M1
R (4)

the first (Lane1
D) and second (Lane2

D) lane to the left and 
right: 

 L1
com 1Lane1

D 2 5 1LUR
# LeH 1Lane1

D 2 # M1
D 2 2 M2

D (5)

 L1
com 1Lane2

D 2 5 1LUR
# LeH 1Lane2

D 2 # M2
D 2 2 M3

D (6)

 with D [ 5L, R6.

FIG 5 Concept of task dependent representation generation.
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However, it is also possible to extract a number of adjoin-
ing lanes at the same time, by changing Mi

D to the outmost 
left and right lane marker of the adjoining lanes in Eq. (5). 
If available the eHorizon provides additionally the driving 
direction of the extracted lane(s). 

The attention system can also be modulated by the so 
provided lane information. For example, the search for car-
like openings on the road can be restricted to certain lanes, 
a number of lanes and also the overall road. This allows a 
specific focus on relevant areas of the surrounding envi-
ronment for the attention, e.g. only the oncoming traffic 
lane can be focused, since there is the highest probability 
for emerging new traffic participants. If the eHorizon infor-
mation is not available, the driving direction of the lanes 
can also be inferred from the scene context, assuming 
the same driving direction for all lanes on highways and 
opposing driving direction on the left lanes in inner-city 
and rural roads. 

5. Example Task
Depending on the current task the combination of the i lay-
ers Li

com is performed. In order to make this point clear, an 
example task is carried out illustrating the concept. 

As task the computation of a possible stop position is 
given (also illustrated in Fig. 5). The first layer combina-
tion L1

com is already described above and has the sub-task of 
extracting the ego-lane (Eq. (4)). 

In the following stage, L1
com has to be combined with the 

traffic sign layer LTS. Hence, only the relevant traffic signs 
(for this task Stop and Give Way) will be kept (LTS

Stop,GW). So 
far, each traffic sign occupies a single cell of the layer, but 
in order to provide a virtual limit line, the dimensions of 
the signs are stretched to the complete width and 1 m in 
depth of the LTS

Stop,GW layer. The next step is the product com-
putation of L1

com and LTS
Stop,GW: 

 L2
com 5 L1

com # LTS
Stop,GW. (7)

The result L2
com is a stop position within the ego lane 

based on the traffic sign position. Until now, no horizontal 
lane markings are processed, which would deliver addi-
tional information about the stop line. But it is planned for 
the future to extract the “real” stop line from the environ-
ment. Please note that based on the generic attention sys-
tem, a mere change in the parameters wi

TD would allow the 
boosting of lane markers of this specific orientation. Never-
theless, in the example stream (see Fig. 6) it would anyway 
not be possible, due to the occlusion from the car in front. 

The final step is the incorporation of the object layer. 
This is done similarly as Eq. (7), by substitution of LTS

Stop,GW 
with the object layer LO. The result L3

ego only contains (if 
any exist) objects on the ego lane. For all remaining objects 
on L3

ego the distance (based on our current trajectory) is 
compared to the stop line (L2

com) and if the object is closer, 

the stop line is shifted to the position of the object. The 
result is a spatial representation L3

com, that contains the 
closest stop position on the ego lane. 

Therefore, the task find possible stop position is ful-
filled. As stated before, due to our generic system design, 
many other tasks are supported, e.g. extract objects on 
certain lanes (overtaking, lane change, turning lane, 
etc.), find corresponding maximum speed of a lane (high-
way with different speeds for lanes), extract ego lane for 
left/right turn, handle complex crossroads and so on. The 
important aspect is that for many new tasks the informa-
tion is already available and only the layers have to be 
combined in a different way. Some tasks require new STM 
layers with new information, but even these can be eas-
ily incorporated. To this end, the generic nature is not 
the variation of the representations itself, but the simple 
change of the content within the representations with 
each task. 

IV. Results
In Section IV-A we will provide references to evaluations 
of different individual system modules that play the most 
important role in our cognitive ADAS architecture. In 
Section IV-B the overall system properties of the task-
dependent representation generation will be assessed. 
Results for different tasks are shown based on two inner-
city scenarios. Additionally, the performance gain on 
the system level is exemplarily shown on the traffic sign 
classification. 

A. Evaluation of System Modules
The results presented in [1] support the generic nature 
of the TD-tuneable attention subsystem during object 
search. Following this concept, the task-specific tunable 
attention system can be used for scene decomposition 
and analysis, as it is shown exemplarily on the inner-city 
scene in Fig. 3. 

Moreover, we see the attention system as a common tune-
able front-end for various other system tasks, e.g., for lane 
marking detection (see Section III-B). For an evaluation of 
the lane marking detection module, please refer to [2]. 

An extensive performance evaluation of the unmarked 
road detection can be found in [26]. Please refer to [20] for 
a detailed evaluation of the traffic sign recognition with an 
array of weak classifiers. Results of the visual scene clas-
sification can be found in [30]. 

B. Evaluation of Overall System Performance
In order to show the performance on the system level 
the classification of traffic signs (Stop signs) is chosen 
as example. A number of different image sequences with 
and without Stop signs are the basis for the evaluation. 
More specifically, the evaluation is based on 1569 frames 
in total with 399 frames showing relevant Stop signs, 
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which are 14 different sequences 
with 8 showing relevant Stop signs. 
In general, two different evaluations 
will be done in the following. First, 
the temporal coherence of the image 
sequences is neglected. Therefore, it 
is required to find every traffic sign 
on each image, no matter if it is the 
same physical sign from an image 
before and also the same in the next 
image. The described evaluation type 
assesses the so-called single image 
performance (which is usually done 
to show the performance of a clas-
sification). The second evaluation 
type is done on physical traffic signs. 
Therefore, each physical traffic sign 
has to be found only once, no mat-
ter for how many frames it is visible. 
This evaluation is better suited for an 
ADAS, since the focus can be shifted 
to find all physical signs with the 
lowest false positive (FP) rate. The 
false positive detections can cause 
false alarms of the assistance system 
and therefore the development pro-
cess should aim at minimizing this 
error type. The Receiver Operating 
Characteristic (ROC, see [32]) plot is 
used to evaluate the performance of a 
classifier. Hence, Figure 7 shows the 
first evaluation on the single image 
performance, while Figure 8 shows 
the second evaluation on the physical 
sign performance. 

In both plots the following results 
of system modules (and their com-
bination) are depicted: only the sign 
classification by the Array of Weak 
Classifiers (AWC), the combination of 
the AWC with the eHorizon (eH), the 
generic temporal integration (Ti) of the 
AWC and the combination of all mod-
ules (AWC + Ti + eH). The resulting 
ROC curves show a separation between 
results with and without temporal inte-
gration. However, the integration of the 
eHorizon always increases the perfor-
mance and the temporal integration 
shows a significantly lower FP rate for 
similar Recall rates. 

As the ROC in Figure 7 shows, the 
single image performance is decreas-
ing for all combinations that include 

FIG 6 Second qualitative example; visualization of different results for the test stream: (a) Input 
image, (b) Results of the different processing modules, (c) Result image for L1

com, (d) Spatial 
representation for L1

com, (e) Result image for L2
com, (f) Spatial representation for L2

com, (g) Result 
image for L3

com, (h) Spatial representation for L3
com.
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the temporal integration. Due to the required (repeated) 
detection in consecutive images (the temporal integra-
tion is done over three frames) the first two classifications 
can not lead to a positive recognition. In order to change 
this behaviour other temporal integration procedures 
can be used (e.g. voting). Nevertheless, the single image 
performance is rather unimportant on the system level. 
It is much more important that all physical traffic signs 
are at least detected once. Therefore, Figure 8 shows 
the ROC plot based on physical traffic signs. In order to 
show the differences the axis of abscissa has a logarith-
mic scale. All physical traffic signs are found by each of 
the combinations, but with different false positive rates. 
The best results are shown for the full system combination 
(AWC 1 Ti 1 eH). Based on that a more profound analysis 
becomes necessary in order to explain the strong varia-
tions between the single image performance in contrast to 
the performance on physical traffic signs. It turns out that 
the detection distance is a key factor for explaining the 
gathered evaluation data. 

Table 1 shows the gathered results for the different 
combinations of system modules. The first visibility of a 
traffic sign and the corresponding distance show a varia-
tion between 23 m and 48 m for the used image sequences 
(the same sequences as before). Hence, the mean detec-
tion distance provides an indication on how early a system 
 module combination can find the traffic signs. At that point, 
the difference between the combinations with and without 
temporal integration is resolved, the temporal integration 
reduces the mean detection distance by a few meters. Addi-
tionally, it is important to compare the FP/frame for the 
different combinations and at that point it becomes obvious 
that the system approach with AWC, Ti and eH has the best 
ratio between FP/frame and mean detection distance. In 
addition it has to be mentioned that the detection distance 
is correlated with the image size (in our case 300x400 
pixel). If the resolution is increased also the detection dis-
tance will increase. 

In order to qualitatively evaluate the presented task-
dependent representation generation the intermediate 
representations of two inner-city scenes are visualized. 
The first one shows the processing results for different 
tasks only based on the unmarked road layer and eHori-
zon layer (see Figure 4). In the example no road markings 
are available and the traffic signs are too far away to be 
visually recognizable. Nevertheless, the task is to extract 
the ego-lane, the opposing lane and restrictions on the 
ego-lane imposed by the existing traffic signs. To this end, 
one task fulfilled by the first layer combination L1

com is the 
extraction of the ego-lane shown in green on Figure 4a. 
Another task of L1

com is the extraction of the opposing lane 
shown in red (see Figure 4a). Extracting the opposing lane 
is possible even in the absence of lane markers, based on 
the eHorizon data. Due to the No Entry traffic sign located 

beyond the intersection, a driving restriction on the ego-
lane results in the test scenario. The eHorizon provides 
the mentioned information as a virtual sensor in this case, 
hence the computation of the 2nd layer combination gets 
possible even with an restricting traffic sign beyond the 
camera range. The result of L2

com is shown as visual barrier 
of 1 m height in Figure 4a highlighting the No Entry situa-
tion related to the current driving direction. In Figure 7b, 
the result of the unmarked road detection is visualized. 

Combination Mean Detection Distance FP/Frame

AWC 35.7 m 0.0618

AWC 1 eH 36.0 m 0.0261

AWC 1 Ti 28.3 m 0.0090

AWC 1 Ti 1 eH 30.7 m 0.0013

Table 1. Evaluation of the traffic sign recognition performance 
for the different combinations of system modules.

FIG 8 ROC plot showing the performance on physical traffic signs for the 
different combinations of system modules.
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The digital map/eHorizon for the current timestep is visu-
alized in Figure 4c. 

In the next example (see Fig. 6), also the internal 
layers are shown to give a better insight. Furthermore, 
results in form of 4 consecutive sample frames of a test 
stream are presented that show a complex real-world sce-
nario. For the four consecutive images the results for dif-
ferent layer combinations are depicted. At first, an image 
without any annotations is shown in Fig. 6a, the results 
of the system processing modules are shown in Fig. 6b 
(red: marked road, green: unmarked road, blue: traffic 
signs). In the following, the results for the different lay-
ers are shown. Starting with the 1st layer combination 
(L1

com) with the task of ego-lane extraction. Therefore, 
the spatial representation (Fig. 6d) shows the ego-lane 
in metric coordinates as extracted by the combination 
of the unmarked and marked road detection. Addition-
ally, Fig. 6c shows the back-projection of the ego-lane to 
the image. Followed by the 2nd layer combination (L2

com

), having the task of limit line extraction for the detected 
stop line. To this end, the spatial representation (Fig. 6f) 
depicts the stop line taking the ego-lane and the position 
of the Stop sign into account. The stop line was back-
projected to the image with a height of 1 m acting as a 
virtual wall (see Fig. 6e). Finally, the 3rd layer combi-
nation (L3

com) is shown (see Fig. 6g-h) and therewith the 
task of extracting the limit line under consideration of 
other objects. Therefore, the detected car on our ego-
lane shifts the limit line closer, again depicted as a vir-
tual wall of 1 m height. 

V. Summary and Outlook
In this contribution, we presented a novel way of scene 
analysis based on spatial representations. The approach 
is able to deal with heterogeneous processing results as 
input, is easily extendable with new input results, and 
allows a straightforward realization of tasks by a mere 
combination of the layers. Additional ly, the scene analy-
sis is done task-specifically, only extracting the spatial 
information which is currently required. The incorpora-
tion of digital map data allows a further spatial prediction 
hori zon, as well as new fusion possibilities for the task-
dependent representation generation. 

The task-based environment representation is 
embedded in an integrated,  advanced driver assistance 
system that relies on human-like cognitive processing 
principles. The system uses a biologically moti vated 
attention system as f lexible and generic front-end for all 
visual processing. Based on top-down links modulating 
the attention task-dependently, a state-of-the-art  object 
classifier, the array of weak classifiers for traffic sign 
classification, a road recognition and a scene classifi-
cation, we realized a highly f lexible and robust system 
architecture. 

In the future, we plan a prediction for th e next n 
timesteps, based on a certain task. For example, the task 
of extracting objects to lanes would not only show the 
current spatial relation, but also the predicted movement. 
Therefore, a car on the right lane with a left indicator 
light will be predicted on the ego-lane. The prediction 
allows a preparation of the brake, if the car changes to 
our lane, pr oactively keeping a safe distance to the pre-
ceding traffic. 
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