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Abstract

We previously developed noise robust Hierarchical Spectro-

Temporal (HIST) speech features. The learning of the features

was performed in an unsupervised way with unlabeled speech

data. In a final stage we deployed Principal Component Anal-

ysis (PCA) to reduce the feature dimensions and to diagonalize

them. In this paper we investigate if a discriminant projection

can further increase the performance. We maximize the mu-

tual information between the features and the phoneme cate-

gories using a procedure known as Maximizing Renyi’s Mu-

tual Information (MRMI) and also compare it to Linear Dis-

criminant Analysis (LDA). Based on recognition tests in clean

and in noise, i. e. in matching and mismatching conditions,

we show that the discriminant projections increases recogni-

tion scores compared to PCA in matching conditions. How-

ever, this improvement does not transfer to the mismatching,

i. e. noisy, conditions. We discuss measures to alleviate this

problem. Overall MRMI performs better than LDA.

Index Terms: Spectro-temporal, discriminant, mutual informa-

tion, robust speech recognition, auditory

1. Introduction

Most common speech features as Mel Cepstral Coefficients

(MFCCs) and RelAtive SpecTrAl Perceptual Linear Predictive

(RASTA-PLP) features use only spectral information. How-

ever, from measurements in the mammalian auditory cortex it is

known that the mammalian brain jointly uses spectral and tem-

poral information [1]. This is potentially better suited to cap-

ture the information conveyed by formant trajectories. Differ-

ent spectro-temporal feature sets have been introduced to model

this [2, 3, 4, 5, 6].

We previously presented Hierarchical Spectro-Temporal

(HIST) features [7, 8]. They consist of two layers, the first cap-

turing local spectro-temporal variations and the second integrat-

ing them into larger receptive fields (compare Fig. 1). This lay-

out was inspired by a recently proposed system for visual object

recognition [9]. At both layers the receptive fields are learned in

a data-driven unsupervised way. On the first layer we apply In-

dependent Component Analysis (ICA) and in the second layer

Non-Negative Sparse Coding (NNSC). In our original setup we

applied Principal Component Analysis (PCA) to orthogonalize

the features and reduce their dimensionality followed by a Hid-

den Markov Model (HMM) for the recognition.

The PCA projects the features into an orthogonal subspace
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Figure 1: Overview of the feature extraction framework

such that the mean squared error is minimized. One weakness

of PCA in the context of classification is that no information on

the class membership of the feature vectors can be taken into ac-

count. In contrast to this, Linear Discriminant Analysis (LDA)

tries to find a subspace where the L classes are best separated.

However, LDA yields only a feature vector of dimensionality

L − 1 and makes the assumption that the features conditioned

on the class are normally distributed with equal variances for

all classes. A more general approach is to maximize the mu-

tual information between the class labels and the transformed

features. One way of obtaining this is using an approach called

Maximizing Renyi’s Mutual Information (MRMI) [10]. It over-

comes the assumptions on the input variances and also allows

for projections with more dimensions than classes.

LDA and an approach maximizing the mutual information

have been applied to speech recognition before [11, 12]. These

approaches have in common that they are based on MFCC fea-

tures and start from a rather low-dimensional feature vector.

In contrast to this we use 150-dimensional spectro-temporal

features. The previous experiments reported a moderate im-

provement due to a discriminative feature projection. However,

they only considered situations where the conditions during the

learning of the features and there application were similar. In

the following we will investigate MRMI, LDA, and PCA in

matching and mismatching conditions. To model matching and

mismatching conditions we add different types of noise to the

speech data either only in the test or in the test and training set.

The rest of the paper is organized as follows. In Section 2

we will briefly describe our Hierarchical Spectro-Temporal

(HIST) feature extraction framework. This is followed by a de-

scription of the MRMI method in Section 3. The experimen-

tal conditions and recognition results will be presented in Sec-

tion 4. A conclusion and a discussion in Section 5 will close the

paper.

2. Hierarchical Spectro Temporal Features

The main building blocks of our hierarchical feature extraction

framework are a preprocessing to enhance the formant structure

in the spectrograms, a calculation of local and combination fea-

tures, and a projection of the features into a lower-dimensional

space (compare Fig. 1).

2.1. Preprocessing

We apply a Gammatone filter bank to transform the speech sig-

nal sampled at 16 kHz into the frequency domain. The filter

bank has 128 channels ranging from 80Hz to 8 kHz and fol-

lows the implementation of [13]. From this we obtain spectro-

grams by rectification and low-pass filtering of the filter bank

response. The sampling rate of the spectrograms is then reduced



to 400 Hz.

An enhancement of the formant structure in the signal is

obtained by a pre-emphasis of +6dB/oct. and a subsequent

filtering along the frequency axis with a Mexican Hat filter. The

last step removes the harmonic structure of the spectrograms

and forms peaks at the formant locations (see [14] for details).

2.2. First stage: Extraction of local features

In the first layer Q(1) of our hierarchical feature extraction

framework local features are extracted via a 2D filtering with

a set of l = 1 . . . N1 receptive fields w
(1)
l , taking the absolute

value of the response:

q
(1)
l (t, f) =

∣

∣

∣

(

S ∗w
(1)
l

)

(t, f)
∣

∣

∣
, (1)

where the responses q
(1)
l of each neuron has the same size as the

input spectrogram S. The filtering, i. e. convolution, operation

is depicted by ∗.

These N1 = 8 receptive fields are learned using Indepen-

dent Component Analysis (ICA) on 3500 randomly selected lo-

cal 16 × 16 patches of the enhanced spectrograms taken from

the training set.

For a given point (t, f) in the spectrogram, the activity

q
(1)
l (t, f) of the l-th neuron reveals how close a local patch of

S centered in (t, f) is to the pattern l. For each local patch only

the highest correlated patterns are of interest. Therefore, we

perform a Winner-Take-Most (WTM) competition which inhib-

ites the response of the less active neurons at the position (t, f)

resulting in the activations r
(1)
l (t, f) [8]. Furthermore, a nonlin-

ear transformation with a Heaviside step function is applied on

all the r
(1)
l . After smoothing with a 2D Gaussian filter the reso-

lution of the spectrograms s
(1)
l is reduced by a factor of four in

both frequency and time dimension yielding features c
(1)
l with

32 frequency channels and a sampling rate of 100Hz [8].

2.3. Second stage: Extraction of combination features

Each of the k = 1 . . . N2 combination patterns on the second

layer Q(2) of our hierarchy is composed of N1 receptive fields

w
(2)
l,k , i. e. one for each of the neurons in the previous layer. The

coefficients of these receptive fields are non-negative and span

all frequency channels. Similarly to (1) the activity q
(2)
k (t) of

the k-th neuron at time t is given by:

q
(2)
k (t) =

N1
∑

l=1

(

c
(1)
l ∗w

(2)
l,k

)

(t, f). (2)

As the combination patterns span the whole frequency range the

response of the neurons does not depend on f anymore. This

means that, by computing the convolution, the patterns w
(2)
l,k

are only shifted in the time direction. Note that the absolute

value is not required in (2) as both the c
(1)
l and the w

(2)
l,k are

non-negative.

The combination patterns were also learned in an unsuper-

vised manner using Non-Negative Sparse Coding (NNSC) [15].

Thereby, we cut out patches P of length ∆ = 40ms of the first

layer activations c
(1)
l . From these patches we learn N2 = 50

combination features by minimizing the following cost function

[9]:

E =
∑

i

‖Pi −

N2
∑

k=1

αk,iw
(2)
k ‖2, (3)

wherePi is a tensor representing the N1 layers of the i-th patch,

the w
(2)
k are N2 non-negative tensors each of them containing

the N1 receptive fields w
(2)
l,k , the αk,i are nonnegative recon-

struction factors, and β is a parameter allowing to control the

sparsity of the learned features (see [7, 8] for details).

Overall, this yields N2 = 50 features q
(2)
k (t) at a sampling

rate of 100Hz. Delta and double-delta features are computed

using a 9th order FIR lowpass and bandpass filter, respectively.

When combining the features q
(2)
k (t) with their deltas we obtain

an N = 150 dimensional vector x.

3. Subspace Projection via MRMI

As described above we previously applied PCA to project the

N -dimensional feature vector x from our hierarchical feature

extraction to an M -dimensional subspace. The PCA takes only

the variance of the input dimensions into account and hence fea-

ture dimensions with low variation but possible high discrimi-

native power will be discarded. In contrast to this, discrimina-

tive feature projections span a subspace in which the discrimi-

native power of the dimensions is maximized. In the approach

we investigate, namely Maximizing Renyi’s Mutual Informa-

tion (MRMI), the mutual information

I(Y ;C) = H(Y )−H(Y |C) (4)

between the features y in the subspace RM and the correspond-

ing class labels C is maximized [10]. For a linear feature ex-

traction of form y = R · x one consequently searches for a

feature extraction matrixR ∈ R
M×N which maximizes (4).

In [10] it was shown that the maximization of the mu-

tual information can be simplified when Shannon’s definition

of entropy is replaced by Renyi’s quadratic entropy H2(Y ).
Thereby, H2(Y ) can be efficiently calculated by relying on

Parzen window density estimation using K randomly ordered

feature samples y(k):

I(Y ;C) ∼= H2(Y )−H2(Y |C) (5)

H2(Y ) ∼= − log
1

K

K
∑

k=1

G(y(k)− y(k − 1), 2σ2
I)

Here, G(z, σ2I) = exp(− 1
2

z
T
z)

2σ2 ) is a Gaussian kernel eval-

uated at z, where the kernel is centered at the origin and has a

diagonal isotropic covariance matrix.

Consider a training set composed of samples xj(k) as rep-

resentatives of class j where yj(k) = R · xj(k). Furthermore,

let Kj denote the number of samples belonging to class j, Kc

the number of classes, and KT =
∑Kc

j=1 Kj the length of the

overall training set. Then the information-theoretic criterion can

be formulated as [10]

I(Y ;C) = − log
1

KT

KT
∑

k=1

G(y(k)−y(k−1),2σ2)

+

Kc
∑

j=1





Kj

KT

log
1

Kj

Kj
∑

k=1

G(yj(k)−yj(k−1), 2σ2)



 .

(6)

Consequently, R can be learned via stochastic gradient ascent

on I(Y ;C).
To decorrelate the resulting feature dimensions we finally

apply PCA on the feature space learned via MRMI. Without

loss of generality we assume the features X to be white with

zero mean and unit variance. Then the covariance of the class-

discriminative feature vectors y is cov(Y ,Y ) = R ·RT . Let



white factory babble car

RASTA-PLP 43.1 41.0 35.0 19.5

HIST -PCA20 51.3 56.2 82.7 19.4

HIST -LDA20 53.0 47.6 68.9 36.5

HIST -MRMI20 38.1 38.8 86.8 16.6

HIST -PCA39 50.0 58.5 80.5 21.0

HIST -MRMI39 34.9 42.0 76.5 18.2

RASTA-PLP+HIST -PCA20 32.6 34.8 36.5 14.4

RASTA-PLP+HIST -LDA20 34.3 34.7 62.0 19.7

RASTA-PLP+HIST -MRMI20 24.0 28.2 61.2 12.0

RASTA-PLP+HIST -PCA39 27.9 31.5 58.7 11.0

RASTA-PLP+HIST -MRMI39 23.4 32.9 71.7 12.2

Table 1: Word error rates (in %) averaged for an individual type

of additional noise over SNR values ranging from −5 dB . . .
inf.

Ψ = [ψ1,ψ2, . . . ,ψM ] be the eigenvectors ofR ·RT . Conse-

quently, the decorrelated class-discriminative feature space can

be obtained by

y = Ψ
T ·R · x. (7)

4. Results

We compare the discriminative feature projection MRMI to

LDA and PCA on a task very similar to Aurora-2 [16]. To

TIDigits [17], a database for speaker independent continuous

digit recognition, we added White, Babble, Factory, and Car

noise from the Noisex database [18] at Signal to Noise Ra-

tios (SNRs) ranging from −5 dB . . . inf, i. e. we also kept

the clean signal. However, we did keep the original sampling

rate of 16 kHz of TIDigits but did not add channel distortions

when mixing the signals using FaNT [19]. As in Aurora-2 we

used HTK [20] to train whole word HMMs containing 16 states

without skip transitions and a mixture of 3 Gaussians with a

diagonal covariance matrix per state.

Training of the receptive fields of the Q(1) and Q(2) layer of

our feature hierarchy was performed on TIDigits. If not stated

otherwise the features as well as the HMMs are trained on clean

speech data. For the learning of the MRMI projection we used

the Timit database as this step required phonetic labels [21]. We

identified 21 phonemes necessary to cover the digit sequences

in TIDigits and randomly extracted for each of these phonemes

3000 segments of length 10ms from Timit. Silences and pauses

were not included as phonemic categories. The variance σ2 for

the Parzen approximation in (6) was set to 10 and the learning

was terminated after 10000 iterations at a learning rate of 0.1.

The LDA and PCA matrix was calculated on the identical data.

The output dimensionality of the LDA is limited to L− 1 with

L = 21 the number of phoneme classes in our database. There-

fore we calculated all transformations for M = 20, i. e. L− 1,

and MRMI and PCA also for M = 39, the dimensionality we

used in our previous experiments with PCA [8].

As benchmark we also extracted RASTA-PLP features [22]

with 45 dimensions. We have seen in previous experiments that

a combination of the HIST and RASTA-PLP features is espe-

cially beneficial [7, 8]. Therefore, we chiefly investigated a

combination of RASTA-PLP and HIST features where we used

projections based on PCA, LDA, as well as MRMI for the HIST

features. The combination was obtained via feature concatena-

tion, i. e. resulting in 65 or 84 dimensional vectors.

In Table 1 the Word Error Rates (WERs) for the different

noise types averaged over all SNR values are given. The sub-

scripts at PCA, LDA, and MRMI indicate the dimensionality of

the output space. Similar to our previous results using only PCA

[8] the HIST features, with either projection, perform worse

than the RASTA-PLP features in most cases. However, the com-

bination of HIST features and RASTA-PLP features is superior

to RASTA-PLP features alone in almost all cases. The excep-

tion are features based on the LDA projection with car noise

and Babble noise for all feature projections. We have seen be-

fore that Babble noise is problematic and could identify a high

sensitivity of the HIST features to speech and a subsequent high

probability for word insertions in Babble noise [8].

 −5   0   5  10  15  20 inf

0

20

40

60

SNR [dB]
R

el
at

iv
e 

im
p

ro
v

em
en

t 
[%

]

 

 

PCA
20

LDA
20

MRMI
20

PCA
39

MRMI
39

Figure 2: Relative improvements of the combination of RASTA-

PLP and HIST features with different projections compared to

RASTA-PLP features when factory noise was added to the test

set. The bars indicate the 95% confidence interval [23].

Fig. 2 allows to better assess the impact of the different pro-

jections. Here the relative improvements compared to RASTA-

PLP features when factory noise was added are shown. For low

and medium additional noise, i. e. when training and testing

conditions match, MRMI and LDA do in fact improve the per-

formance (when compared to features of the same dimension-

ality). When the noise level is increasing the situation changes.

LDA is performing poor with additional noise. Also MRMI39
is not performing well at high noise levels. However, MRMI20
remains superior to PCA also for high noise levels. When the

discriminant projections are learned on clean data there seems

to be a tendency of selecting dimensions which achieve good

discrimination in clean conditions, but with a high susceptibil-

ity to noise (as can be seen by comparing the performance of

MRMI39 and PCA39). This is mitigated by reducing the di-

mensionality (as can be seen by comparing the performance of

MRMI39 and MRMI20). Which on the other hand comes at the

price of reduced performance in clean and low noise conditions.

To further investigate this we also performed tests with noisy

data. For doing so we added all four types of noise at SNR lev-

els of 10 and 20 dB also to the training set and performed the

tests as before. We want to refer to this configuration as mixed

training. If we compare in Fig. 3 the performance of MRMI39

white factory babble car

RASTA-PLP 28.0 27.3 23.3 6.9

HIST -PCA39 25.7 29.7 43.4 8.9

HIST -MRMI39 23.0 25.9 40.0 7.8

RASTA-PLP+HIST -PCA39 24.6 25.1 23.3 5.3

RASTA-PLP+HIST -MRMI39 23.3 23.6 22.0 5.0

Table 2: Word error rates averaged for an individual type of

additional noise over SNR values ranging from −5 dB . . . inf.

Training was performed on the mixed set, i. e. with all four

types of noise added to the training set.
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Figure 3: Relative improvements of the combination of RASTA-

PLP and HIST features with different projections compared

to RASTA-PLP features when training was performed on the

mixed set (with all four types of noise added) and factory noise

was added to the test set. The bars indicate the 95% confidence

interval [23]

and PCA39 we can see that MRMI39 now outperforms PCA39

also for low noise conditions. From Table 2 one can see that

MRMI is in this mixed training case superior to PCA on av-

erage for all noise types. Please note that the combination of

RASTA-PLP and HIST features now also outperforms RASTA-

PLP alone for Babble noise. The HMMs were able to adapt to

the high speech sensitivity of the HIST features as Babble noise

was also present in the training data [8].

5. Conclusion

We compared the discriminant feature projections LDA and

MRMI to PCA in the framework of our HIST features. Ad-

ditionally, we investigated their generalization capabilities to

mismatches between training and test conditions. We saw that

MRMI39 clearly outperforms PCA39 in matching conditions,

i. e. at low noise levels when training was performed on clean,

but yields inferior performance in non-matching, i. e. noisy,

conditions. From the results we see that the discriminant pro-

jections, i. e. MRMI, select features which increase recogni-

tion performance and hence discriminative power in matching

conditions. We hypothesize that with increasing dimensional-

ity of the output feature space dimensions are selected which

decrease discriminative power in non-matching conditions, i. e.

training on clean and testing in noise. One solution seems to be

to select a lower-dimensional output space (as the comparison

between MRMI39 and MRMI20 shows). However, this yields

reduced performance in matching conditions. An alternative is

to perform the learning of the feature projection also on noisy

data and thereby reestablish matching conditions when testing

is also performed in noisy conditions. In this case MRMI is able

to select the features which increase discriminative power in the

noisy condition. The performance in clean is then comparable

to that of the PCA but not superior. LDA, which we restricted

to 20 dimensions as we were using 21 phoneme classes, per-

formed worse than MRMI. Especially, LDA was much more

susceptible to a mismatch between training and test condition.
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