
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Learning Motion Primitives using Spatio-
Temporal NMF

Sven Hellbach, Christian Vollmer, Julian Eggert, Horst-
Michael Groß

2011

Preprint:

This is an accepted article published in Proc. of the DAGM Workshop "New
Challenges in Neural Computation" 2011, Machine Learning Reports 05/11. The
final authenticated version is available online at: https://doi.org/[DOI not
available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Learning Motion Primitives using Spatio-Temporal NMF

Sven Hellbach1, Christian Vollmer1, Julian P. Eggert2, and Horst-Michael Gross1

1 Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Labs,
POB 10 05 65, 98684 Ilmenau, Germany
christian.vollmer@tu-ilmenau.de

2 Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30,
63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

1 Introduction

The understanding and interpretation of movement trajectories is a crucial component in dynamic
visual scenes with multiple moving items. Nevertheless, this problem has been approached very
sparsely by the research community. Most approaches for describing motion patterns, like [1],
rely on a kinematic model for the observed human motion. This causes the drawback that the
approaches are difficult to adapt to other objects. Here, we aim at a generic, model-independent
framework for decomposition, classification and prediction.

Consider the simple task for a robot of grasping an object which is handed over by the hu-
man interaction partner. To avoid a purely reactive behaviour, which might lead to ‘mechanical’
movements of the robots, it is necessary to predict the further movement of the human’s hand.

In [2] an interesting concept for a decomposition task is presented. Like playing a piano a
basis alphabet – the different notes – are superimposed to reconstruct the observation (the piece
of music). Regarding only the information, when a base primitive was active, gives rise to an
instance of the so called ’piano model’ which is a very low-dimensional and sparse representation
and which can be exploited for further processing. While the so-called piano model relies on a set
of given basis primitives, our approach is able to learn these primitives from the training data.

We use [3], a blind source separation approach in concept similar to PCA and ICA. The system
of basis vectors which is generated by the NMF is not orthogonal. This is very useful for motion
trajectories, since one basis primitive is allowed to share a common part of its trajectory with
other primitives and to specialize later.

2 Non-negative Matrix Factorization

Like other approaches, e. g. PCA and ICA, non-negative matrix factorization (NMF) [3] is meant
to solve the source separation problem. Hence, a set of training data is decomposed into basis
primitives W and activations thereof H:

V ≈W ·H (1)

Each training data sample is represented as a column vector Vi within the matrix V. Each
column of the matrix W stands for one of the basis primitives. In matrix H the element Hj

i

determines how the basis primitive Wj is activated to reconstruct training sample Vi.
For generating the decomposition, optimization-based methods are used. Hence, an energy

function E has to be defined:

E(W,H) =
1

2
‖V −T ·W ·H‖2 + λ

∑
i,j

Hj
i (2)

By minimizing the energy equation, it is now possible to achieve a reconstruction using the matrices
W and H. This reconstruction is aimed to be as close as possible to the training data V. In



Fig. 1. Motion Trajectories are transferred into a grid representation. A grid cell is set to 1 if it is in the
path of the trajectory and set to zero otherwise. Each dimension has to be regarded separately. During
the prediction phase multiple hypotheses can be gained by superimposing several basis primitives. This is
indicated with the grey trajectories on the right side of the grid.

addition the basis primitives are intended to be allowed to move, rotate and scale freely. This
is achieved by adding a transformation matrix T to the decomposition formulation [4]. For each
allowed transformation the corresponding activity has to be trained individually. To avoid trivial
or redundant solutions a further sparsity constraint is necessary. Its influence can be controlled
using the parameter λ [5].

The minimization of the energy function can be done by gradient descent. The factors H and
W are updated alternately with a variant of exponentiated gradient descent until convergence.

3 Decomposing Motion Trajectories

For being able to decompose and to predict the trajectories of the surrounding dynamic objects,
it is necessary to identify them and to follow their movements. For simplification, a tracker is
assumed, which is able to provide such trajectories in real-time. A possible tracker to be used is
presented in [6]. The given trajectory of the motion is now interpreted as a time series T with
values si = (xi, yi, zi) for time steps i = 0, 1, . . . , n− 1:

T = (s0, s1, . . . , sn−1). (3)

It is now possible to present the vector T directly to the NMF approach. But this could result
in an unwanted behaviour, while trying to reconstruct the motion by use of the basis primitives.
Imagine two basis primitives, one representing a left turn and another representing a right turn.
A superposition of those basis primitives would result in a straight movement.

The goal is to have a set of basis primitives, which can be concatenated one after the other.
Furthermore, it is necessary for a prediction task to be able to formulate multiple hypotheses. For
achieving these goals, the x-t-trajectory is transferred into a grid representation, as it is shown in
figure 1. Then, each grid cell (xi, tj) represents a certain state (spatial coordinate) xi at a certain
time tj . Since most of the state-of-the-art navigation techniques rely on grid maps, the prediction
can be integrated easily. Grid Maps were first introduced in [7]. This 2D-grid is now presented
as image-like input to the NMF algorithm. Using the grid representation of the trajectory also
supports the non-negative character of the basis components and their activities.

It has to be mentioned, that the transformation to the grid representation is done for each
of the dimensions individually. Hence, the spatio-temporal NMF has to be processed on each of
these grids. Regarding each of the dimensions separately is often used to reduce the complexity
of the analysis of trajectories (compare [8]). However, the algorithm’s only limitations to handle
multi-dimensional grid representation is the increase of computational effort.

While applying an algorithm for basis decomposition to motion trajectories it seems to be
clear that the motion primitives can undergo certain transformations to be combined to the whole
trajectory. For example, the same basis primitive standing for a straight move can be concatenated
with another one standing for a left turn. Hence, the turning left primitive has to be moved to the
end of the straight line, and transformation invariance is needed while decomposing motion data.
For our purposes, we concentrate on translation. This makes it possible to reduce the complexity
of the calculations and to achieve real time performance.

The sparse coding constraint helps to avoid trivial solutions. Since the input can be compared
with a binary image, one possible solution would be a basis component with only a single grid cell
filled. These can then be concatenated one directly after another. So, the trajectory would simply
be copied into the activities.
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Fig. 2. Training with Spatio-Temporal NMF. Given is a set of training samples in matrix V. The described
algorithm computes the weights W and the corresponding activities H. Only the weights are used as basis
primitives for further processing.

Training Phase: The goal of the training phase is to gain a set of basis primitives which allow
to decompose an observed and yet unknown trajectory (see Fig. 2). As it is discussed in section
3, the training samples are transferred into a grid representation. These grid representations are
taken as input for the NMF approach and are therefore represented in matrix V. On this matrix
V the standard NMF approach, extended by the sparsity constraint and by translation invariance,
is applied. The algorithm is summarized in [9].

Beside the computed basis primitives, the NMF algorithm also provides the information of how
each of the training samples can be decomposed by these basis primitives.

Application Phase: As it is indicated in Fig. 3, from the training phase a set of motion primitives
is extracted. During the application phase, we assume that the motion of a dynamic object (e. g.
a person) is tracked continuously. For getting the input for the NMF algorithm, a sliding window
approach is taken. A certain frame in time is transferred into the already discussed grid like
representation. For this grid the activation of the basis primitives is determined by trying to
reconstruct the input.

The standard approach to NMF implies that each new observation at the next time step
demands a new random initialization for the optimization problem. Since an increasing column
number in the grid representation stands for an increase in time, the trajectory is shifted to the
left while moving further in time. For identical initialization, the same shift is then reflected in
the activities after the next convergence. To reduce the number of iterations until convergence,
the shifted activities from the previous time step are used as initialization for the current one.

To fulfil the main goal discussed in this paper – the prediction of the observed trajectory into
the future – the proposed algorithm had to be extended. Since the algorithm contains the trans-
formation invariance constraint, the computed basis primitives can be translated to an arbitrary
position on the grid. This means that they can also be moved in a way that they exceed the
borders of the grid. Up to now, the size of reconstruction was chosen to be the same size as the
input grid. Hence, using the standard approach means that the overlapping information has to
be clipped. To be able to solve the prediction task, we simply extend the reconstruction grid to
the right – or into the future (see Fig. 3). So, the previously clipped information is available for
prediction.
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Fig. 3. The basis primitives W, which were computed during the training, are used to reconstruct (matrix
R) the observed trajectory V. This results in a set of sparse activities – one for each basis primitive –
which describe on which position in space and time a certain primitive is used. Beside the reconstruction
of the observed trajectory (shown in Fig. 3), it is furthermore possible to predict a number of time steps
into the future. Hence, the matrix R is extended by the prediction horizon P.
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