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Abstract

In this paper we present a hierarchical framework for the extraction of spectro-temporal acoustic features. The design of the features
targets higher robustness in dynamic environments. Motivated by the large gap between human and machine performance in such con-
ditions we take inspirations from the organization of the mammalian auditory cortex in the design of our features. This includes the joint
processing of spectral and temporal information, the organization in hierarchical layers, competition between coequal features, the use of
high-dimensional sparse feature spaces, and the learning of the underlying receptive fields in a data-driven manner. Due to these prop-
erties we termed the features as hierarchical spectro-temporal (HIST) features. For the learning of the features at the first layer we use
Independent Component Analysis (ICA). At the second layer of our feature hierarchy we apply Non-Negative Sparse Coding (NNSC) to
obtain features spanning a larger frequency and time region. We investigate the contribution of the different subparts of this feature
extraction process to the overall performance. This includes an analysis of the benefits of the hierarchical processing, the comparison
of different feature extraction methods on the first layer, the evaluation of the feature competition, and the investigation of the influence
of different receptive field sizes on the second layer. Additionally, we compare our features to MFCC and RASTA-PLP features in a
continuous digit recognition task in noise. On a wideband dataset we constructed ourselves based on the Aurora-2 task, as well as
on the actual Aurora-2 database. We show that a combination of the proposed HIST features and RASTA-PLP features yields signif-

icant improvements and that the proposed features carry complementary information to RASTA-PLP and MFCC features.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Humans have the astonishing ability to preserve stable
representations even in a dynamic environment. In contrast
to automatic speech recognition systems additional back-
ground noise and changes in the transmission channel have
only minor effects on human performance (Lippmann,
1997; Sroka and Braida, 2005). Hence better understanding
the underlying processes in humans bears the potential to
yield better recognition systems.

Unfortunately, our knowledge of the auditory process-
ing in the mammalian brain is still quite limited. The visual
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system is for example already much better understood
(King and Nelken, 2009). This is also expressed in the
wealth of corresponding computational models of the
visual system. On the other hand, there are several studies
highlighting important similarities between the two sys-
tems. Sur et al. (1988) showed that newborn ferrets whose
retinal nerves were rerouted to the auditory part of the
thalamus, sometimes called the gateway to the cortex
(Crick, 1984), where later able to respond to visual stimuli
via their auditory cortex. This at least demonstrates a high
plasticity of these areas during development if not a strong
similarity in functional organization. Despite significant
differences between auditory and visual processing in the
brain common, modality independent processing principles
are usually assumed (Read et al., 2002; King and Nelken,
2009). Different authors have shown that at least at the
level of the receptive fields in the primary visual and
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auditory cortices these similarities can be found (Schreiner
and Calhoun, 1994; de Charms et al., 1998; Shamma,
2001). Measurements in the primary auditory cortex of dif-
ferent animals revealed its spectro-temporal organization,
i.e. the receptive fields are selective to modulations in the
time-frequency domain. The corresponding receptive fields
have, as in the visual cortex, Gabor-like shapes. The above
mentioned findings suggest that modeling principles known
from image processing can beneficially be transferred to
auditory tasks.

Traditionally, speech features mainly took inspirations
from psychoacoustic findings and thereby relied in
most cases on independent spectral (Hermansky, 1990;
Hermansky and Morgan, 1994; Flynn and Jones, 2008;
Haque et al., 2009) or temporal representations (Hermansky
and Sharma, 1998).

In recent years also features inspired by above men-
tioned similarities between visual and auditory processing,
i.e. features capable of directly capturing spectro-temporal
variations, were developed. In his seminal work
Kleinschmidt (2002) introduced the usage of 2 D Gabor
features for speech recognition in noise. This was followed
by others, also employing Gabor features on similar tasks,
including speech vs. non-speech discrimination (Mesgarani
et al., 2006; Meyer and Kollmeier, 2008; Sherry and Zhao,
2008). In (Elhilali and Shamma, 2006) a spectro-temporal
respresentation based on Gabor filters was used for source
separation. Ezzat et al. (2007) randomly selected spectro-
temporal patches of the target word from the training set
and then used these as features for keyword spotting.

The framework for the extraction of spectro-temporal
speech features we present here takes many inspirations
from the visual object recognition system of Wersing and
Korner (2003) and is an extension of our previous work
(Domont et al., 2007, 2008). In contrast to the previously
mentioned approaches and other models in the literature
we integrated additional processing principles which are
also inspired by the mammalian sensory cortex. The pro-
cessing in the sensory cortices seems to be organized in a
hierarchical fashion. This has been stated for the visual
(Hubel and Wiesel, 1965; Felleman and Van Essen, 1991)
and auditory cortex (Rauschecker, 1998; Read et al.,
2002; Scott et al., 2003). Based on this principle we propose
a hierarchical framework consisting of two layers.! Fea-
tures in the first layer extract local information. In the sec-
ond layer the results of these local features are combined to
form more complex features. The hierarchical processing
and the construction of more complex and at the same time
more specific features leads to a substantial increase in the
number of features. A trend also observed in the human
brain where approximately 3500 inner hair cells are present

! Behnke (2003) already suggested a hierarchical speech feature extrac-
tion framework but did not evaluate the resulting features in respect to
what information they extract and how this could be used for speech
processing.

in the cochlea and about 100,000,000 neurons in the audi-
tory cortex (Dusan and Rabiner, 2005).

In general, when dealing with spectro-temporal features
developing methods for the selection of the relevant features
is a key issue. Kleinschmidt (2002) already proposed to use
a so-called “feature finding neural network” to select the
features yielding the best recognition rates. The unsuper-
vised learning of sparse spectro-temporal representations
was proposed in (Klein et al., 2003; Behnke, 2003). Cho
and Choi (2005) investigated how such learned representa-
tions can be applied to the task of sound classification. We
follow this idea in that we learn the receptive fields on both
layers of our hierarchy with unsupervised learning rules.
Another important property of the mammalian sensory
cortices is the competition between coequal features. To
model this we implemented a Winner-Take-Most competi-
tion between the features on the first layer.

The following sections will describe our framework in
more detail and will evaluate its performance in comparison
to conventional speech features. In Section 2 we give an
overview on our framework. Section 3 describes the prepro-
cessing we apply to the speech signal prior to the feature
extraction. The learning of the receptive fields and the
extraction of the spectro-temporal features is detailed in
Section 4. Section 5 presents recognition results we obtain
on a noisy digits task. Based on this task this section also
evaluates the contribution of the different elements of our
framework to the overall performance. Finally, in Section 6
we discuss the results we obtain and possible improvements.

2. Overview

The key elements of our hierarchical feature extraction
framework are depicted in Fig. 1. The first step performs
a preprocessing of the speech signal and mainly consists
of a transformation into the frequency domain and an
enhancement of the formant structure. Based on this we
calculate local spectro-temporal features. This step is fol-
lowed by a competition between these local features.
Together these two steps constitute the first layer of our
framework. On the second layer the local features are com-
bined to form complex features, spanning larger time and
frequency regions. The final steps are an orthogonalization
of the features via a Principal Component Analysis (PCA)
and recognition of the feature stream with a Hidden
Markov Model (HMM) based recognizer. Strictly speaking
we do not consider the last two steps as being part of our
framework. However, they are necessary to evaluate the
feature extraction. Due to their hierarchical organization
we termed the features resulting from the proposed frame-
work as hierarchical spectro-temporal (HIST) features.

i Local VIS Combination
7| Processing | Features I\T/El(])(; M Features [[| FCA | HMM >

LAYER 1 LAYER 2

Fig. 1. Overview of the feature extraction process.
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3. Preprocessing

As most of the phonetic information is conveyed via the
formant variations we perform a preprocessing of the sig-
nal after transformation into the spectral domain which
aims at enhancing the formant structure.

The process of speech production is commonly modeled
via a non-linear volume velocity source followed by a time-
varying linear filter and radiation components (Fant,
1970). Hence, the speech signal we hear is the overlay of
the excitation signal at the glottis, the time-varying reso-
nance frequencies of the vocal tract, the radiation compo-
nents of the mouth and lips, and influences of the room.
The preprocessing we present in the following was mainly
developed in (Gléser et al., 2010). It aims at compensating
for the effects of the excitation signal and the radiation
components and thereby focuses on the resonance frequen-
cies of the vocal tract, commonly referred to as formants.
We do not explicitly model the room effects or the excita-
tion signal.

The spectral tilt introduced by excitation and radiation
can be corrected via a pre-emphasis. Additionally, for
voiced sounds the glottis converts the steady airflow pro-
duced by the lungs into a quasi-periodic train of flow pulses
by which the transfer function of the vocal tract is sampled
at multiples of the fundamental frequency. Consequently,
spectrograms feature spectral peaks at the harmonics
rather than the vocal tract resonance frequencies. This
effect will be compensated for by a smoothing along the fre-
quency axis.

3.1. Gammatone filterbank

We transform the speech signal into the spectro-tempo-
ral domain via the Patterson-Holdsworth auditory filter-
bank (Patterson et al., 1992). This filterbank is based on
neurophysiological findings on the human auditory system
and models the peripheral processing as carried out by the
cochlea, where sound is transformed into spatio-temporal
response patterns on the auditory nerve. It is implemented
as a set of linear Gammatone filters, each of them tuned to
a different frequency range. Hence, non-linear effects as
suppression and level-dependent tuning curves are not
modeled. The filterbank we use is composed of 128 filters
covering the frequency range from 80 Hz to 8 kHz and fol-
lows the implementation suggested by Slaney (1993). Sub-
sequently, the spectral envelope is calculated via
rectification and low-pass filtering. Fig. 2(a) exemplary
shows the envelope of the filter responses to a sequence
of digits from the TIDigits database (Leonard et al., 1984).

3.2. Pre-emphasis

The source signal of voiced sounds is produced at the
glottis. Fant (1979) suggested to use a second-order low-
pass filter for the approximation of the glottal flow spec-
trum. This adequately approximates the most common
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Fig. 2. In (a) the original spectrogram for the digit sequence “zero-one-
seven” spoken by a male speaker is shown. The spectrogram after the
application of the preprocessing for enhancing the formant structure is
shown in (b).

phonation types, modal and creaky phonation (Childers
and Lee, 1991). Thus, voiced excitation changes the spec-
tral characteristic by —12 dB/oct.

Following (Stevens, 2000) the radiation components, i.e.
the lip impedance, can be modeled via a first-order high-
pass filter yielding a spectral change of +6 dB/oct. Overall
this means that a pre-emphasis via amplification of fre-
quency magnitudes by +6 dB/oct adequately eliminates
the spectral influence of excitation and radiation.

3.3. Spectral filtering

After the above mentioned pre-emphasis we enhance the
formant structure in the spectrogram by smoothing along
the frequency axis following the same spirit as (Baer
et al., 1993). We obtain this by a filtering with channel-
dependent Difference-of-Gaussians (DoG) operators with
standard deviations of the negative Gaussian components
being twice as large as that of the corresponding positive
ones:

DoGy(f) = \/% (exp ( —(fz;z)fzk) )

—%exp (_(/;;%f‘;k) >> (1)

Here, DoGy is the DoG operator of channel k featuring a
center frequency fc,. As standard deviations op.g, We use
70 Hz for filter channels with center frequencies in the range
from 80 Hz to 5 kHz and 400 Hz filter channels with center
frequencies in the range from 5 kHz to 8 kHz. We discret-
ized the DoGs by sampling them at the logarithmically ar-
ranged Gammatone filterbank’s channel center frequencies
and normalized the resulting DoG,. vectors. Fig. 3 exempl-
arily depicts the DoGs of 8 filter channels. The smoothed
spectrogram Ssmoor 18 Obtained via multiplying the matrix
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Fig. 3. The DoG operators of the filter channels used to enhance the
formant structure in spectrograms vary in bandwidth and frequency
resolution dependent on the channels’ center frequencies. Here, the DoG
operators of 8 exemplarily chosen filter channels are shown.

DoG containing in its rows the vectors DoG, with the
spectrogram following the pre-emphasis Sprc-emphasis:

Ssmooth = DG - SPre—emphasis~ (2)

The smoothing with the DoG operator results in a suppres-
sion of the responses from neighboring frequency channels
and thereby sharpens the peaks at the formants. We add a
non-linear component to this suppression by suppressing
all negative values. Additionally we apply a fourth root
compression on the resulting signal to approximate the
non-linear loudness perception:

v max (SSmooth7 0) (3)

SCompressed =

In a final step we filter the spectrograms along the time
direction with a low-pass filter having a cut-off frequency
of 100 Hz and then perform a downsampling to 400 Hz.
Fig. 2(b) continues the example depicted in (a) by showing
the corresponding resulting spectrogram .S .

4. Hierarchical spectro-temporal features

The hierarchical feature extraction framework we pres-
ent here consists of two layers. The first layer extracts local
features, covering small regions in the spectro-temporal
domain. In the second layer these local features are inte-
grated to more complex features integrating information
over longer time spans and frequency ranges (e.g.
40 ms x 8 kHz). Structuring it in this way was largely
inspired by the visual object recognition system of Wersing
and Korner (2003). Such hierarchical feature extraction
schemes have shown to be beneficial in visual object recog-
nition (Fukushima, 1980; Riesenhuber and Poggio, 1999;
Fergus et al., 2003). In the following we will demonstrate
how these approaches can be transferred to the auditory
domain.

4.1. Extraction of local features

On the first layer O'" we extract features via a 2 D filter-
ing of the preprocessed spectrograms S with a set n'" of
receptive fields wl . After filtering we only keep the abso-
lute value of the response:

V) = (s ) 1), @

The indices ¢ and findicate time and frequency. As a conse-
quence of the filtering border effects occur when the recep-
tive fields only partially overlap with the input spectrogram.
We decided to keep the size of the n'" spectrograms qf)
after the filtering identical to the spectrogram S at the input
and use an overlay-save implementation for the filtering in
the time direction. This yields small border effects in the fre-
quency direction and in most cases negligible effects in the
time direction for the first and last block.

The filtering with the receptive fields, i.e. the filter ker-
nels, is identical to a correlation between the spectrogram
at the input and the frequency and time inverted receptive
fields. Hence, the responses in the output spectrograms
indicate the similarity of the spectro-temporal patches in
the input spectrogram to the (time and frequency inverted)
receptive fields.

Neurobiological experiments show that the processing
in the primary visual cortex aims at reducing the redun-
dancy of the stimuli. When applying corresponding unsu-
pervised learning methods on natural images one obtains
receptive fields similar in shape to Gabor functions
(Olshausen et al., 1996; van Hateren and Ruderman, 1998).

We therefore decided to learn the filters of the first layer
of our feature hierarchy with Independent Component
Analysis (ICA) (Comon, 1994). For the learning we used
3500 randomly selected patches of size 50 ms x 20 chan-
nels, i.e. 20 x 20 pixels, taken from the training set of the
TIDigits database (Leonard et al., 1984). We applied the
FastICA fixed-point algorithm (Hyvirinen, 1999) for the
calculation of the ICA. A tanh non-linearity was used,
i.e. the negentropy of the data is approximated by the con-
trast function G(u) = 1/a log cosh(au), with the parameter a
in the range 1-2. For n'" = 8 the resulting receptive fields,
depicted in Fig. 4, are rather difficult to interpret. They
show some preferences for steady formants and upward
and downward transitions. However, overall they are not
very specific and only vaguely resemble Gabor functions.

Additionally, we also investigated the usage of genuine
Gabor functions. The Gabor functions were not learned
but selected manually. During this selection process we
investigated different sets of filters. Thereby, we set the

Channel
=

Channel

5

0 0 0 0
-20 0 20 -20 0O 20 -20 O 20 -20 O 20
Time (ms) Time (ms) Time (ms) Time (ms)

Fig. 4. Visualization of the receptive fields used for the extraction of local
features learned via ICA. The frequency axis is given in channels as on the
non-linear frequency grid the actual extend in frequency depends on the
position on the frequency axis of the receptive field.
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Fig. 5. Visualization of the Gabor based receptive fields used for the
extraction of local features. The frequency axis is given in channels as on
the non-linear frequency grid the actual extend in frequency depends on
the position on the frequency axis of the receptive field.

modulation frequencies and orientations to resemble those
of the learned ICA filters and to what one would expect to
be a relevant feature given the widths and orientations of
the formants in the enhanced spectrograms (see Fig. 5 for
an example).

A discrete two dimensional complex Gabor function is a
complex sinusoidal carrier s(z,f) modulated with a Gauss-
ian envelope g(¢,f). Important properties of Gabor func-
tions are the shape of the Gaussian envelope, controlled
via the variances o, and gg,, and the frequency and orien-
tation of the carrier, governed by the radian frequencies o,
and wy. Further parameters are the center of mass in time #,
and frequency f;. The complex carrier s(z,f) is defined as

s(t.f) = exp [io(t —to) + i (f = fi)] (5)

and the Gaussian envelope g(z,f) as

g(t,f) = ) (6>

e
2
2n06,0a, 205,

where the subscript r denotes the rotated coordinates
(t—t9), = (t—to)cos O+ (f — fo) sin 6,
(f —fo), = —(t —to)sin0 + (f — fo) cos 0

with 0 = tan™'(w/w,), if @, # 0, and 0 = sign(w,)n/2 other-
wise. A modulation frequency w, = 0 yields purely spectral
filters (0 =n/2), a modulation frequency w;=0 purely
temporal filters (0 = 0), and settings in between spectro-
temporal filters. The real part of the complex Gabor
function yields an even filter and the imaginary part an
odd filter. For our implementation we used the 8 odd filters
depicted in Fig. 5.

(7)

4.2. Competition between local features

Ideally the neurons in the previous processing step will
only respond to spectro-temporal patterns in the spectro-
gram matching their receptive field (e.g. an upward moving
formant). However, the neurons are not sufficiently selec-
tive and most of the time several neurons respond with sim-
ilar strength to a given pattern. To counterbalance this we
introduce a competition mechanism between the different

neurons similar to Wersing and Korner (2003). We inde-
pendently apply a Winner-Take-Most (WTM) competition
between the activities qgl)(t, f) of the I neurons for all
points (z,f) in the spectrogram:

(1)

. q, (tf) _ (1
0 if ey <oV
i
r(.f) = or M(t,/) =0 (8)
(D pg(e.f
9, (t«fl)_:‘“)M(taf) else,
M(t,f) = maxkqi”(t, /) is the maximal value at position

(1,f) over the n'") neurons and 0 < 3" < 1 is a parameter
controlling the strength of the competition. By suppressing
less active neurons the selectivity of the feature extraction is
enhanced, a process commonly found in the auditory sys-
tem (Young, 2008).

Furthermore, a non-linear transformation including a
threshold ¥ is applied on all the rgl)(t, f):

st ) = H@E (1, 1) —0W), 9)

where H(x) is the Heaviside step function.

To introduce robustness against small fluctuations in
location and amplitude as well as further sharpen the con-
trast between the activities we perform a pooling followed
by a non-linear transformation on all the s, '(t,f). The
pooling consist of a smoothing with a 2D Gaussian filter
2" and reduction of the resolution of the activations s(z, f)
by a factor of four in both frequency and time dimension.
As non-linear transformation we use a tanh function:

(¢, f) = tanh (s§1> * <1>) (41,41). (10)

This yields 32 frequency channels and a sampling rate of
100 Hz. In the visual object recognition system of (Wersing
and Korner, 2003) a binarization was performed after the
tanh non-linearity. This results in further robustness
against fluctuations. As prerequisite it is required that the
dynamics of the input data does not vary too much. For
images this can be guaranteed via a normalization of each
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Fig. 6. The results of the first feature extraction layer obtained with the
example from Fig. 2 are visualized. As local features the Gabor functions
depicted in Fig 5 were used. Only the responses of the first four receptive
fields (top row in Fig. 5) are shown.
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individual image. In the case of speech such a normaliza-
tion is more difficult and has to be adaptive. For the time
being we omitted the binarization but we are convinced
that such an adaptive input normalization followed by
stronger non-linearities will be very beneficial for the fea-
ture extraction process.

Fig. 6 visualizes the results of the first feature extraction
layer with the example from Fig. 2. The preference of the
receptive fields for certain orientations can clearly be seen.
One can further notice that as a consequence of the
Winner-Take-Most competition mainly only one feature
is active at a given point in the spectrogram. In the follow-

ing we will refer to these features as ¢!V

4.3. Extraction of combination features

In contrast to previous approaches which extract spec-
tro-temporal information we only rely on a few initial neu-
rons in the first layer ') but introduce a second layer Q0
which combines the responses of the neurons on the first
layer to more complex spectro-temporal patterns.

Each of the n® combination patterns in Q'® is com-
posed of n'" receptive fields w;z), i.e. one for each of the
neurons in the previous stage Q'". The coefficients of these
receptive fields are non-negative and span all frequency
channels. Similarly to (4) the activity q,(f)(t) of the kth neu-
ron at the time ¢ is given by

o)

@0 =3 (e wl) () (11)

=1

with the main difference that the final activity ¢\” (¢) is the
result of a summation over all n'") receptive fields. As the
combination patterns span the whole frequency range the
response of the neurons does not depend on f anymore.
This means that, by computing the convolution, the pat-
terns wﬁzk) are only shifted in the time direction. Note that
the absolute value is not required in (11) as both the cgl)
and the wgz,() are non-negative.

The combination patterns were also learned in an unsu-
pervised manner using Non-Negative Sparse Coding
(NNSC) (Hoyer, 2004). NNSC differs from Non-negative
Matrix Factorization (NMF) by the presence, in the cost
function (12), of a sparsity enforcing term which aims at
limiting the number of non-zero coefficients required for
the reconstruction. Consequently, if a feature appears often
in the data, it will be learned, even if it can be obtained by a
combination of two or more other features. Therefore, the
NNSC is expected to learn complex and global features
appearing in the data.

We cut out patches of length 4 = 40 ms of the first layer
activations cgl). From these patches we learned n'® = 50
combination features by minimizing the following cost
function (Wersing and Korner, 2003):

o) 2 e
E:Z Pi*fokjW/({z) Jrﬁz Z|°‘k,i|, (12)
i k=1 i k=1

where P; is a tensor representing the n'!) layers of the ith
patch, the w,((z) are n'® non-negative tensors each of them

L (1) : ® ] )
containing the '’ receptive fields w;;, the oy ; are nonneg
ative reconstruction factors, and f§ is a parameter allowing
to control the sparsity of the learned features.

4.4. Integration with an HMM

HMMs are still the dominant paradigm for speech recog-
nition. Therefore, we also use them to assess the perfor-
mance of the proposed feature extraction framework. Due
to notorious shortages in training data it is advisable to
use diagonal covariance matrices for the Gaussian mixtures.
This entails that decorrelated features are better suited.
Consequently, we perform a Principal Component Analysis
(PCA) prior to transferring the features to the HMM. The
PCA statistics were determined from the training part of
the TIDigits database. Additionally, we also add Delta
and Delta—Delta features (i.c. the first and second derivative
of the features) to the feature vector. The integration of the
Delta features is done prior to the calculation of the PCA.
When in the following we refer to HIST features we refer
to the features as obtained after the application of the PCA.

5. Results

To asses the performance of the proposed HIST features
we use two different datasets. In both cases the task is the
robust speaker-independent recognition of continuous dig-
its under a comprehensive variety of additional background
noise. This setup is inspired by the Aurora-2 framework
(Pearce and Hirsch, 2000). The difference between the two
datasets is that our first and main dataset consists of wide-
band, i.e. 16 kHz, signals whereas Aurora-2, our second
dataset, consists of telephone quality signals, i.e. 8 kHz
bandwidth with additional channel distortions. Via differ-
ent tests on the wideband dataset we determine the role
the different elements of the presented feature extraction
framework play for the overall performance. The evalua-
tion on Aurora-2 serves to further substantiate our results.

5.1. Speech databases

5.1.1. Wideband corpus

Similar to Aurora-2 we also derived our wideband corpus
from TIDigits. TIDigits contains 326 speakers each pro-
nouncing 77 digit sequences (Leonard et al., 1984). In con-
trast to Aurora-2 we use the full TIDigits set. To this data
we added four types of noise from the Noisex database
(Varga and Steencken, 1993): White, Babble, Factory, and
Car. Each noise type was added at Signal to Noise Ratios
(SNRs) ranging from —5 dB. . . inf, i.e. we also kept the clean
signal. The differences in our speech data to Aurora-2 are:

e We downsampled signals to 16 kHz instead of 8 kHz.
e When mixing the signals with noise using FaNT (Hirsch,
2005) we used the G.712 only for the noise and signal
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level estimation, i.e. the obtained signals have no chan-
nel distortions.
e We took four types of noise from the Noisex database.
e Each individual test condition contains significantly (12
times) more utterances than Aurora-2.

We have chosen a sampling rate of 16 kHz for our main
corpus as our primary application domain is the speech
based interaction with Honda’s humanoid robot. In this
case a restriction to 8 kHz is without justification. Addi-
tionally, also telephone speech has already partially moved
to higher bandwidths.

The Hidden Markov Models were trained on clean
signals with HTK using the same parameters as in the
Aurora-2 framework. Whole word HMMs containing 16
states without skip transitions and a mixture of 3 Gaussians
with a diagonal covariance matrix per state were used.

5.1.2. Aurora-2

Aurora-2 uses a subset of 8440 training sentences out of
the 12,549 training sentences contained in TIDigits. These
signals were downsampled to 8 kHz and convolved with a
(G.712 characteristic yielding telephone quality signals with
an effective bandwidth of 0.3, ..., 3.4 kHz. Aurora consists
of a clean and a multi condition training part, both of equal
size. In the multi condition training part recordings from
inside a subway, babble noise, car noise, and recordings
in an exhibition hall are added to the signals. The first test
data set contains signals degraded by the same types of
noise as used in the multi condition training. In the second
set recordings from a restaurant, in a street, at an airport,
and at a train station are added to the signals. Finally, in
the third set the signals are convolved with a MIRS instead
of a G.712 characteristic. As noise types subway and street
are used for this set. All noise types were added, as in our
wideband dataset, at SNR levels ranging from —5dB...
inf. Each individual test contains only 1001 utterances,
compared to 12,547 in our wideband dataset. As a conse-
quence the statistical significance of the results obtained
on Aurora-2 is notably inferior to that we obtained on
our wideband dataset. If not stated otherwise, all following
tests are performed on the wideband dataset.

5.2. Parameterization of the feature extraction framework

The proposed HIST feature extraction framework
requires the proper setting of different parameters. With
the exception of those experiments where we mention a dif-
ferent setting of the parameters the following parameteriza-
tion is used for all subsequent tests.

For the extraction of local features on the first level of
the hierarchy we used 8 filters learned via ICA. The corre-
sponding receptive fields are depicted in Fig. 4. The sizes of
the receptive fields were 20 x 20 at a sampling rate of
400 Hz. Hence they span 50 ms and 20 channels.

For the competition between the different local features
we used ") = 0.7. The following non-linear compression

uses a value of ¥") = 0.25. In the pooling stage the dimen-
sions in time and frequency are reduced by four.

We learned n'® = 50 combination features (q(lz)(t), ce
qffz)) (r))" all spanning the full frequency range. As temporal
extend we used 40 ms wide receptive fields. At a sampling
rate of 100 Hz this corresponds to four samples.

Delta (resp. Delta—Delta) features were computed using
a 9th order FIR low-pass (resp. band-pass). After decorre-
lation of the feature vectors via PCA we retained from the
150 features the 39 with the highest eigenvalues. We have
chosen this number as it corresponds to the dimensionality
of the MFCC features we use as a benchmark.

Due to the several non-linearities in our processing the
performance gain due to a modification at a certain stage
in the processing is a very unreliable predictor for the per-
formance of the complete hierarchy. For this reason we
always report the performance of the whole hierarchy.
An exception to this is of course the investigation on the
contribution of the different layers.

5.3. Comparison to purely spectral features

First, we want to compare the results we achieve with
the proposed HIST features to those of conventional spec-
tral features. As benchmark we used Mel Frequency Ceps-
tral Coefficients (MFCCS) (Davis and Mermelstein, 1980)
and RelAtive SpecTral Perceptual Linear Predictive
(RASTA-PLP) features (Hermansky and Morgan, 1994).
In the case of MFCC features we applied Cepstral Mean
Subtraction as it yielded in almost all cases significant per-
formance improvements. For both feature types we also
calculated Delta and Delta—Delta features in the same fash-
ion as for the HIST features. When comparing the recogni-
tion scores in Fig. 7 one can see that the HIST features
show inferior performance than either the MFCC or
RASTA-PLP features in clean and low noise conditions
(2.5% for HIST vs. 1.5% for RASTA-PLP in clean).” From
this it is evident that some important information in the
speech signal is not well represented by the HIST features.
However, with increasing noise level the purely spectral
features deteriorate quickly whereas the performance of
the HIST features is more robust. One can also observe
that the MFCC s yield better results in clean than
RASTA-PLP features (1.2% vs. 1.5%) but deteriorate fas-
ter when additional background noise is present.

Based on the observation that the performance of the
proposed HIST features and the conventional features is
complementary, i.e. conventional features showing good
performance at low noise levels and HIST features in
high noise levels, we combined the HIST features with

2 We also observed that the HIST features have a strong tendency to
produce erroneous word insertions. To counterbalance this we used a
word insertion penalty of —p —70 in the HTK decoding for all results we
report for the HIST features alone. All remaining tests, including the
combination of HIST with other features, were performed with the
standard setting —p O.
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Fig. 7. Word error rates (WERs) when factory noise was added to the
speech data.

Table 1
Word error rates averaged for an individual type of additional noise over
SNR values ranging from —5 dB... inf.

Features Noise type

White Factory Babble Car
MFCC 49.1 44.1 35.6 254
RASTA-PLP 43.1 41.0 35.0 19.5
&b 52.7 51.7 63.0 21.8
HIST 433 42.1 53.9 17.9
RASTA-PLP + MFCC 435 40.7 32.8 20.4
MFCC + HIST 33.6 33.0 36.4 11.9
RASTA-PLP + ¢V 30.6 31.6 37.3 12.0
RASTA-PLP + HIST 26.7 29.1 48.7 10.6
HIST Gabor 50.4 40.9 57.4 24.1
RASTA-PLP + HISTG,por 46.9 39.4 57.4 21.2
HISTno wim 58.6 70.3 89.5 47.7
RASTA-PLP + HISTno wrm  33.8 35.1 45.0 23.7
HISTa0ms 442 42.7 51.4 18.9
RASTA-PLP + HIST 50y 34.9 35.5 40.7 13.9
HISTsoms 54.0 48.1 54.5 17.1
RASTA-PLP + HISTggums 41.7 40.7 60.9 11.7

RASTA-PLP features. Thereby we concatenated at each
frame the 45 RASTA-PLP features and the 39 HIST fea-
tures to an 84 dimensional feature vector. For comparison
we also combined MFCC and HIST features and MFCC
and RASTA-PLP features in the same way. As can be seen
from Fig. 7 the combination of RASTA-PLP and MFCC
features gives a significant improvement for clean (1.0%)
but does not help when additional background noise is pres-
ent. In fact, it is hard to distinguish the two curves in Fig. 7.
The combination of HIST and RASTA-PLP features shows
a very similar performance to the RASTA-PLP features
alone in low noise conditions and gives substantial improve-
ments when the noise level increases. The same is true for
the combination of HIST and MFCC features although
the overall performance is not as good, most likely due to
the inferior performance of the MFCC features with addi-
tional background noise. Table 1 displays the recognition
results for each of the 4 noise types tested.

To better quantify the performance of the combination
of the proposed HIST features with RASTA-PLP features
compared to conventional features we visualized the
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Fig. 8. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

relative improvements over RASTA-PLP features in
Fig. 8. Improvements of the combination of HIST and
RASTA-PLP features are moderate for clean speech (from
1.5% to 1.3% on clean) and reach levels of 40-60% at med-
ium SNR levels. Over most SNR levels we obtain an SNR
gain of approximately 5 dB, i.e. we obtain from the combi-
nation of HIST and RASTA-PLP features almost the same
word error rates as at 5 dB better SNR levels when using
only RASTA-PLP features. It can also be seen that the
combination of MFCC and RASTA-PLP features does
not lead to a significant improvement. The averaged rela-
tive improvements are given in Table 2.

Despite the significant improvements we see from the
combination of HIST and RASTA-PLP features in most
cases the performance with additional babble noise is quite
poor. We attribute this to the preprocessing and the strong
non-linearities. The preprocessing very effectively enhances
the formant structure. This is also the case when only bab-
ble noise is present. Due to the following non-linearities
this formant structure is then further emphasized such that
it does not much differ anymore from speech at a normal
level and generates word or phone hypotheses. This can
also be seen from a deeper analysis of the errors. With
20 dB babble noise RASTA-PLP features show 3.3% word
errors, 0.9% insertions and deletions and additional 2.4%
confusions. On the other hand the combination of HIST
and RASTA-PLP features yields 14.7% word errors,
12.6% insertions and deletions and only 2.1% confusions.
This means that the combination of HIST and RASTA-
PLP features does indeed in more cases recognize the
correct word but on the other hand produces tremendously
more erroneous word insertions.

The largest improvements we see are for scenarios with
high significance for real applications. For the rather sim-
ple task of continuous digit recognition word error rates
should certainly not exceed 10%. When adding the HIST
features to the RASTA-PLP features at an SNR level of
10 dB in white noise, factory noise, and car noise we see
improvements form 13.5% to 7.0%, from 31.3% to 11.6%,
and from 8.0% to 3.7%. Hence more than a reduction by
two down to tolerable error rates.
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Table 2

Relative word error rates averaged for an individual type of additional
noise over SNR values ranging from —5dB... inf. The error rates
obtained with RASTA-PLP features were used as a baseline.

Features Noise type
White Factory Babble Car
MFCC -29.1 —154 2.5 —13.1
RASTA-PLP + MFCC 34 6.9 17.7 16.4
MFCC + HIST 19.8 24.6 —11.8 38.8
RASTA-PLP + ¢V 30.1 26.2 —45.1 31.9
RASTA-PLP + HIST 36.7 34.1 —109.0 41.0
RASTA-PLP + HISTGapor —51.1 10.4 ~267.9 11.8
RASTA-PLP + HISTno wtMm 21.4 18.4 —88.9 —12.7
RASTA-PLP + HIST5 s 22.7 214 —53.7 31.4
RASTA-PLP + HISTggns 5.4 7.3 —-223.0 39.2
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Fig. 9. Word error rates (WERs) when factory noise was added to the
speech data.
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Fig. 10. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

Due to the inferior performance of the MFCC features
by themselves and in combination with the HIST features
we will in the following only use the RASTA-PLP features.

5.4. Contribution of the hierarchical processing

Next, we want to investigate the contribution of the two
hierarchical levels to the overall performance. We calcu-
lated for the features ¢! after the first layer of our frame-
work (compare Eq. (10)) a PCA in the same way as for the
complete HIST features. With the resulting features and
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Fig. 11. Word error rates (WERs) when factory noise was added to the
speech data.
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Fig. 12. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.

Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

with the concatenation of these features and RASTA-
PLP features we trained an HMM. The results indicated
with ¢ and RASTA-PLP + ¢V in Figs. 9 and 10 as well
as in Tables 1 and 2 show that the features on the first layer
alone already yield good performance. Nevertheless the
second layer further improves this performance in all cases,
except for babble noise. The results based on the ¢! fea-
tures show lower word insertions than the HIST features
when babble noise is added but at the same time yield more
confusions (7.1% insertions and deletions and 2.2% confu-
sions compared to 12.6% insertions and deletions and 2.1%
confusions at 20 dB SNR).

5.5. Contribution of the feature competition

Now we want to analyze the influence of the competi-
tion between the features on the first layer introduced in
Eq. (8) on the performance. The results we obtain without
the Winner-Take-Most (WTM) competition are displayed
in Figs. 11 and 12 as well as Tables 1 and 2. As one can
see the impact of the competition depends on the noise type
and noise level. In the case of car noise the competition
seems to be especially beneficial. However, with additional
babble noise the results without the competition are better
than with it. A closer look reveals again that without the
competition the number of erroneous insertions decreases
but at the same time the number of confusions increases.
Overall the competition leads to notable improvements.
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Fig. 13. Word error rates (WERs) when factory noise was added to the
speech data.
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Fig. 14. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

5.6. Contribution of the size of the combination features

One possible source for the improvements we see could
be that our features span a longer time window than
RASTA-PLP and MFCC features (40 ms compared to
25 ms). To further investigate this we varied the size, i.e.
the length, of the combination features. We used 20, 40,
and 80 ms. Taking significantly longer time windows would
harbour the risk of a strong adaptation of the features to
the lexical content. As can be seen from Tables 1 and 2
and Figs. 13 and 14 a width of 40 ms for the second layer
seems to be optimal. With smaller and larger widths the
performance decreases. Nevertheless with a width of
20 ms the performance is largely better than that of
RASTA-PLP features alone. Keeping in mind that already
the filters at the first layer have a width of 50 ms we never-
theless conclude from the results that it is not only the
longer temporal window which is responsible for the per-
formance improvements we see.

5.7. Choice of the first layer

In this experiment we want to evaluate the role of the
receptive field shape on the first layer. In the tests so far
we used the features learned via ICA (compare Fig. 4). In
Figs. 15 and 16 as well as Tables 1 and 2 we compare them
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Fig. 15. Word error rates (WERs) when factory noise was added to the
speech data.
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Fig. 16. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

to features derived from the Gabor functions displayed in
Fig. 5. Even tough the shape of the Gabor filters seems
to match the shapes one observes in the spectrograms much
better than the ICA features the results we obtain are sig-
nificantly inferior to those with the features learned via
ICA. During these tests we varied the sizes and frequencies
of the Gabor filters to a large extend but did not find a set-
ting which yielded better results as those reported above.
This could change when one uses more than just 8 filters.

5.8. Adaptation to HM Ms

Standard HMMs yield best results with independent fea-
tures which statistics can well be modeled as the overlay of
a few Gaussian distributions (Hermansky, 1998). However,
as can be seen from the feature covariances in Fig. 17(a)
and (b) the correlation between the different dimensions
of the HIST features is much stronger than for RASTA-
PLP features. The PCA step effectively eliminates this
problem and hence is indispensable for the successful inte-
gration with an HMM featuring diagonal covariance
matrices (compare Fig. 17(c)).

In addition, we use the PCA also to reduce the dimen-
sionality of the features. In Figs. 18 and 19 we compare
the results we obtain when we either use all 150 dimensions
of the HIST features and combine them with RASTA-PLP
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Fig. 17. Covariance matrices of HIST prior to PCA (a), RASTA-PLP (b), HIST after PCA (c), RASTA-PLP + HIST (d), and RASTA-PLP + MFCC (e)
features. Prior to the calculation of the covariance matrices we removed the mean and performed a variance normalization of each feature individually.
Delta and Delta-Delta features were excluded, except for the HIST features after the PCA in (c) and in combination with RASTA-PLP features in (d). For
the combination of RASTA-PLP + HIST and RASTA-PLP + MFCC the separation between the two feature sets is highlighted with a black bar.
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Fig. 18. Word error rates (WERs) when factory noise was added to the
speech data.

features to those when we reduce the dimensionality to 39
as we did in the previous experiments. As can be seen from
these figures the performance slightly improves for the
HIST features alone but does decrease for the combination
of HIST and RASTA-PLP features. We attribute this to
the weakness of the HMMs to identify the relevant features
in this combination. When we use all 150 HIST features the
additional features resulting from eigenvectors with low
eigenvalues and putatively low significance seem to partly
mask the 45 RASTA-PLP features. Hence, the preselection
of the relevant HIST features by retaining only the 39 fea-
tures with the highest eigenvalues seems to be beneficial
when combining them with lower dimensional features in
an HMM recognition system.

5.9. Complementarity of the features

We also want to use the covariance matrices between the
different feature types to shed some light on the causes for
the improvements we see. Fig. 17(d) and (e) show that the
correlation between the HIST features and the RASTA-
PLP features is much lower than that between the MFCC
features and the RASTA-PLP features. From this it fol-
lows that the HIST features deliver information comple-
mentary to RASTA-PLP features whereas MFCC and
RASTA-PLP features extract very similar information.
This explains on one hand why we do not see noticeable
improvements when combining RASTA-PLP and MFCC
features and on the other hand why we do observe them
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Fig. 19. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

Table 3

Word error rates averaged for an individual type of additional noise over
SNR values ranging from —5 dB... inf when training was performed on
noisy data.

Features Noise type

White Factory Babble Car
RASTA-PLP 27.5 26.4 22.0 6.5
HIST 24.8 27.7 40.0 8.4
HIST suuprea 26.2 28.7 49.8 16.5
RASTA-PLP + HIST 239 24.9 22.9 5.3
RASTA-PLP + HIST uuprea 21.9 23.8 22.8 6.2

when combining either RASTA-PLP or MFCC features
with HIST features.

5.10. Matched training

In all previous tests the features as well as the HMM
models were trained on clean data and tested with different
levels of additional background noise. In most scenarios
one has some a priori information on the type and strength
of the background noise one will face. Training the HMM
models with speech corrupted by this additional back-
ground noise significantly increases performance when
later tested in similar conditions. Therefore, we addition-
ally performed a test where we added all four noise
types at SNR levels of 20 and 10 dB to the training set of



M. Heckmann et al. | Speech Communication 53 (2011) 736-752 747

Table 4

Relative word error rates averaged for an individual type of additional
noise over SNR values ranging from —5dB... inf when training was
performed on noisy data. The error rates obtained with RASTA-PLP
features were used as a baseline.

Features Noise type
White Factory Babble Car
RASTA-PLP + HIST 21.7 9.7 2.1 17.6
RASTA-PLP + HIST ,uuprea 30.3 19.1 4.1 11.0
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Fig. 20. Word error rates (WERs) when factory noise was added to the
speech data. Training was performed on noisy data. Results for the
original HIST features or HIST features adapted to the training condition
are displayed.
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Fig. 21. Word error rates (WERs) when factory noise was added to the
speech data relative to those obtained with RASTA-PLP features alone.
Training was performed on noisy data. Results for the original HIST
features or HIST features adapted to the training condition are displayed.
Bars indicate the 95% confidence intervals calculated according to Vilar
(2008).

TIDigits. We combined this with the clean signals and
trained the HMM models. For computational reasons we
used in all cases only a third of the training set. During rec-
ognition we used the same data as in the previous tests.
As can be seen from Tables 3 and 4 as well as Figs. 20
and 21 this matched training reduces error rates in well
matching scenarios to a large extend. This is true for
RASTA-PLP features as well as for the combination of
RASTA-PLP and HIST features. On the other hand the
performance on the clean signal severely decreased (from
1.5% to 4.7% with RASTA-PLP and 3.4% for the combina-
tion of HIST and RASTA-PLP). What we also observed is

that the strong tendency of the HIST features to generate
insertion errors in the case of babble noise disappeared.
Now we see an improvement from the combination of
RASTA-PLP and HIST features for all cases tested. We
attribute this to the fact that in this case the HMMs learned
to reject weak speech hypotheses generated by the HIST
features. Overall the improvement from the combination
of the features is smaller than in the case when training
was performed only on clean signals. The reason for this
seems to be two-fold. First, the weaker generalization capa-
bilities of the RASTA-PLP features is remedied by the
better adaptation of the HMMs to the scenarios. Second,
in this test we used so far features which were learned on
clean signals.

In a further test we also learned the features on the noisy
data used to train the HMMs. We want to refer to the
resulting features as HIST,guprea. The results in Tables 3
and 4 as well as Figs. 20 and 21 show that this decreased
the performance of the HIST features when taken alone
but improves performance when used in combination with
RASTA-PLP features for almost all cases. We see improve-
ments of around 20%. In the case of clean the improvement
even amounts to 45% up to a word error rate of 2.6%. An
exception is the case of car noise. We saw before that car
noise has a much smaller effect on the recognition perfor-
mance than the other noise types. Therefore, we presume
that including the other noise types in the training leads
for tests with additional car noise to a stronger mismatch
between training and testing than in the case of training
in clean and testing in noise.

5.11. Evaluation on Aurora-2

The tests so far were all performed on the original
TIDigits corpus where we added noise at different SNR lev-
els, i.e. our wideband corpus with a 16 kHz sampling rate.
Despite the fact that we compared our features to the com-
monly used RASTA-PLP and MFCC features we wanted
to further substantiate our results with additional tests on
Aurora-2.

For the tests on Aurora-2 we only changed the parame-
ters in our feature hierarchy directly related to the new sam-
pling rate of 8 kHz. Thereby the different characteristic of
the telephone quality signals also in the low frequency range
is not taken into account. We adapted the Gammatone filter
bank such that the filter center frequencies are distributed in
the range of 0,...,4 kHz instead of 0,...,8 kHz as before.
The DoG filters from Eq. (1) were adapted accordingly.
All remaining parameters remained unchanged.

In Table 5 the results of these test are depicted. Addi-
tionally, in Fig. 22 the absolute word error rates and in
Fig. 23 the relative word error rates compared to the
RASTA-PLP features for subway noise in the clean train-
ing condition are given. Figs. 24 and 25 show the corre-
sponding results for multi condition training.

The results show that we obtain substantial improve-
ments for some noise types but there are also problematic
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Word error rates (WERS) and relative improvements for the Aurora-2 dataset. The training was carried out either with clean speech, or with speech mixed
with various noise types (multi condition training). Tests were always performed using a mixture of noisy and clean signals. The presented scores are
averages over all SNRs levels (i.e. —5 dB... inf).

Subway Babble Car Exhibition Restaurant Street Airport Train- Subway Street Average
station (MIRS) (MRIS)
Clean condition RASTA-PLP 35.2 33.8 374 38.6 34.4 35.5 313 352 352 35.8 352
training HIST 52.5 683 516 57.1 61.2 42.5 52.0 52.9 36.1 36.4 51.1
RASTA-PLP 30.0 349 340 358 36.0 30.5 29.0 30.9 30.9 329 32.5
+ HIST
Rel. improvement 22.3 —11.6 7.5 11.0 -2.9 19.6 6.6 14.8 20.5 8.3 9.6
Multi condition RASTA-PLP 18.2 209 227 213 20.4 20.8 18.9 222 18.4 20.8 20.5
training HIST 25.0 37.5 244 270 35.5 27.9 28.6 29.2 22.9 27.9 28.6
RASTA-PLP 17.1 204 218 204 19.9 19.0 18.2 20.1 17.0 20.0 19.4
+ HIST
Rel. improvement 13.2 1.1 105 1438 10.2 16.4 3.2 14.3 16.1 11.9 11.2
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Fig. 22. Word error rates (WERs) obtained on the Aurora-2 dataset with
training on the clean training set and testing with additional subway noise.
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Fig. 23. Word error rates (WERs) obtained on the Aurora-2 dataset with
training on the clean training set and testing with additional subway noise
relative to those obtained with MFCCS alone. Bars indicate the 95%
confidence intervals calculated according to Vilar (2008).

noise types where the combination of HIST and RASTA-
PLP features yields only small improvements or is even
not beneficial. A closer analysis of the noise used in Aur-
ora-2 reveals that additional speech is present in almost
all noise types. Only subway, car, and train-station noise
do not contain any additional background speech. Hence
we assume that the partly unfavorable behavior of our
HIST features for most of the remaining noise types is
related to the same problem we saw already for babble
noise. The results obtained on the multi condition training,
depicted in Table 4 as well as Figs. 24 and 25 support this

Fig. 24. Word error rates (WERs) obtained on the Aurora-2 dataset with
training on the multi condition training set and testing with additional
subway noise.
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Fig. 25. Word error rates (WERs) obtained on the Aurora-2 dataset with
training on the multi condition training set and testing with additional
subway noise relative to those obtained with MFCCS alone. Bars indicate
the 95% confidence intervals calculated according to Vilar (2008).

hypothesis. In this case both the HIST features and the
HMM models were learned form the multi condition train-
ing part of Aurora-2. As we saw already previously, e.g. in
Fig. 20, this multi condition training improves performance
of the RASTA-PLP features in noisy conditions substan-
tially and at the same time the benefit from the combina-
tion with the HIST features is reduced. However, the
unfavorable behavior of the HIST features when speech
is also present in the noise also gets smaller. In this case
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we now see again improvements for all types. When com-
paring these results to the previous ones one hast also to
take into account their much weaker statistical significance
(this can e.g. be assessed when comparing the confidence
intervals depicted in Figs. 8 and 22.

5.12. Computational complexity

The proposed feature extraction framework involves
several time consuming 2 D convolutions. Nevertheless,
we were able to integrate the feature extraction into an
online speech recognition system (Heckmann et al.,
2009). We used a Linux workstation with eight Intel Xeon
X5355 CPUs working at 2.66 GHz with 4 MB cache and
4 GB RAM per processor. Using only one core of one of
the processors, the extraction of the HIST features for 1s
of speech lasts approximatively 280 ms, i.e. 3.5 times faster
than real time. Additionally, the higher dimensionality of
the resulting feature vector (84 dimensions for HIST +
RASTA-PLP compared to only 45 for RASTA-PLP alone)
increases the computational load during decoding. How-
ever, this can easily be handled by current computers for
most speech recognition tasks.

6. Discussion

Similar to other approaches we apply pattern matching
techniques inspired by image processing to the task of
speech feature extraction. This was motivated not only
by the observation that speech shows distinct patterns in
the spectrogram but also by recent findings in neurobiology
on similarities in the processing in the visual and auditory
cortex. We extended this idea by introducing additional
concepts from models of visual object perception as unsu-
pervised feature learning, feature competition, hierarchical
processing, and high-dimensional sparse representations.

With the results obtained from the first layer of our fea-
ture extraction framework we could replicate previous find-
ings by, e.g., Kleinschmidt and Gelbart (2002) as well as
Meyer and Kollmeier (2008), that adding spectro-temporal
information improves the recognition in noise. We cannot
fully rule out the hypothesis that the main reason for the
improvements we see lies in the nature of our preprocess-
ing. However, in (Gléser et al., 2010) we compared a pre-
processing very similar to the one presented here on a
formant tracking task to a Linear Predicitive Coding
(LPC) based preprocessing. There we saw that our prepro-
cessing shows under some conditions, especially for the
tracking of the second formant in white noise, superior per-
formance but in most cases yields similar results as the LPC
based preprocessing. Therefore, we assume that the
improvements we see here should be attributed to the rep-
resentation of spectro-temporal information via the pro-
posed hierarchy. In light of the good results (Kim and
Stern, 2010) obtained by applying a 15th-root on the enve-
lope signal we will in the future also investigate if such a

strong non-linearity is also beneficial to further improve
our preprocessing.

At least for the small number of features we use the
actual shape of the features in the first layer seems to play
an important role. Despite numerous variations we always
achieved significantly better results when learning the fea-
tures via ICA than when using Gabor shaped features.
Hence, the unsupervised data-driven learning of the fea-
tures seems to be superior to a predefined set of features.

When investigating the feature competition we saw con-
sistent improvements. However, we applied the framework
without further modification when calculating the results
reported above without the competition. It is well possible
that tuning of the parameters will reduce this difference in
performance. Nevertheless, we saw in all cases we tested a
gain from the competition. On the other hand we also
observed that the competition is so far not ideally adapted
to the task. In some cases the receptive fields responses lar-
gely varied with minor displacements in the spectrogram.
As a consequence different features dominate at closely
neighboring points thereby breaking up larger structures
in the spectrogram and dispersing them over the different
features. Modifying the purely local competition such that
also surrounding regions are taken into account seems to
be a promising approach to further improve the results of
this competition step.

One key aspect of our feature extraction framework is
the processing in two hierarchical layers. In contrast to
purely spectral features and previous spectro-temporal fea-
tures the proposed second layer, which we termed combi-
nation layer, is able to represent complete formant
configurations and model non-stationary patterns. We
showed that adding this second layer further improves
the recognition performance on clean data and in noise.
This underlines that the information represented by this
second layer is indeed relevant.

In addition to the recognition experiments we demon-
strated via a correlation analysis that conventional spectral
features as MFCCS and RASTA-PLP features capture
similar information. On the other hand, the proposed
HIST features extract additional, i.e. complementary,
information. From this analysis we also saw that without
an additional PCA the different feature dimensions of the
HIST features are much stronger correlated than it is the
case for RASTA-PLP or MFCC features. Such a behavior
is particularly inapt for the use with an HMM. In general
one can expect that due to a “coevolution” of spectral fea-
tures and HMMs an HMM is not very well suited to be
used with such novel features (Morgan et al., 2005). Similar
to (Meyer and Kollmeier, 2008; Wang et al., 2008;
Hermansky and Sharma, 1998; Chen et al., 2004) which
use less conventional features and hence features less
well suited to HMMs we also expect further improve-
ments when applying alternative recognition backends as
e.g. Multilayer Perceptrons or TANDEM modelling
(Hermansky et al., 2000; Morgan and Bourlard, 1995).
Such alternative recognition backends will be of particular
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importance when we continue to pursue our goal to obtain
sparse and high-dimensional representations and increase
the number of elements on the different layers.

We evaluated our features on two different databases
each with a comprehensive set of background noise types
and SNR levels. On the dataset containing the TIDigits
data at a sampling rate of 16 kHz we saw, except for the
case of babble noise, consistent improvements from the
combination of the HIST features and RASTA-PLP or
MFCC features. In particular we obtain strong improve-
ments in scenarios most relevant for actual applications.
In the case of babble noise the tendency of the HIST fea-
tures for high insertions is certainly unfavorable. Also for
the tests we performed on the Aurora-2 database we saw
unfavorable behavior for those noise types which also
included speech. A remedy to this is on one hand the use
of additional mechanisms to detect speech on- and offsets
and, as we showed, the use of speech corrupted by babble
noise already in the training phase. Furthermore, we expect
that improvements in our preprocessing will also be able to
alleviate this problem.

The improvements we obtained when combining the
HIST features with purely spectral features on Aurora-2
were notably lower than those we obtained on TIDigits.
One of the reasons for this is certainly that during the
development of the HIST features we took only 16 kHz
wideband speech data into account and did only change
the parameters of the Gammatone filter bank and the
DoG filters when applying it to Aurora-2 which uses
telephone quality speech sampled at 8 kHz and with an
efficient bandwidth of 0.3,...,3.4 kHz. Adaptation of the
preprocessing, the filter sizes and the different non-lineari-
ties will certainly yield to better performance also on tele-
phone quality speech.

When taken alone our features show for good and mod-
erate SNR levels clearly inferior performance to conven-
tional spectral features. From this it follows that some
important information captured very well by RASTA-
PLP and MFCC features is not represented by the HIST
features. We speculate that the smoothing along the time
and frequency axis, the preprocessing as well as the pooling
stage, could be at the root of this. The information retained
might be especially robust against additional distortions
but on the other hand not detailed enough to provide pre-
cise recognition in undistorted speech. Further experiments
will be necessary to validate this hypothesis and develop
mechanisms to better capture the relevant information
such that the presented approach can serve as a true alter-
native to conventional features.

So far we only reported results on a continuous digit rec-
ognition task. It will be interesting to see how the proposed
HIST features perform on more complex tasks and if the
features learn only characteristics of the specific task or
of speech in general. In a recent experiment we could show
that the performance of the HIST features when learned on
Timit (Garofolo et al., 1993), a database consisting of pho-
netically rich American sentences not containing numbers,

and then applied on TIDigits the performance only
degraded little compared to the case when learning the fea-
tures on the same dataset as later used for the recognition
experiments (Heckmann, 2010). We see this as a first indi-
cation that the features are not only learning information
limited to the task but more general speech properties.

The additional performance gain we observed via an
adaptation of the features to the noise in the matched train-
ing condition illustrates that such an adaptation to the cur-
rent situation can be beneficial. For mammals such task
specific plasticity of receptive fields in the auditory cortex
seems to play an important role (Fritz et al., 2003). Given
that all the learning steps involved in the presented feature
extraction framework are unsupervised such an online
adaptation seems to the least possible.

Despite the significant improvements we obtained com-
pared to spectral features, many questions on how to opti-
mally combine the different elements we presented here are
still open. This is also manifest in the observation we made
that by different settings of parameters one could tune the
features to have different properties like better performance
on clean at the cost of inferior performance in noise, better
performance when used alone compared to better perfor-
mance when combined with RASTA-PLP features and so
on. Also for this reason we always reported the perfor-
mance of the whole hierarchy. Overall, we think that we
could show that the different ideas borrowed from neurobi-
ology and vision research we introduced as well as the
framework as a whole enable more robust speech recogni-
tion. Nevertheless, we see this rather as early steps with
many more to follow.

Acknowledgments

First of all we want to thank Heiko Wersing for provid-
ing us the algorithms of his object recognition system and
many advise on how to use it. Next, we want to thank Ste-
phan Hasler for supporting us with the different learning
algorithms. We also want to thank Claudius Gléiser for
assisting us with the preprocessing and many fruitful discus-
sions. Furthermore, we want to thank Mark Dunn, Bram
Bolder, Antonello Ceravola and, Marcus Stein for their
help with the computer and software infrastructure. Finally,
we want to thank the anonymous reviewers which helped
with their constructive comments to improve the paper.

References

Baer, T., Moore, B., Gatehouse, S., 1993. Spectral contrast enhancement
of speech in noise for listeners with sensorineural hearing impairment:
effects on intelligibility, quality, and response times. J. Rehabil. Res.
Develop. 30, 49.

Behnke, S., 2003. Discovering hierarchical speech features using convo-
lutional non-negative matrix factorization. In: Proc. Internat. Joint
Conf. on Neural Networks (IJCNN), Vol. 4, pp. 2758-2763.

Chen, B., Zhu, Q., Morgan, N., 2004. Learning long-term temporal
features in LVCSR using neural networks. In: Proc. 8th Internat.
Conf. on Spoken Language (ICSLP). ISCA.



M. Heckmann et al. | Speech Communication 53 (2011) 736-752 751

Childers, D., Lee, C., 1991. Vocal quality factors: analysis, synthesis, and
perception. J. Acoust. Soc. Amer. 90, 2394.

Cho, Y., Choi, S., 2005. Nonnegative features of spectro-temporal sounds
for classification. Pattern Recognition Lett. 26 (9), 1327-1336.

Comon, P., 1994. Independent component analysis: a new concept? Signal
Process. 36, 287-314.

Crick, F., 1984. Function of the thalamic reticular complex: the
searchlight hypothesis. Proc. Natl. Acad. Sci. 81 (14), 4586-4590.
Davis, S., Mermelstein, P., 1980. Comparison of parametric representa-
tions for monosyllabic word recognition in continuously spoken
sentences. IEEE Trans. Acoust. Speech Signal Proc. 28 (4), 357-366.

de Charms, R., Blake, D., Merzenich, M., 1998. Optimizing sound
features for cortical neurons. Science 280 (5368), 1439-1443.

Domont, X., Heckmann, M., Joublin, F., Goerick, C., 2008. Hierarchical
sectro-temporal features for robust speech recognition. In: Proc. IEEE
Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP).
IEEE, Las Vegas, Nevada, pp. 4417-4420.

Domont, X., Heckmann, M., Wersing, H., Joublin, F., Menzel, S.,
Sendhoff, B., Goerick, C., 2007. Word recognition with a hierarchical
neural network. Advances in Nonlinear Speech Processing. Lecture
Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 142-151.

Dusan, S., Rabiner, L., 2005. On integrating insights from human speech
perception into automatic speech recognition. In: 9th Eur. Conf. on
Speech Communication and Technology (EUROSPEECH). ISCA,
Lisbon, Portugal.

Elhilali, M., Shamma, S., 2006. A biologically-inspired approach to the
cocktail party problem. In: Proc. Internat. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP). IEEE, Toulouse, France.

Ezzat, T., Bouvrie, J., Poggio, T., 2007. Spectro-temporal analysis of
speech using 2-D Gabor filters. In: Proc. INTERSPEECH. ISCA,
Antwerp, Belgium.

Fant, G., 1970. Acoustic Theory of Speech Production. Mouton De
Gruyter.

Fant, G., 1979. Glottal source and excitation analysis. Speech Transmiss.
Lab. Q. Prog. Stat. Rep. 1, 70-85.

Felleman, D., Van Essen, D., 1991. Distributed hierarchical processing in
the primate cerebral cortex. Cereb. Cortex 1 (1), 1-47.

Fergus, R., Perona, P., Zisserman, A., 2003. Object class recognition by
unsupervised scale-invariant learning. In: Proc. IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition, Vol. 2.

Flynn, R., Jones, E., 2008. Combined speech enhancement and auditory
modelling for robust distributed speech recognition. Speech Comm. 50
(10), 797-809.

Fritz, J., Shamma, S., Elhilali, M., Klein, D., 2003. Rapid task-related
plasticity of spectrotemporal receptive fields in primary auditory
cortex. Nat. Neurosci. 6 (11), 1216-1223.

Fukushima, K., 1980. Neocognitron: a self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernet. 36 (4), 193-202.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., Dahlgren, N.,
1993. DARPA TIMIT acoustic—phonetic continuous speech corpus
CD-ROM. Philadelphia.

Gliser, C., Heckmann, M., Joublin, F., Goerick, C., 2010. Combining
auditory preprocessing and Bayesian estimation for robust formant
tracking. IEEE Trans. Audio Speech Lang. Process. 18 (2), 224-236.

Haque, S., Togneri, R., Zaknich, A., 2009. Perceptual features for
automatic speech recognition in noisy environments. Speech Comm.
51 (1), 58-75.

Heckmann, M., 2010. Supervised vs. unsupervised learning of spectro
temporal speech features. In: Accepted for ISCA Tutorial and
Research Workshop on Statistical and Perceptual Audition (SAPA).

Heckmann, M., Brandl, H., Domont, X., Bolder, B., Joublin, F., Goerick,
C., 2009. An audio-visual attention system for online association
learning. In: Proc. INTERSPEECH. ISCA, Brighton, UK.

Hermansky, H., 1990. Perceptual linear predictive (PLP) analysis of
speech. J. Acoust. Soc. Amer. 87 (4), 1738-1752.

Hermansky, H., 1998. Should recognizers have ears? Speech Comm. 25 (1—
3), 3-27.

Hermansky, H., Ellis, D., Sharma, S., 2000. Tandem connectionist feature
extraction for conventional HMMsystems. In: Proc. Internat. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 3. IEEE,
Istanbul, Trukey.

Hermansky, H., Morgan, N., 1994. RASTA processing of speech. IEEE
Trans. Speech Audio Proc. 2 (4), 578-589.

Hermansky, H., Sharma, S., 1998. TRAPS-classifiers of temporal
patterns. In: 5th Internat. Conf. on Spoken Language Processing
(ICSLP). ISCA, Sydney, Australia.

Hirsch, G., 2005. FaNT filtering and noise adding tool. Tech. rep.,
Niederrhein University of Applied Sciences.

Hoyer, P., 2004. Non-negative matrix factorization with sparseness
constraints. J. Machine Learn. Res. 5, 1457-1469.

Hubel, D., Wiesel, T., 1965. Receptive fields and functional architecture in
two nonstriate visual aeas (18 and 19) of the cat. J. Neurophysiol. 28
(2), 229-289.

Hyvirinen, A., 1999. Fast and robust fixed-point algorithms for indepen-
dent component analysis. IEEE Trans. Neural Networks 10, 626-634.

Kim, C., Stern, R., 2010. Feature extraction for robust speech recognition
based on maximizing the sharpness of the power distribution and on
power flooring. In: Proc. Internat. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP). IEEE, Dallas, TX, pp. 4574-45717.

King, A., Nelken, 1., 2009. Unraveling the principles of auditory cortical
processing: can we learn from the visual system? Nat. Neurosci. 12 (6),
698-701.

Klein, D., Konig, P., Kording, K., 2003. Sparse spectrotemporal coding of
sounds. EURASIP J. Appl. Signal Process. 2003 (7), 659—667.

Kleinschmidt, M., 2002. Methods for capturing spectro-temporal modu-
lations in automatic speech recognition. Acta Acust. Acust. 88 (3),
416-422.

Kleinschmidt, M., Gelbart, D., 2002. Improving word accuracy with
Gabor feature extraction. In: Proc. Internat. Conf. on Spoken
Language Processing (ICSLP). ISCA, Denver, CO.

Leonard, R., Incorporated, T., Dallas, T., 1984. A database for speaker-
independent digit recognition. In: Internat. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), Vol. 9. IEEE, San Diego,
CA.

Lippmann, R., 1997. Speech recognition by machines and humans. Speech
Comm. 22 (1), 1-15.

Mesgarani, N., Slaney, M., Shamma, S., 2006. Discrimination of speech
from nonspeech based on multiscale spectro-temporal modulations.
IEEE Trans. Audio Speech Lang. Proc. 14 (3), 920-930.

Meyer, B., Kollmeier, B., 2008. Optimization and evaluation of Gabor
feature sets for ASR. In: Proc. INTERSPEECH. ISCA, Brisbane,
Australia.

Morgan, N., Bourlard, H., 1995. Continuous speech recognition. IEEE
Signal Process. Mag. 12 (3), 24-42.

Morgan, N., Zhu, Q., Stolcke, A., Sonmez, K., Sivadas, S., Shinozaki, T.,
Ostendorf, M., Jain, P., Hermansky, H., Ellis, D., et al., 2005. Pushing
the envelope-aside. Signal Process. Mag. IEEE 22 (5), 81-88.

Olshausen, B. et al, 1996. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature 381
(6583), 607-609.

Patterson, R.D., Robinson, K., Holdsworth, J., McKeown, D., C.Zhang,
Allerhand, M.H., 1992. Complex sounds and auditory images. In:
Cazals, Y., Demany, L., Horner, K. (Eds.), Auditory Physiology and
Perception, Proc. 9th Internat. Symposium on Hearing. Pergamon,
Oxford, pp. 429-446.

Pearce, D., Hirsch, H., 2000. The Aurora Experimental Framework for
the Performance Evaluation of Speech Recognition Systems under
Noisy Conditions. In: Proc. Internat. Conf. on Spoken Language
Processing (ICSLP). ISCA, Bejing, China.

Rauschecker, J., 1998. Cortical processing of complex sounds. Curr. Opin.
Neurobiol. 8 (4), 516-521.

Read, H.L., Winer, J.A., Schreiner, C.E., 2002. Functional architecture of
auditory cortex. Curr. Opin. Neurobiol. 12 (4), 433-440.

Riesenhuber, M., Poggio, T., 1999. Hierarchical models of object
recognition in cortex. Nat. Neurosci. 2 (11), 1019-1025.



752 M. Heckmann et al. | Speech Communication 53 (2011) 736-752

Schreiner, C.E., Calhoun, B.M., 1994. Spectral envelope coding in cat
primary auditory cortex: properties of ripple transfer functions. Audit.
Neurosci. 1 (1), 39-62.

Scott, S.K., Johnsrude, I.S., 2003. The neuroanatomical and func-
tional organization of speech perception. Trends Neurosci. 26 (2),
100-107.

Shamma, S., 2001. On the role of space and time in auditory processing.
Trends Cogn. Sci. 5 (8), 340-348.

Sherry, Y., Zhao, N.M., 2008. Multi-stream spectro-temporal features for
robust speech recognition. In: Proc. INTERSPEECH. ISCA, Bris-
bane, Australia.

Slaney, M., 1993. An efficient implementation of the Patterson-Holds-
worth auditory filterbank. Tech. rep., Apple Computer Co., technical
report #35.

Sroka, J.J., Braida, L.D., 2005. Human and machine consonant recog-
nition. Speech Comm. 45 (4), 401-423.

Stevens, K.N., 2000. Acoustic Phonetics. MIT Press, Cambridge, MA.

Sur, M., Garraghty, P., Roe, A., 1988. Experimentally induced visual
projections into auditory thalamus and cortex. Science 242 (4884),
1437-1441.

van Hateren, J., Ruderman, D., 1998. Independent component analysis of
natural image sequences yields spatio-temporal filters similar to simple
cells in primary visual cortex. Proc. Royal Soc. B: Biological Sci. 265
(1412), 2315-2320.

Varga, A., Steencken, H., 1993. Assessment for automatic speech
recognition II: NOISEX-92: a database and an experiment to study
the effect of additive noise on speech recognition systems. Speech
Comm. 12 (3), 247-251.

Vilar, J., 2008. Efficient computation of confidence intervals for word
error rates. In: Proc. Internat. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, Las Vegas, NV, pp. 5101-5104.

Wang, H., Gelbart, D., Hirsch, H., Hemmert, W., 2008. The value of
auditory offset adaptation and appropriate acoustic modeling. In:
Proc. INTERSPEECH. ISCA, Brisbane, Australia.

Wersing, H., Korner, E., 2003. Learning optimized features for hierar-
chical models of invariant object recognition. Neural Comput. 15 (7),
1559-1588.

Young, E.D., 2008. Neural representation of spectral and temporal
information in speech. Philos. Trans. Royal Soc. B: Biological Sci. 363
(1493), 923-945.



