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Abstract We describe an architecture that gives a robot the
capability to recognize speech by cancelling ego noise, even
while the robot is moving. The system consists of three
blocks: (1) a multi-channel noise reduction block, compris-
ing consequent stages of microphone-array-based sound lo-
calization, geometric source separation and post-filtering;
(2) a single-channel noise reduction block utilizing template
subtraction; and (3) an automatic speech recognition block.
In this work, we specifically investigate a missing feature
theory-based automatic speech recognition (MFT-ASR) ap-
proach in block (3). This approach makes use of spectro-
temporal elements derived from (1) and (2) to measure the
reliability of the acoustic features, and generates masks to
filter unreliable acoustic features. We then evaluated this
system on a robot using word correct rates. Furthermore,
we present a detailed analysis of recognition accuracy to
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determine optimal parameters. Implementation of the pro-
posed MFT-ASR approach resulted in significantly higher
recognition performance than single or multi-channel noise
reduction methods.
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1 Introduction

Robots should be able to recognize and understand their au-
ditory environments by using microphones to listen to their
surrounding areas, an artificial listening capability known as
“robot audition.” However, the performance of some robot
audition applications, such as Automatic Speech Recogni-
tion (ASR) and Sound Source Localization (SSL), is de-
graded drastically by background noise, reverberations, con-
current speakers and the robot’s own noise. Signal quality
and ASR accuracy may be improved by applying speech
enhancement algorithms to the degraded speech. Since the
short-term spectral characteristics of these noise signals dif-
fer substantially, various methods have been proposed to
eliminate each individually. In general, robots with mi-
crophones are usually equipped with adaptive noise can-
cellation and acoustic echo cancellation methods for ro-
bust speech recognition in noisy and reverberant environ-
ments [1]. Microphone array-based multi-channel noise re-
duction methods [2] have shown especially good perfor-
mance by forming and steering a beam in the direction of
the desired sounds and attenuating interfering sound sources
if the sound sources are directional, as in the case of mul-
tiple speakers. Although numerous signal processing tech-
niques [2, 3] can deal with diffuse background noise, direc-
tional interfering noise and reverberations, the robot’s own
noise, also called ego noise, has not received as much atten-
tion.

Basically, the ego noise of a robot can be defined as the
sum of fan noise, hardware noise and ego-motion noise. Fan
noise comes from the fans that are located throughout the in-
terior of the robot and help to dissipate the large amount of
heat generated by the CPU, the power supply and other com-
ponents, while hardware noise stems from the electrical cir-
cuits. The static (steady-state) fan noise and hardware noise
can be removed easily by applying spectral filtering oper-
ations. In contrast, ego-motion noise is of special interest
because it occurs only when the robot is performing an ac-
tion using its motors. This special type of mechanical noise
has so far either been ignored or circumvented due to its
complex characteristics. The complexity is enhanced by the
number of motors in action, making noise even more severe
for a moving robot with a high degree of freedom. Never-
theless, mobility is a necessary condition for improving the
perceptual capabilities of robots. Thus an autonomous robot
with active perception may require a highly robust ability to
suppress ego noise at any moment.

Ego-motion noise is more difficult to cope with than
background or static fan noise, because it is non-stationary
and, to a certain extent, similar to the signals of interest
in terms of its directionality [4]. Therefore, conventional
single-channel noise reduction methods, such as Spectral
Subtraction (SS), Wiener Filtering (WF) and Minimum

Mean Square Estimation (MMSE) [5–7], which incorporate
estimates of the power spectrum of noise using the power
spectrum of noisy speech [8–10], do not work well in prac-
tice. Treating ego-motion noise as a purely directional signal
is also not a valid assumption, because ego-motion noise is
also partially diffuse, due to the vibrations and reverbera-
tions inside the covers of the robot [4]. In practical terms, it
is also not possible to localize each sound source (i.e., the
noise signal emitted by each motor) at such short distances
and cancel them spatially utilizing Sound Source Separation
(SSS) techniques.

In this paper, we propose using template-based estima-
tion, which is well-suited to capture the dynamic nature of
the motion data represented by a sequence of observations.
Based on these observations, it should be possible to asso-
ciate a motion command or discrete time series data repre-
senting the motion (i.e., the angular status of each joint of
the robot) with another series of discrete time data repre-
senting the total ego noise spectrum, thereby predicting an
arbitrary sequence of associated data. This approach relies
heavily on seamless synchronization between data on joint
status (i.e., angular position, velocity and acceleration) and
audio data. The high estimation quality achieved by this ap-
proach allows us to suppress noise accurately by applying
a template-based spectral subtraction, also called Template
Subtraction (TS). Furthermore, we incorporate Missing Fea-
ture Theory (MFT), which can be described as a filtering
operation applied to missing or damaged acoustic features,
to solve the ego noise problem of a robot at a higher level
for an ASR application. To estimate the reliability of the
features of speech, which are subject to residuals of motor
noise after template subtraction, and to improve the perfor-
mance of ASR, we propose to use MFT with a reliability es-
timation model based on ego-motion noise predictions. To
generate suitable masks, we propose to integrate a multi-
channel framework consisting of SSL, SSS, and Speech En-
hancement (SE), in which the first two steps make use of
the directionality of motor noise to cancel it and thus pro-
vide additional information about reliability. In contrast, the
third step (SE) handles the diffuse portion of the ego-motion
noise. In this respect, the main contribution of our work will
be the incorporation of an original Missing Feature Mask
(MFM) generation method based on the signals generated
by two blocks (template subtraction & multi-channel noise
reduction) that run in parallel. The mask relies on a measure
of a frequency bin’s quality calculated from the similarity of
two totally different—yet complementary—approaches. We
first suggest a binary mask, which uses either 0 or 1 to es-
timate the reliability of each acoustic feature. This method
could be enhanced by using a soft mask, represented as con-
tinuous values between 0 and 1, which yields more detailed
information about reliability. We demonstrate that these pro-
posed methods achieve high noise elimination and thus ASR
accuracy.
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The rest of the article is organized as follows: In Sect. 2,
we discuss related work on existing ego-motion noise sup-
pression methods. Section 3 describes the proposed system
and briefly summarizes the preprocessing stages, namely
SSL, SSS, SE and template subtraction. Section 4 investi-
gates a speech recognition system and computation of the
missing feature masks in detail. Experiments and results are
described in Sect. 5. The last section summarizes our con-
clusion and proposed future work.

2 Related work

Nakadai et al. [11] proposed a noise cancellation method
that used two pairs of microphones. One pair in the inner
part of the shielding body would record only internal mo-
tor noise and would help the sound localizer to determine
whether each spectral sub-band is noisy or not, thus ignor-
ing bands in which noise is dominant. In contrast to our
approach, this technique does not suppress the noise. Sev-
eral researchers addressed ego-motion noise problems by
predicting and removing ego-motion noise using templates
recorded in advance: For example, Ito et al. [12] used an Ar-
tificial Neural Network (ANN) to develop a frame-by-frame
approach to cope with unstable walking noise. The trained
network had to predict the noise spectrum resulting from
the angular velocities of the joints of the robot. That study,
however, concentrated on a small robot with limited degrees
of freedom. Moreover, ANN has a slow training speed and
online adaptation is difficult to achieve. In addition, this re-
search was based mainly on estimations of templates for
different motions, but did not focus on the possibility of
quality improvement by utilizing spectral enhancement op-
timization factors. Ince et al. [13] proposed using parameter-
ized template subtraction, incorporating tunable parameters
to deal with variations in ego-motion noise, thus eliminating
the training constraints of ANN. The accuracy of these tem-
plates was further enhanced by incorporating more informa-
tion related to the joints, such as their angular acceleration.
However, both of these methods [12, 13] suffer from the
distorting effects of musical noise [6], which accompanies
nonlinear single-channel based noise reduction techniques
and reduces the intelligibility and quality of audio signals.
In addition, this method, when utilized together with a non-
linear background noise prediction technique, e.g., Minima
Controlled Recursive Averaging (MCRA) [5], results in a
series of two consecutive nonlinear noise reduction opera-
tions. These operations produce even more musical noise,
eventually damaging the acoustic features and reducing the
recognition performance of ASR.

In the field of “Robot Audition”, which pursues gen-
eral understanding of sound, noise suppression is achieved
mostly using sound source separation techniques with mi-

crophone arrays [14–16]. Ego-motion noise cannot be com-
pletely explained by a directional noise model, such as as-
sumed for interfering speakers [14, 15] or by a diffuse back-
ground noise model [5]. Because the motors are located in
the near field of the microphones, they produce sounds that
have both diffuse and directional characteristics. In another
related work, Even et al. [16] proposed using semi-blind
signal separation to obtain both external and internal noise
by attaching additional sensors inside the robot. The pre-
dictions were used to compute Wiener coefficients, and a
delay-and-sum beam-former enhanced the refined speech.
Although it improved speech recognition accuracy consider-
ably, this method requires a body cover made of high-quality
or thick material so that no external noise could be recorded
by these additional sensors. In contrast, our method can be
implemented on any mobile robot, with no physical con-
straints on its external shielding, and utilizes only existing
microphones.

Research has also focused on specific conditions for near
field sound sources. For example, Mizumachi et al. de-
scribed a model utilizing line sound sources and spherical
wave propagation in the near field, in contrast to conven-
tional far field assumptions such as plane wave propagation
and point-shaped sound sources [17]. Zheng et al. proposed
a spherically isotropic noise model for near field objects,
achieving greater suppression of reverberations and reduc-
tion in beam-pattern variations for broadband signals, sim-
ilar to our motor noise signals [18]. The proposed models,
however, are computationally expensive, can deal with only
a single sound source, and more importantly, are designed
for stationary sound sources. In a standard task utilizing
moving robots where the acoustic conditions of the noise,
such as the power and frequencies of the motor noise spec-
trum as well the number of active motors, can dynamically
change over time, the performance of these models can de-
crease drastically.

From the perspective of signal processing, unreliable fea-
tures of speech have been shown to degrade recognition
performance severely [19]. MFT has already found useful
applications, such as recognition of speech corrupted by
music and several types of noise (refer to [19] for a com-
prehensive study). For a simultaneous speech recognition
task of several speakers, Yamamoto et al. [14] and Taka-
hashi et al. [20] have proposed a model for mask generation
based on the disturbing effect of leakage noise over speech,
because an imperfect source separation causes distortion.
Their model, however, was unable to deal with ego-motion
noise. Nishimura et al. [21] estimated the ego noise of dis-
tinct gestures and motions of the robot. Using motion com-
mands, the pre-recorded correct noise template matching a
recent motion could be selected from the template database
and the acoustic features of the aligned template could be
used for MFT weight calculation. Since their mask model
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Fig. 1 Proposed noise cancellation system

was based on a simple energy threshold, it was not feasi-
ble for use in a real-world scenario, where the Signal-to-
Noise Ratio (SNR) of speech can change depending on the
loudness and distance of the speaker from the robot. They
also utilized blockwise templates, which could not cope
with dynamic changes in motion trajectories over time. Our
approach overcomes the former problem by introducing a
mask generation method that operates on speech signals re-
fined from all types of noise, and overcomes the latter prob-
lem by using a parameterized template prediction method,
as in [13].

3 System overview

As sensors we used an array of multiple omnidirectional
microphones mounted around the head of the robot. The
overall architecture of the proposed noise reduction sys-
tem is shown in Fig. 1. The first block of our processing
chain, composed of elements for performing SSL, extracts
the location of the most dominant sources of noise in the
environment. The locations of these sources can be esti-
mated using a linear separation algorithm called Geometric
Source Separation (GSS) [14], which can be considered a
hybrid algorithm of Blind Source Separation (BSS) [22] and
beam-forming. SSS is followed by a speech enhancement
step, called multichannel Post-Filtering (PF). This module
attenuates stationary noise, i.e., background noise, and non-
stationary noise that arises from the leakage energy between
the output channels of the previous separation stage for
each individual sound source. These three modules consti-
tute the multi-channel noise reduction block [4], while a
second block performs template subtraction [13]. These
two modules together are responsible for the audio features
of speech recognition and spectrograms that will be further
processed in the MFM generation stage. Finally, a new third
block, MFT-based speech recognition, designed to achieve

a more robust ASR, uses both the features and spectrograms
created in the pre-processing stages to extract the most suit-
able features. This part will be discussed in Sect. 4 in detail.

3.1 Multi-channel noise reduction system

To estimate the Direction of Arrival (DoA) of each sound
source, we used a popular adaptive beamforming algorithm
called MUltiple SIgnal Classification (MUSIC) [23]. This
algorithm identifies the DoA by performing eigenvalue de-
composition on the correlation matrix of the noisy signal, by
separating subspaces of undesired interfering sources from
sound sources of interest, and by identifying the peaks in
the spatial spectrum. A consequent source tracker system
performs temporal integration in a given time window.

Geometric Source Separation [22], later on extended to
be an adaptive algorithm that can process input data in-
crementally [15], explicitly makes use of the locations of
sources. To estimate the separation matrix properly, GSS in-
troduces cost functions that must be minimized in an itera-
tive way (see [15] for details). Moreover, we used adaptive
step-size control, which results in rapid convergence of the
separation matrix [24]. Our GSS implementation also ex-
ploited a method called Optima Controlled Recursive Av-
eraging, which controls the window size adaptively caus-
ing a smoother convergence and thus better separation re-
sults [25].

After the separation process, a multi-channel post filter-
ing operation was utilized to further enhance the sounds.
This module is based on the optimal estimator proposed
by Ephraim and Malah [26]. Since their method takes tem-
poral and spectral continuities into consideration, it gener-
ates less distortion than conventional spectral subtraction-
based noise reduction methods. To further extend this con-
cept, we applied a multi-channel post filter [15], which can
cope with non-stationary interferences as well as stationary
noises. This module treats the transient components in the
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spectrum as if they are caused by leakage energies that may
occasionally arise due to poor separation performance. For
this purpose, noise variances of both stationary noise and
source leakage are predicted, the former using the MCRA
method [6], and the latter using the algorithm proposed
in [15]. The noise suppression rule further involves speech
presence probability calculations [27] and is based on min-
imum mean-square error estimation of the spectral ampli-
tude [26].

3.2 Single-channel template subtraction system

The underlying motivation for using templates for noise re-
duction is that the duration of the motor noise signals does
not change for the same motions by more than a few sam-
ples when the motion is performed again and the magnitude
of the noise signal does not deviate much from the mean
magnitude of a set of same motions. Thus, we made the fol-
lowing assumptions:

• Current motor noise depends on the position, velocity and
acceleration of that specific motor.

• Similar combinations of joint status will result in similar
motor noise spectral vectors at any time point.

• The superposition of each single joint motor noise at any
time point is equal to the whole body noise at that time.

We defined a template as the representation of an actual
segment of noise. A blockwise template fundamentally con-
sists of two parts: 1) Label: Motion label (e.g., “wave right
hand” or “turn head from 0◦ to 40◦”), and 2) Data: Whole
ego noise spectrum recorded during the motion (i.e., spectral
matrix). A conventional blockwise template subtraction first
estimates the ego noise spectrum using only motion com-
mands as representative labels for the corresponding ego
noise spectrum and then removes it from the noisy spectrum
to obtain a clean speech spectrum. Basically, a query in the
motion command labels from a database enables the selec-
tion of the appropriate ego noise template, recorded from the
onset until the offset time of motor noise. This method, how-
ever, has several shortcomings; e.g., it could be performed
properly only after the detection of the exact starting mo-
ment of the template, which is a very hard task to achieve.
Otherwise, it suffers from misalignments of the templates
in time. Furthermore, this method requires a huge amount
of data for each possible motion. Considering the impossi-
bility of collecting and producing templates for each joint
of different combinations of origin, target, position, veloc-
ity and acceleration parameters, this approach is simply not
feasible in a realistic scenario. Finally, this rather primitive
representation of motion labels cannot deal with deviations
in motion trajectories.

To overcome these deficits, we developed a technique
that parameterizes a discrete audio segment under consid-
eration using motor status, obtaining a spectral vector that
represents the ego noise at that instant of time. This parame-
terized template has a different structure than the blockwise
template: 1) Label: Instantaneous joint status of the robot
(i.e., feature vector), and 2) Data: Instantaneous ego noise
spectrum of one frame (i.e., spectral vector). To implement
so-called parameterized template subtraction [13], we need
a robot with joint angle sensors (encoders) that measure the
angular positions of each of its joints separately. In addition,
this method can improve the quality of speech by exerting
spectral enhancement parameters, as shown in Sect. 3.2.3.

Before explaining the details of parameterized template
subtraction, we first define an input signal y(t) at time t ,
which can be expressed as

y(t) = x(t) + d(t), (1)

where x(t) is a target signal and d(t) is the distortion, i.e.,
noise signal. Noise estimation and reduction algorithms op-
erate in the time-frequency (spectrogram) domain. The com-
plex input spectrum Y(ω, k) of discrete frequency bin ω and
time frame k is obtained from

Y(ω, k) =
t=F−1∑

t=0

y(t + kM)w(t) exp{j (2π/F)tω}, (2)

where F is the window length, M is the shift length and
w(t) is the window function. Finally, the spectrum of the
observed signal Y(ω, k) can be given as:

Y(ω, k) = X(ω,k) + D(ω,k). (3)

3.2.1 Generation of the template database

To generate the template database, joint status information
provided by the sensors on the motors will be utilized. Dur-
ing the motion of the robot, the actual position (θ ) infor-
mation for each motor is gathered regularly. Using the dif-
ference between consecutive sensor outputs, velocity (θ̇ )
and acceleration (θ̈ ) can be calculated. If J joints are ac-
tive, 3J attributes are generated. Each feature is normal-
ized to [−1 1], so that all features have the same contri-
bution to the prediction. The resulting feature vector has the
form, F(k) = [θ1(k), θ̇1(k), θ̈1(k), . . . , θJ (k), θ̇J (k), θ̈J (k)].
At the same time, motor noise is recorded and background,
static fan and hardware noise is removed from the over-
all noise recordings. The spectrum of the motor noise
(D(k) = [D(1, k),D(2, k), . . . ,D(F, k)], where F repre-
sents the number of frequency bins) is calculated by the
sound processing branch running in parallel. Both feature
vectors and spectra are continuously labeled with time tags
so that corresponding templates can be generated when their
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Fig. 2 Parameterized template
prediction method and its
applications for ego-motion
noise robust speech recognition

time tags match. Each parameterized template is in the for-
mat of a data block consisting of two concatenated vectors,
[F(k),D(k)]. Finally, a large noise template database, con-
sisting of short noise templates for many joint configura-
tions, can be created.

3.2.2 Motor noise prediction

The prediction phase starts with a search of the database
for the best matching template of motor noise at that time
(Fig. 2). Finding the correct template involves a search
of all the templates in the database for most similar joint
configuration. We utilized a 1-Nearest Neighbor (1-NN)
search to accomplish this task. The spectral vector, D̂(k) =
[D̂(1, k), D̂(2, k), . . . , D̂(F, k)], associated with the point in
the database with the shortest distance to the query point was
selected as the template. This prediction process can be ap-
plied to every frame. In that sense, a template for a single
arbitrary motion of an arbitrary duration can be regarded as
the concatenation of smaller templates predicted according
to the above-mentioned approach on a frame-by-frame ba-
sis.

3.2.3 Template subtraction

The power spectrum of the useful signal can be obtained by
applying:

Xr(ω, k) = Y(ω, k) − D̂(ω, k), (4)

where D̂(ω, k) denotes the estimated noise template and
Xr(ω, k) is the signal comprising the useful sound and resid-
ual motor noise, which results from the deviation of the orig-
inal motor noise D(ω,k) from the predicted motor noise. To
compensate for this error, we used a spectral subtraction ap-
proach that utilized an overestimation factor, α, and a spec-
tral floor, β . α, also called an aggressiveness factor, thus al-

lowing a compromise between perceptual signal distortion
and noise reduction level. In contrast, β is required to deal
with the problem called musical noise, which is caused by
non-linear mapping of the negative or small-valued spectral
estimates. This produces a metallic noise that sounds like
the sum of tone generators with random fundamental fre-
quencies, which are turned on and off constantly [5]. β re-
duces the effect of the sharp valleys and peaks in the spec-
trum, which are caused by the smaller attenuations of these
compared with neighboring frequencies due to the random
fluctuations in the estimations of magnitude.

A noise reduction process can be divided into two con-
sequent processes: gain calculation and spectral filtering.
The gains can be calculated using the formula of magnitude
spectral subtraction [5]:

ĤSS(ω, k) = max

(
1 − α

|D̂(ω, k)|
|Y(ω, k)| , β

)
, (5)

where ĤSS(ω, k) represents the gain coefficient and max is
the maximum value calculation. A spectral filtering opera-
tion of the signal Y(ω, k) with this coefficient finalizes the
template subtraction as in (6):

X̂(ω, k) = ĤSS(ω, k) · Y(ω, k). (6)

Unlike previous methods [12, 21], our prediction, gen-
eration and subtraction methods did not require any start-
ing or ending signals, indicating that no abrupt blockwise
templates are applied to the noisy signals discontinuously.
Our methods continuously process the data, even when the
robot does not move. Therefore, our template database does
not only consist of recordings of motor noise, but also of
recordings of the joints in resting positions. We conducted a
training session of uninterrupted sound recording for a sin-
gle continuous motion sequence consisting of hundreds of
individual motions with short (<1 sec.) pauses between each
motion.
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4 MFT-based automatic speech recognition system

Different strategies, which make use of a confidence-based
weighting of the time-frequency representation of audio sig-
nals, can enhance the quality of speech. Missing Feature
Theory is a promising approach that basically applies a
mask to decrease the contribution of unreliable parts of dis-
torted speech [19]. Retaining the reliable parameters that
are essential for speech recognition results in a substan-
tial increase in recognition accuracy [14, 20]. In this sec-
tion, we will discuss the basic steps of such an ASR sys-
tem and how this approach can be adapted to the ego noise
problem by presenting a robust mask design method for es-
timating the reliability of speech based on current motor
noise.

4.1 Acoustic feature extraction

Acoustic features are extracted from the refined spectra, the
final products of the noise reduction stages (see Fig. 1).
An additive white noise step applied after post-filtering im-
proves speech recognition results, due to the generation of
an artificial spectral floor in the background of a speech sig-
nal and the blurring of musical noise distortions. Because
we did not want the distortions to spread to all coefficients
of the cepstrum, we avoided using Mel-Frequency Cepstral
Coefficients (MFCC). Rather, we used the Mel-Scale Log
Spectrum (MSLS), whose detailed calculation method has
been described in [28]. Moreover, linear regression of each
spectral coefficient is represented as a delta feature and used
to enhance the quality of acoustic features. Spectral mean
normalization improved the noise robustness of MSLS fea-
tures by subtracting the average of the features in the previ-
ous 5 seconds from the current features.

4.2 MFM generation

The reliability of features is computed for each frame and
for each mel-frequency band. Masks composed of continu-
ous values between 0 and 1 are called soft masks, whereas
masks composed of only discrete values, either 0 or 1, are
called hard masks. We assessed the performance of both
methods for this particular type of ego noise problem. We
start by explaining some basic ego-motion noise suppres-
sion capabilities of the preprocessing stages of our proposed
system. Then, we show how to derive the masks in detail.

GSS lacks the ability to identify and suppress motor noise
originating from the same direction as the speaker, because
it regards the noise as part of the speech. Moreover, if the
position of the noise source is not detected precisely, GSS
cannot separate the sound in the spatial domain. Thus, small
amounts of motor noise can spread to the separated sound
sources. However, multi-channel noise suppression systems

work very well for weaker motion noise, such as arm or
leg motions, when compared with head motion noise, as we
demonstrated [4]. In addition, our system was optimally de-
signed for “simultaneous multiple speakers” scenarios with
background noise and demonstrated a very good perfor-
mance when no motor noise was present.

In contrast, template subtraction makes no assumptions
about the directivity or diffuseness of the sound source and
can match a pre-recorded template of the motor noise at any
moment. The drawback of this approach, however, is that
due to its not being stationary, the characteristics of pre-
dicted and actual noise may differ to some extent.

As described, the two approaches have distinct strengths
and weaknesses and thus may be used in a complementary
fashion. A speech feature is considered unreliable if the dif-
ference between the energies of refined speech signals gen-
erated by multi-channel and single-channel noise reduction
systems is above a threshold T . The masks are computed
for each frame, k, and for each frequency band, f . First, a
continuous mask is calculated as:

m(f, k) = |Ŝm(f, k) − Ŝs(f, k)|
Ŝm(f, k) + Ŝs(f, k)

, (7)

where Ŝm(f, k) and Ŝs(f, k) are the estimated energy of the
refined speech signals (|X̂(ω, k)|2), following multi-channel
noise reduction and single-channel template subtraction, re-
spectively. Both signals are computed using a mel-scale fil-
terbank. The numerator represents the deviation of the two
outputs, a measure of their uncertainty or unreliability. The
denominator, however, is a scaling constant and is the av-
erage of the two estimated signals. (To simplify the equa-
tion, we removed the scalar values from the denominator, so
that m(f, k) can take on values between 0 and 1.) Thereby,
the reliability can be defined by 1

m(f,k)
, which means the

smaller the m(f, k), the higher the reliability and vice versa.
Depending on the type of mask (hard or soft) used in the
MFT-ASR, (8) or (9) is selected.

1. For hard (binary) masks:

M(f, k) =
{

1, if m(f, k) < T ,

0, if m(f, k) ≥ T .
(8)

2. For soft masks [20]:

M(f, k) =
⎧
⎨

⎩

1

1 + exp(−σ(m(f, k) − T ))
, if m(f, k) < T ,

0, if m(f, k) ≥ T ,

(9)

where σ is the tilt value of a sigmoid weighting function.
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4.3 MFT-ASR

Missing Feature Theory Based Automatic Speech Recogni-
tion (MFT-ASR) is a Hidden Markov Model (HMM) based
speech recognition technique [19]. If M(i) is the MFM vec-
tor generated as in Sect. 4.2 for the i-th acoustic feature, the
output probability can be expressed as:

bj (x) =
L∑

l=1

P(l|Sj ) exp

{
I∑

i=1

M(i) logf (x(i)|l, Sj )

}
,

(10)

where bj (x) is the output probability of the j -th state, x(i) is
an acoustic feature vector, I is the size of the acoustic feature
vector, P(·) is the probability operator and Sj is the j -th
state. Density in each state Sj is modeled using mixtures of
L Gaussians with diagonal-only covariance. When all mask
values are set to 1, (10) is identical to the output probability
calculation of a conventional ASR.

5 Results

In this section, we compare results of the proposed system
with those of existing approaches against ego-motion noise,
after describing the experimental settings and environment.
We assessed the performance of pre-processing based ASR,
hard and soft mask based ASR, and the influence of selected
parameters for template subtraction and MFT-ASR blocks
on performance.

5.1 Experimental settings

To evaluate the performance of the proposed techniques, we
used a humanoid robot developed by Honda. This robot,
which has many degrees of freedom, was equipped with an
8-ch microphone array on top of its head. We used 2 mo-
tors for head motion and 4 motors for the motion of each
arm, resulting in 10 degrees of freedom. Sensors recorded
the angle of each joint every 5 ms and the length of each au-
dio frames was 10 ms. We used a constant α = 1 and vary-
ing β values as template subtraction parameters, because we
had observed that higher values of α damage speech and an
increase in β improved ASR accuracy considerably com-
pared with β = 0. (For detailed evaluations of the parame-
ters α and β , their effects on ASR accuracy, signal quality
and noise suppression rates, see [13].)

We recorded random motions performed by the given set
of limbs by storing a training database of 30 minutes’ du-
ration. In a separate session, we recorded a test database 10
minutes long for evaluation. Because the noise recordings
were longer than the utterances used in isolated word recog-
nition, we selected those segments, in which all joints con-
tributed to the noise. To generate precise amounts of noise

and speech energy for various SNR conditions before mix-
ing them, we amplified clean speech based on its segmental
SNR, SNRseg , which estimates the SNR-level within each
segment and averages them over the whole signal, providing
a better representation of the energy distribution of speech
and noise within the time interval of interest.

SNRseg = 1

J

J∑

j=1

10 log10

(∑
t x

2
j (t)

∑
t d

2
j (t)

)
, (11)

where J is the number of segments with speech activity, and
x(t) and d(t) are the t-th discrete speech and noise sam-
ple respectively. The noise signal, consisting of whole ego
noise and environmental background noise, was mixed with
clean speech utterances used in a typical human-robot in-
teraction dialog. This Japanese word dataset contains 236
words spoken by 4 female and 4 male speakers. Acoustic
models are trained with Japanese Newspaper Article Sen-
tences (JNAS) corpus, 60-hours of speech data spoken by
306 people (153 males and 153 females), making speech
recognition a speaker-open and word-open test. We used
13 static MSLS, 13 delta MSLS and 1 delta power for an
acoustic feature. Speech recognition results were reported
as average Word Correct Rates (WCR, defined as the num-
ber of correctly recognized words from the test set divided
by the number of all instances in the test set). WCR im-
provement was calculated by subtracting two WCRs ob-
tained from the experiments with two different parameter
sets or two different methods and represented as “points.”
The position of the speaker was fixed at 0◦ throughout
the experiments. The recording environment consisted of a
room 4.0 m×7.0 m×3.0 m in size with a reverberation time
(RT20) of 0.2 sec.

The implementation runs on HARK, an open-sourced
software program for robot audition [29]. Although the posi-
tion of the original sound source was provided in advance to
avoid mis-recognition due to localization errors, we did not
fix the ego-noise direction of the robot. In this experiment,
the SSL module predicted it automatically.

5.2 Spectrograms and masks

Figure 3 shows a general overview of the effect of each pro-
cessing stage until the masks are generated. Figure 3c rep-
resents a dense mixture of speech (Fig. 3a) and motor noise
(Fig. 3b) with an SNR of −5 dB. GSS+PF in Fig. 3g re-
duced only a minor part of the motor noise while sustain-
ing the speech. In contrast, template subtraction (Fig. 3h)
reduced the motor noise aggressively while distorting some
parts of the speech. The hard mask (Fig. 3i) provides a filter
that eliminates unreliable and still noisy parts of the speech
(T = 0.5). The soft mask (Fig. 3j) provides more detailed
information about the degree of reliability of each feature
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Fig. 3 Spectra of speech signal (utterance: “Nan desu ka?” (What is
this?)), noisy speech signals, refined speech signals and corresponding
masks. In (a)–(h), the y-axis represents 256 frequency bins between 0

and 8 kHz and in (i)–(j) the y-axis represents 13 static MSLS features.
The x-axis in all panels is the index of frames

so that the noise-free features are weighted more than the
noise-containing parts of the MFT-ASR ({T ,σ } = {0.5,5}).
Furthermore, we found that features between times 0.10–
0.42 sec. and 1.07–1.27 sec., which were composed basi-
cally of motor noise alone, were given zero weights in the
masks, except for a few mis-detections. The dotted yellow
lines in the panels of Fig. 3 indicate the borders of these
regions, with speech features located between the 0.42–
1.07 sec. Within this time interval, these masks were able
to detect even those speech features that were contaminated
by motor noise residuals and set either zero or low weights.

5.3 ASR accuracy using MFMs

We compared our MFT-based noise elimination approach
with the single-channel noise suppression (TS) and multi-
channel (GSS+PF) noise suppression techniques. The re-
sults were evaluated using an acoustic model trained with
MCRA-applied speech data, except that, for the GSS+PF
method, we used a matched acoustic model of this particu-
lar condition. In preliminary tests, we found that the feature
set derived at the output of template subtraction achieved a

greater accuracy by 10–20 points in WCR, compared with
the features after multi-channel noise reduction. We there-
fore concluded that the former feature type is more suit-
able for an MFT-ASR. Single-channel results were used as a
baseline for comparing all ego-motion noise reduction meth-
ods. Figure 4 illustrates the ASR accuracies for all methods
under consideration. MFT-ASR outperformed both single
(TS) and multi-channel (GSS+PF) noise reduction meth-
ods. We also evaluated MFMs for three heuristically se-
lected threshold parameters, T = {0.25,0.5,0.75}, with the
outcomes presented in Fig. 5. If T < 0.5, ASR was not im-
proved because essential features belonging to speech were
discarded, resulting in a deterioration of WCRs. In contrast,
higher thresholds improved the outcomes significantly.

In our second set of experiments, we compared the re-
sults of hard masking with an optimal threshold (T = 0.75)
obtained during our first set of experiments, with the results
of soft masking for the parameter set σ = {5,10,50}. All
three examples with these parameters yielded similar WCR
improvements. Outside this range, however, the results be-
come sensitive to σ and eventually deteriorated. Therefore,
we will present only the results for σ = 5. We also assessed
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Fig. 4 Speech recognition performance of different processing stages

Fig. 5 Speech recognition performance of different MFM settings

the effect of decreasing the aggressiveness level of the tem-
plate subtraction, by leaving an artificial floor on the bottom
of the spectra. Thus, in our first set of experiments, the pa-
rameter called spectral floor (β , where 0 ≤ β ≤ 1) [13] was
set to zero. We assessed the results for β = {0,0.2,0.5} in
the framework of soft-hard mask comparison in Fig. 6 by
determining the improvement in WCR relative to that ob-
tained for the hard mask at β = 0 and T = 0.75. Increasing
β resulted in considerable improvements in the WCRs, in-
dicating that a tradeoff between “noise reduction level” and
“signal distortion” contributed substantially to the quality of
the mask. We found that soft masks improved the WCRs
even further by up to 8 points compared with hard masks.
This reduction was due to the improved probabilistic repre-
sentation of the reliability of each feature. Optimal results

Fig. 6 Speech recognition performance of soft mask–hard mask com-
parisons for given parameters

Table 1 Recognition accuracies (% WCR) of all methods utilized
in this study with realistic SNRs during a robot-human interaction
(SNR = {−5,0} dB)

SNR Sing. ch. GSS + PF TS TS + MFM (T = 0.75)

Hard Soft

β = 0 β = 0.5

−5 dB 29 49 69 78 80 84

0 dB 38 60 72 80 85 87

were obtained when we used a soft mask with the parameter
set: {T ,σ,β} = {0.75,5,0.5}.

While the masks eliminated unreliable speech features
contaminated with motor noise, they also compensated for
the erroneous effects of voice activity detection due to addi-
tive motor noise containing a large portion of energy. These
masks prevented the false identification of motor noise as
speech, when speech had not yet started, or had been com-
pleted. Table 1 shows the average WCRs extracted from
the results in Figs. 4 and 6. This table helps in visualiz-
ing the simulated results in a real-world scenario with a
robot, where SNRs usually vary by [−5∼0] dB for head
and arm motion noises depending on the optimal distance
and loudness of the speaker. The gain achieved by applying
soft masking was 15 points greater than that of the single-
channel template subtraction method.

6 Conclusion

We have presented a method for eliminating ego noise from
speech signals. This system utilizes (1) a multi-channel
noise reduction stage, (2) a template subtraction stage, and
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finally (3) a masking stage to improve speech recognition
accuracy. We used an MFM model, which is based on the
similarity of measurements of ego noise estimations ob-
tained from (1) and (2). We validated the applicability of our
method by evaluating its performance at different settings
for hard and soft MFMs. Our method demonstrated signifi-
cant WCR improvements with hard masking (49 points rel-
ative to single-channel recognition) and soft masking (up to
55 points).

In future, we intend to determine an optimized parameter
set for template subtraction for this specific MFT-ASR task
in a wider range. The next step is an evaluation online and
in a real environment, involving the recognition of speech
by several speakers simultaneously while the robot is per-
forming some motions. We also plan to conduct experiments
on a robotic system, which does not provide perfectly syn-
chronous data streams of motion and audio, to evaluate the
limitations of our method. It is our intention to extend the
method so that it is able to cope with incoming data streams,
which are asynchronous to some extent.
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