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Abstract—This paper investigates the influence of redundancy
on the evolutionary performance of a gene regulatory network
governing a cellular growth process. Redundancy is believed
to play a key role in robustness and evolvability of biological
systems. We use a cellular model controlled by a gene regula-
tory network to evolve elongated morphologies. We show that
removing the redundancy in the genome during the evolution
decreases the performance of the evolution strategy. A comparing
run with few parameters and therefore no redundancy performs
worst, which supports the hypothesis that redundancy improves
evolvability.

I. I NTRODUCTION

The development of biological organisms is controlled by
their genes and starts with a fertilized cell that develops
into a mature organism. Simulating and analyzing biological
development can on the one hand shed light on biological
processes and improve our understanding of natural systems.
On the other hand, developmental models are increasingly
being used – often in conjunction with evolutionary algorithms
– to improve computational engineering and computational
design processes in general.

Developmental models allow the representation of systems
as a process instead of parametrizing the final system itself.
Although this promises advances with regard to such issues
like system scalability, flexibility and robustness, it also poses
new and challenging questions, in particular on how to repre-
sent the dynamics of growth processes in an evolvable way.

Robustness is one of the most important design principles
of biological systems. It can be achieved by a variety of mech-
anisms [1]. Wagner has suggested that genetic redundancy
is one of the main mechanisms in biology [2]. Meanwhile,
an inherent trade-off between redundancy and evolvability
has been revealed in [3] for a redundant genotype-phenotype
mapping. Whitacre confirmed such a trade-off from a slightly
different perspective by showing that degeneracy, i.e. partial
redundancy, is a fundamental source for both robustness and
evolvability [4].

A concept that is closely related to redundancy and ro-
bustness is neutrality [5]. Kimura has been the first to com-
prehensively analyze and discuss the role of neutrality in
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biological evolution [6]. He has argued that most allelic
variation and substitution is neutral but a lot of mutations
are deleterious. This suggests that random genetic drifts may
be one of the main driving forces behind evolution. The
relationship between neutrality and robustness has also been
widely studied in evolutionary computation [7]. Yu and Miller
analyzed different problems with different types of neutrality
and found that redundancy can, but need not be beneficial
for evolution depending on the implementation [8]. Banzhaf
proposed a model using a genotype-phenotype mapping with
neutrality and found that neutrality allows the system to work
more flexibly [9].

Biological principles have increasingly been employed to
solve complex engineering problems, such as shape and struc-
tural design [10], [11], [12], evolvable hardware [13], [14],
controller design [15], [16], and self-organization of swarm
robots [17], [18]. Inspirations from biology can bring desirable
properties such as scalability, robustness, self-organization,
self-repair and sustainability into engineered systems.

This paper investigates the role of genetic redundancy
in a computational model for evolutionary development for
evolving an elongated body morphology. The developmental
model is conceptually based on the one proposed in [19]
and has been applied successfully to structural design [12],
development of primitive nervous systems [20], and body
plans of artificial organisms [21]. In this work, we aim at
a better understanding of the role of redundancy during the
evolutionary process by means ofin silico experiments. The
insights gained from these experiments can in a second step
either be used for the analysis of biological data or to optimally
set up design processes that exploit biological principlesfor
engineering tasks.

Biological evolution has to keep the “raw material” available
from which innovations can be made. This is in contrast to a
standard engineering approach where material can be supplied
from external sources, i.e. if an engineer has a new idea on how
to design a system, he can simply add the representation of
this new idea to the system description. In biology, any “new
idea” must arise from within the system’s own representations.
Therefore, the two approaches are conceptually different and
we expect that such differences have profound consequences.

As we have noted, “redundancy” is closely related to other



system properties such as evolvability, stability and neutrality.
However, most of these concepts lack a clear and well accepted
definition. For example, redundancy has different definitions in
different areas. Therefore, in Section II, we provide a definition
of redundancy that we will use for analysis in this paper.

Following a brief introduction to computational models of
GRNs, the GRN model for cellular growth studied in this work
is described in greater detail in Section III. The evolutionary
algorithm used for evolving the developmental model, the
fitness function of the evolution and a number of experimental
setups for studying the role of redundancy are provided in
Section IV. Results from the different experimental setupsare
presented and analyzed in Section V. Section VI provides a
summary and a conclusion of the paper.

II. REDUNDANCY DURING THE EVOLUTIONARY PROCESS

In this contribution, we aim at achieving a better understand-
ing of the ways in which the evolutionary process succeeds
in building regulatory systems for growth. In particular, we
want to shed some light on the role of redundancy during
this process by analyzing the evolution of simple models of
regulatory systems in computer simulations.

Numerous definitions for redundancy have been proposed
in the literature both in an engineering as well as a biological
context. Here we analyze redundancy during the evolutionary
design process as opposed to during the operation time or
lifetime. In designing engineering systems using direct redun-
dancy, we usually duplicate system components to increase
robustness and fault-tolerance, i.e., the additional components
are only active once the working components fail. These
components are redundant in the sense of “not being used”
during normal operation and usually do not play any role
during design. They are most likely added to the system after
the major design phases have been completed. In biology, gene
duplication plays a very important role during evolution for
acquiring new genetic raw materials that can potentially lead to
evolutionary innovation [22]. In the first step, gene duplication
may lead togenetic redundancy, because two segments of
genes now encode the same functionality. Therefore, it is very
likely that genetic redundancy constitutes the first step toward
evolutionary innovation. In biology, genetic redundancy re-
sulting from gene duplications has four possible fates: (a)neo-
functionalization, i.e., genes assume a new functionalitywhich
is preserved by natural selection; (b) non-functionalization,
i.e., genes become pseudogenes, (c) sub-functionalization, i.e.,
duplicates of a gene with multiple functions carry reduced,
complementary sets of functions, and (d) the original and the
duplicated genes assume overlapping functionalities. Recently,
it has been suggested that bacteria can contain a substantial
number of pseudogenes for a limited period of time [23].
Therefore, it seems that genetic redundancy has a limited
time window within which it can be turned into evolutionary
innovation. Lynch and Connery estimated the average time
window for a gene duplication to be about 4 million years
[24].

So far we have mainly focused on redundancy as a necessity
for the evolutionary process to have genetic materials thatcan
assume new functions, i.e., evolutionary innovations. However,
redundancy has also been believed to be a means for providing
organisms with mutational robustness in particular for small
population sizes [25]. As mentioned in the introduction, it
becomes evident that redundancy plays different roles during
the evolutionary process.

In order to get a better understanding of these different roles,
we introduce a measure of redundancy in the following, which
is tuned toward the influence of redundancy during the design
phase.

Redundant genes are those whose deletion would have
no effect on the phenotype. E.g. genes can express certain
proteins, which, however, have no or negligible effect on the
phenotype. In this notation, most gene duplications lead to
redundancy:

R =
NR

N
, (1)

where NR denotes the number of redundant genes in the
whole genome containingN genes.

III. A C OMPUTATIONAL MODEL FORMORPHOLOGICAL

DEVELOPMENT

A number of computational models have been developed
to model biological gene regulatory networks, either for re-
construct biological gene regulation subnetworks using bio-
logical data, or to simulate biological signal transduction or
development for analyzing fundamental properties such as
robustness in systems biology, and for simulating important
life phenomena in artificial life (see e.g. the review of de Jong
[26]). Artificial embryogeny, an active subfield in artificial
life, simulates biological cellular growth and pattern formation
starting with one single cell [27], [19], [28], [29], [30], [31].
Stanley and Miikkulainen develop a taxonomy for artificial
embryogeny based on cell fate, targeting, heterochrony, canal-
ization, and complexification [32].

The morphological development simulated in this work is
under the control of a gene regulatory network (GRN) and
physical cellular interactions. The morphological development
starts with a single cell put in the center of a two-dimensional
computational area of size100 × 80. Each cell can die or
divide. The cells are not fixed on a grid and underlie physical
interactions, i.e. overlapping cells push each other away and
cells that do not overlap attract each other with decreasing
forces with larger distances.

The GRN is defined by a set of genes, each consisting
of a number of regulatory units (RUs) and structural units
(SUs). SUs define cellular behaviors, such as cell division,
cell death or the production of transcription factors (TFs)for
intra- and inter-cellular interactions. Whether the SUs of a
gene are expressed is determined by the activity level of the
RUs of the gene, refer to Fig. 1. Note that a single or multiple
RUs may regulate the expression of a single or multiple SUs
and that RUs can be activating(RU+) or repressive(RU−).



Fig. 1. An example chromosome for the development. The first gene (gene
0) starts at the first RU of the genome. Each SU-RU changeover defines a
boundary between two genes.

The activation level of RUs is influenced by the TFs that can
“bind” to the RU. If the difference between the affinity values
of a TF and a RU is smaller than a predefined thresholdǫ

(in this work ǫ is set to0.2), the TF can bind to the RU to
regulate the gene activation. The affinity values are encoded
in the RUs and the SUs that produce a TF and are, as well as
all values in the genome, limited to an interval of[0, 1]. The
affinity similarity (γi,j) between thei-th TF andj-th RU is
defined by:

γi,j = max
(

ǫ−
∣

∣affTFi − affRUj
∣

∣ , 0
)

. (2)

If γi,j is greater than zero, then the concentrationci of the
i-th TF is checked whether it is above a thresholdϑj defined
in the j-th RU:

bi,j =

{

max(ci − ϑj , 0) if γi,j > 0

0 otherwise
. (3)

Thus, the activation level contributed by thej-th RU (denoted
by aj , j = 1, ..., N ) can be calculated as follows:

aj =

M
∑

i=1

bi,j , (4)

where M is the number of TFs that bind to thej-th RU.
Assume thek-th gene is regulated byN RUs, the expression
level of the gene can be defined by

α = g(c), (5)

gk(c) = 100

N
∑

j=1

ljaj(2sj − 1), sj ∈ (0, 1). (6)

2sj−1 denotes the sign (positive for activating and negative for
repressive) of thej-th RU andlj is a parameter representing
the strength of thej-th RU. If αk > 0, then thek-th gene is
activated (δk = 1) and its corresponding behaviors coded in
the SUs are performed.

An SU that produces a TF (SUTF) also encodes all parame-
ters related to the TF, such as the affinity value, the decay rate
Dc

i , the diffusion rateDf
i , as well as the amount of the TFi

to be produced. Which TFi is produced is defined in terms of
the affinity value.

A = h(α),

hi(αk) =

{

β
(

2

1+e−20·f·αk
− 1

)

if αk > 0

0 otherwise
, (7)

wheref andβ are both encoded in the SUTF.
A TF produced by an SU can be partly internal and

partly external. To determine how much of a produced TF
is external, a percentage (pext

∈ (0, 1)) is also encoded in the
corresponding gene. Thus,∆cext

i = pext
· Ai is the amount of

external TF to be produced and∆cint
i = (1− pext) ·Ai is that

of the internal TF.
External TFs are put on four grid points around the center

of the cell, which undergo first a diffusion and then a decay
process. Note, that the external TFs are computed on a grid
but the positions of the cells are continuous and therefore not
limited to this grid. The internal TFs underlie only a decay
process. All internal and external concentrations of TFs are
limited to an interval of[0, 1].

In our experiments we put two prediffused, external TFs
without decay and diffusion in the computation area. The first
TF has a constant gradient in thex-direction and the second
in y-direction.

The SU for cell division encodes the angle of division,
indicating where the daughter cell is placed. A cell with an
activated SU for cell death dies at the developmental timestep
it is activated. When both cell death and cell division are active
at the same developmental step, only cell death is performed.
There are two additional SUs for other possible actions, which
are not used in this work. As a result, it can happen that some
genes perform no action, that is one cause of redundancy.

Figure 2 shows a block diagram of the main components
of a GRN in one cell, describing the cell dynamics. The cell
dynamics can become coupled through external transcription
factors, which underlie a diffusion and decay process and
are position dependent. The number of TFs involved in gene
regulation of the cellular behaviors is defined by the genome
and the parameters in the resulting GRN as well. The number
of cells also changes during development, though we start with
one single cell and two external TFs. The maximum number
of cells is limited to 700 cells for reducing computational cost.
From a control system point of view, the developmental system
is composed of a changing number of nonlinear dynamical
sub-systems with a changing number of system states, and the
dynamics of the sub-systems are strongly coupled with each
other.

IV. EXPERIMENTAL SETUP

We use an extended evolution strategy, (µ, λ)-ES with
elitism for evolving the developmental model, whereµ and
λ are parent and offspring population size, respectively [33].
In this work,µ = 30, λ = 200, and3 elitists are used.

Similar to standard ES, Gaussian mutations are applied to
the real-valued parameters in the chromosome. The strategy
parameterσ is fixed toσ = 10−4 in this work.

Different to standard ES, genetic variations such as gene
duplication, gene transposition and gene deletion are also
employed in addition to mutations. Gene duplication randomly
copies a sequence of RUs and SUs in the chromosome and
then inserts it, again randomly, into the chromosome. In the
case of gene transposition or deletion, this randomly picked
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Fig. 3. Optimal shape of the individuals. There should be cells inside the
blue, dashed box but not outside the black, solid box.

out sequence of RUs and SUs is moved to another randomly
chosen site on the chromosome, or simply removed.

Mutation is performed with a probability one, while gene
duplication, gene transposition, and gene deletion is performed
with a probability ofpdup = 0.05, ptrans = 0.02 andpdel =
0.03, respectively. Gene duplication, transposition and deletion
are exclusive, i.e., only one of them will be performed to the
same chromosome in one generation.

The goal of the evolution is to evolve an elongated shape.
The individuals should have an approximated width-to-height
ratio of a : b, we usedamax = 10, bmin = 60 andbmax = 80.
The following fitness function is minimized:

f = p1 − p2 −min
{

min
i

{

xi(1)
}

,−
amax

2

}

+max
{

max
i

{

xi(1)
}

,
amax

2

}

, (8)

wherexi represents the position of the i-th cell and

p1=











70−mini
{

xi(0)
}

if mini
{

xi(0)
}

< −
bmax

2

−30 if− bmax

2
<mini

{

xi(0)
}

<−
bmin

2

mini
{

xi(0)
}

otherwise
(9)

and

p2=











−70−maxi
{

xi(0)
}

if maxi
{

xi(0)
}

> bmax

2

30 if bmax

2
>maxi

{

xi(0)
}

> bmin

2

maxi
{

xi(0)
}

otherwise

.

(10)
To achieve a sensible yet computationally tractable size of

body morphology, the number of cells (nc) is constrained
between10 and500. A penalty of600−nc will be applied if
nc < 10 and a penalty ofnc if nc > 500. If the cells in the
developed morphology are not fully connected, a poor fitness
of 50 will be assigned. Each individual is computed for15
developmental steps, the computation is aborted if more than
700 cells are reached.

During some of the evolutionary runs, all redundant genes
found in the chromosome are pruned. A gene is considered
as redundant if the deletion of the gene results in no fitness
change. It should be pointed out that pruning of redundant
genes is different to gene deletion in that deletion of a
randomly chosen sequence of RUs and SUs may change the
fitness of the individual.

To investigate the influence of redundancy on the perfor-
mance of evolution, we examined10 different pruning setups
for comparison. The definitions of the different setups are
listed in Table I. We performed 15 evolutionary runs with
different random seeds for each setup.

Setup 6 is designed for investigating the performance of
evolution if compact chromosomes are used. In this setup, the
positions of all RUs and SUs and the types of the SUs are



TABLE I
DEFINITIONS OF THE DIFFERENT SETUPS

Setup no. Specification

setup 1 never prune
setup 2 prune in generation 500
setup 3 prune every 100th generation
setup 4 prune every 10th generation
setup 5 prune once, when fitness of best individual crosses

−40

setup 6 fixed DNA with mutation, without duplication, dele-
tion and transposition using 24 RUs and 8 SUs. The
order of the RUs and SUs is predefined, also the type
of the SUs.

setup 7, 8, 9, 10 fixed DNA with mutation and transposition and with-
out duplication and deletion. The number of RUs and
SUs is 30, 50, 100, 500 respectively.

Fig. 4. A predefined chromosome in setup 6, where the positions of all RUs
and SUs, the sign of the RUs and the type of the SUs are fixed.

predefined and hand-coded. This setup has the fewest param-
eters and is defined for comparison because an optimization
should be easier the less parameters are to be optimized. The
predefined genome is shown in Figure 4, the structure of one
individual that achieved the optimal fitness obtained in this
setup is provided in Figure 5.

V. RESULTS AND ANALYSIS

The boxplots of the best fitnesses from 15 independent runs
for the first 9 setups are given in Figure 6. Note, however, that
in setup 10, all 15 runs result in a fitness of600, which means
there are no cells at the end of the development. Therefore,
the results are excluded from the figure. The detailed fitness
profiles are shown in Figure 7 - 15.

From the fitness profiles, we can often observe long plateaus
with sometimes large jumps. For all setups (except for setup
10), some runs achieve a good or optimal solution very
quickly, some with large jumps in their fitness profile find
a good solution in a later stage, and others fail. The number
of runs that find a good solution differs among different setups
and therefore will be analyzed in the following.

The results of setups 1 to 5 suggest that more frequent
pruning leads to a worse performance. In addition, we notice
that setups 1, 2 and 5 perform comparably well, which
suggests that pruning of redundant genes in a later stage of
evolution, or when the evolution is already more or less close

Fig. 5. The genome and its connections of a good individual (the fitness is
optimal) of setup 6. The dots are the genes, the predefined TFs are diamond
shaped. The arrows define the activations between the different genes, an
activation is represented by a dashed line, an inhibition bya dotted line and
the solid lines are both, activations and inhibitions.
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Fig. 6. The boxplots of the best fitness from 15 independent runs of setup
1 to 9.

to the optimal solution, will not degrade the evolutionary per-
formance. Basically, this means that no genetic “raw material”
is needed anymore in later generations.

On the other hand, the results from setup 3 (pruning every
100th generation), which are worse than those from setups 1,
2 and 5 (yet not statistically significant), indicate that more
frequent pruning tends to worsen the performance of the EA.
The results of setup 4 (pruning every 10th generation), which
are significantly worse than those in setups 1, 2 and 5, confirm
that continuous pruning of the redundant genes leads to much
worse performance.

We tested the difference in the mean values with the Mann-
Whitney U test with a statistical significance of 95% (see [34]).
The means of setup 1, 2, 5, 8, and 9 are lower than the ones of



Fig. 7. Fitness setup 1

Fig. 8. Fitness setup 2

Fig. 9. Fitness setup 3

Fig. 10. Fitness setup 4. The fitness of setup 4 run 10 is always600 and
not displayed here.

Fig. 11. Fitness setup 5

Fig. 12. Fitness setup 6



Fig. 13. Fitness setup 7

Fig. 14. Fitness setup 8

Fig. 15. Fitness setup 9

setup 4 and 6. Additionally setups 3 and 7 are better than setup
6, setup 2 and 8 are better than setup 3. More experiments
would be helpful to increase the statistical significance, e.g. the
difference in the length of the 25th and 75th percentiles of
setups 4, 6 and 8 should become smaller.

Although setup 6 is the setup with the fewest parameters,
only one of the 15 runs converges to the optimal fitness.
This indicates that for a representation that does not allow
redundancy, the evolution has difficulties in finding the optimal
solution, even if the optimal solution exists (as shown in Figure
5). This result also supports the hypothesis that redundancy
improves evolvability.

A common belief in evolutionary computation, where direct
coding is often used, is that the performance of evolutionary
algorithms does not scale well with the search dimension. The
results from setup 9 show surprisingly that this belief might
not be correct for developmental systems. However, it should
be noted that the extremely poor results in setup 10 (500 RUs
and SUs), in which none of the runs have been successful,
indicate that there is a certain upper bound of the search space
above which evolution does not work properly anymore.

VI. D ISCUSSION ANDCONCLUSION

In this paper, we have analyzed the role of redundancy
during evolution in a simplified computational model for the
development of a cellular elongated artificial organism. The
development is controlled by a gene regulatory network and
the redundancy of its genes is analyzed.

In the experiments, we limited the redundancy of different
genomes by pruning all redundant genes in a variety of setups.
Statistical analysis shows that there is a significant decrease
in the performance of the evolutionary runs if pruning is
carried out frequently during the evolution. We also observe
that individuals with short genomes of a fixed length - which
would theoretically be sufficient to reach high quality solutions
- show significantly lower performance than individuals with
redundant genomes of a variable length.

For future work more analyzes of the runs are of course
necessary, so we want to measure the percentage of redundant
genes during the evolutions. An analysis on how often redun-
dant genes change to functional genes during the evolutions
is also important.
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