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Abstract—This paper investigates the influence of redundancy biological evolution [6]. He has argued that most allelic
on the evolutionary performance of a gene regulatory network variation and substitution is neutral but a lot of mutations
governing a cellular growth process. Redundancy is believed are deleterious. This suggests that random genetic drids m
to play a key role in robustness and evolvability of biological ) S . .
systems. We use a cellular model controlled by a gene regula-be ‘?”e Qf the main drlvmg forces behind evolution. The
tory network to evolve elongated morphologies. We show that relationship between neutrality and robustness has alen be
removing the redundancy in the genome during the evolution widely studied in evolutionary computation [7]. Yu and Ml
decreases the performance of the evolution strategy. A compiag  analyzed different problems with different types of nelitiya
run with few parameters and therefore no redundancy performs 5.4 found that redundancy can, but need not be beneficial
worst, which supports the hypothesis that redundancy improves . . Ny .
evolvability. for evolution depending on the implementation [8]. Banzhaf

proposed a model using a genotype-phenotype mapping with
I. INTRODUCTION neutrality and found that neutrality allows the system takvo

. . . . more flexibly [9].
The development of biological organisms is controlled by Biological principles have increasingly been employed to

their genes and starts with a fertilized cell that develops

into a mature organism. Simulating and analyzing bioldgic%owe complex engineering problems, such as shape and struc

development can on the one hand shed light on biologicglral design [10], [11], [12], evolvable hardware [13], [14

processes and improve our understanding of natural SySteﬁlonct)rtZ"[i;]d([elsg]]nlrEiSi]r,aEilOGA,s ?rg?nsb?g[grgir;ﬁa;lr?: cge:;'la
On the other hand, developmental models are increasin%? ' - INsp 9y 9

being used — often in conjunction with evolutionary aldumits operties such as _scalg_blmy, robustness, self-orgéioiz,
%?If-repalr and sustainability into engineered systems.

— to improve computational engineering and computation . . . d
P P g 9 P This paper investigates the role of genetic redundancy

design processes in general. . . .
. in_a computational model for evolutionary development for
Developmental models allow the representation of systems | .
. - X .._evolving an elongated body morphology. The developmental
as a process instead of parametrizing the final system.itsel - ;
. i . . model is conceptually based on the one proposed in [19]
Although this promises advances with regard to such issues

like system scalability, flexibility and robustness, itafsoses and has been app!leq_ successfully to structural design [12]
. ) . ; development of primitive nervous systems [20], and body
new and challenging questions, in particular on how to repré e : ) .
lans of artificial organisms [21]. In this work, we aim at

sent the dynamms of growth processes in an ev_olvabl_e V\./ag' better understanding of the role of redundancy during the
Robustness is one of the most important design principles " . S )
. ) . . volutionary process by means iof silico experiments. The
of biological systems. It can be achieved by a variety of mecii__. ; . .
; : Insights gained from these experiments can in a second step
anisms [1]. Wagner has suggested that genetic redundan . . : .
elther be used for the analysis of biological data or to oaliyn

is one of the main mechanisms in biology [2]. Meanwhile et up design processes that exploit biological principtes
an inherent trade-off between redundancy and evolvabil@ﬁ up design p P 9 P
ineering tasks.

has been revealed in [3] for a redundant genotype—phenotypegiological evolution has to keep the “raw material” aval&b

mapping. Whltacrg confirmed .SUCh a trade-off from a S.'“ght|1¥om which innovations can be made. This is in contrast to a
different perspective by showing that degeneracy, i.etiglar

redundancy, is a fundamental source for both robustness st@dard engineering approach where material can be sdppl

n S . .
5 external sources, i.e. if an engineer has a new ideawn ho

evolvability [4]. to design a system, he can simply add the representation of

A concept that is closely related to redundancy and "this new idea to the system description. In biology, any “new

bustness is neutrality [5]. Kimura has been the first to COMea” must arise from within the system’s own representstio

prehensively analyze and discuss the role of neutrality JIrherefore, the two approaches are conceptually differadt a
The work was conducted while Yaochu Jin was with the HondeRes W€ expect that such differences ha\{e profound consequences
Institute Europe. As we have noted, “redundancy” is closely related to other



system properties such as evolvability, stability and radity. So far we have mainly focused on redundancy as a necessity
However, most of these concepts lack a clear and well actepter the evolutionary process to have genetic materialsdhat
definition. For example, redundancy has different defingism assume new functions, i.e., evolutionary innovations. el
different areas. Therefore, in Section I, we provide a défim redundancy has also been believed to be a means for providing
of redundancy that we will use for analysis in this paper. organisms with mutational robustness in particular for lsma
Following a brief introduction to computational models opopulation sizes [25]. As mentioned in the introduction, it
GRNSs, the GRN model for cellular growth studied in this workecomes evident that redundancy plays different rolesnduri
is described in greater detail in Section Ill. The evolusign the evolutionary process.
algorithm used for evolving the developmental model, the In order to get a better understanding of these differemstol
fitness function of the evolution and a number of experinentae introduce a measure of redundancy in the following, which
setups for studying the role of redundancy are provided i&tuned toward the influence of redundancy during the design
Section IV. Results from the different experimental setaps phase.
presented and analyzed in Section V. Section VI provides aRedundant genes are those whose deletion would have
summary and a conclusion of the paper. no effect on the phenotype. E.g. genes can express certain
proteins, which, however, have no or negligible effect om th
Il. REDUNDANCY DURING THE EVOLUTIONARY PROCEss Phenotype. In this notation, most gene duplications lead to
redundancy:
In this contribution, we aim at achieving a better underdtan Ng )

: . ! . R=—
ing of the ways in which the evolutionary process succeeds N’

in building regulatory systems for growth. In particulare W where N denotes the number of redundant genes in the
want to shed some light on the role of redundancy duringhole genome containingy genes.
this process by analyzing the evolution of simple models of
regulatory systems in computer simulations.

Numerous definitions for redundancy have been proposell!- A C OMPUTATIONAL MODEL FORMORPHOLOGICAL
in the literature both in an engineering as well as a biolalgic DEVELOPMENT
context. Here we analyze redundancy during the evolutionar A number of computational models have been developed
design process as opposed to during the operation timet@rmodel biological gene regulatory networks, either for re
lifetime. In designing engineering systems using diredure construct biological gene regulation subnetworks using bi
dancy, we usually duplicate system components to incredsgical data, or to simulate biological signal transductiar
robustness and fault-tolerance, i.e., the additional ecorapts development for analyzing fundamental properties such as
are only active once the working components fail. Thesebustness in systems biology, and for simulating impartan
components are redundant in the sense of “not being usdi® phenomena in artificial life (see e.g. the review of daglo
during normal operation and usually do not play any rol@6]). Artificial embryogeny, an active subfield in artifitia
during design. They are most likely added to the system aftéde, simulates biological cellular growth and patternrfation
the major design phases have been completed. In biologg, gstarting with one single cell [27], [19], [28], [29], [30]31].
duplication plays a very important role during evolutiorr foStanley and Miikkulainen develop a taxonomy for artificial
acquiring new genetic raw materials that can potentiaigl® embryogeny based on cell fate, targeting, heterochromalea
evolutionary innovation [22]. In the first step, gene dualion ization, and complexification [32].
may lead togenetic redundangybecause two segments of The morphological development simulated in this work is
genes now encode the same functionality. Therefore, itig vaunder the control of a gene regulatory network (GRN) and
likely that genetic redundancy constitutes the first steyatd physical cellular interactions. The morphological depet@nt
evolutionary innovation. In biology, genetic redundaney r starts with a single cell put in the center of a two-dimenalon
sulting from gene duplications has four possible fatesném) computational area of siz€00 x 80. Each cell can die or
functionalization, i.e., genes assume a new functionalhliich divide. The cells are not fixed on a grid and underlie physical
is preserved by natural selection; (b) non-functionaiimgt interactions, i.e. overlapping cells push each other awal a
i.e., genes become pseudogenes, (¢) sub-functionahzago, cells that do not overlap attract each other with decreasing
duplicates of a gene with multiple functions carry reducedhrces with larger distances.
complementary sets of functions, and (d) the original amd th The GRN is defined by a set of genes, each consisting
duplicated genes assume overlapping functionalitiese®@¢ of a number of regulatory units (RUs) and structural units
it has been suggested that bacteria can contain a subbktai8&s). SUs define cellular behaviors, such as cell division,
number of pseudogenes for a limited period of time [23tell death or the production of transcription factors (Tfes)
Therefore, it seems that genetic redundancy has a limitedira- and inter-cellular interactions. Whether the SUs of a
time window within which it can be turned into evolutionarygene are expressed is determined by the activity level of the
innovation. Lynch and Connery estimated the average tirR&Js of the gene, refer to Fig. 1. Note that a single or multiple
window for a gene duplication to be about 4 million yearRUs may regulate the expression of a single or multiple SUs
[24]. and that RUs can be activatifd:U ™) or repressivg RU ™).



‘ * ‘ ) ‘ - ‘ - ‘di"‘ ‘ + ‘ + ‘TF‘die‘ ‘ - ‘ + \ where f and 3 are both encoded in the $U
\ v 4 A TF produced by an SU can be partly internal and
Gene0 Genel partly external. To determine how much of a produced TF
. is external, a percentage®{ € (0, 1)) is also encoded in the
D corresponding gene. Thud ¢ = p®*- A; is the amount of
RU* RU- Sudv gydie gyTF external TF to be produced amiic™ = (1 — p®!) - 4; is that

of the internal TF.
Fig. 1. An example chromosome for the development. The first ggeee(  External TFs are put on four grid points around the center
0) starts at the first RU of the genome. Each SU-RU changeovaredea of the cell. which undergo first a diffusion and then a decay
boundary between two genes. ' .
process. Note, that the external TFs are computed on a grid
but the positions of the cells are continuous and therefote n

The activation level of RUs is influenced by the TFs that cdfinited to this grid. The internal TFs underlie only a decay
“pind” to the RU. If the difference between the affinity vatue Process. All internal and external concentrations of TFes ar
of a TF and a RU is smaller than a predefined threskoldlimited to an interval of|0, 1].

(in this work ¢ is set t00.2), the TF can bind to the RU to  In our experiments we put two prediffused, external TFs
regulate the gene activation. The affinity values are entod@ithout decay and diffusion in the computation area. The firs
in the RUs and the SUs that produce a TF and are, as wellTds has a constant gradient in thedirection and the second
all values in the genome, limited to an interval [6f1]. The in y-direction.

affinity similarity (y; ;) between the-th TF andj-th RU is The SU for cell division encodes the angle of division,
defined by: indicating where the daughter cell is placed. A cell with an

TF RU activated SU for cell death dies at the developmental tiegest
Vi = max (e — [aff;" —affi"[, 0) . (2) itis activated. When both cell death and cell division arévact

If ~;; is greater than zero, then the concentratigrof the —at the same developmental step, only cell death is perfarmed

i-th TF is checked whether it is above a threshsjddefined There are two additional SUs for other possible actionschvhi

in the j-th RU: are not used in this work. As a result, it can happen that some
] genes perform no action, that is one cause of redundancy.
bij = {max(c,» —9;,0) ;>0 _ 3) Figure 2 shows a block diagram of the main components
’ 0 otherwise of a GRN in one cell, describing the cell dynamics. The cell

dynamics can become coupled through external transaniptio
factors, which underlie a diffusion and decay process and
are position dependent. The number of TFs involved in gene
M regulation of the cellular behaviors is defined by the genome
aj = Z bij, (4)  and the parameters in the resulting GRN as well. The number
=1 of cells also changes during development, though we stént wi
where M is the number of TFs that bind to theth RU. one single cell and two external TFs. The maximum number
Assume thek-th gene is regulated by RUs, the expression of cells is limited to 700 cells for reducing computationabt

Thus, the activation level contributed by the¢h RU (denoted
by a;,j =1,...,N) can be calculated as follows:

level of the gene can be defined by From a control system point of view, the developmental syste
a=g(c) (5) is composed of a changing number of nonlinear dynamical
’N sub-systems with a changing number of system states, and the
gr(e) = IOOleaj(Zsj ~1), s; € (0,1). ) g%/r?:rmlcs of the sub-systems are strongly coupled with each
j=1 '
2s;—1 denotes the sign (positive for activating and negative for IV. EXPERIMENTAL SETUP

repressive) of thg'-f[h RU andl; is a parameter represenfcing We use an extended evolution strategy, X)-ES with
the strength of thg-th RU. If a;, > 0, then thek-th gene is gjitism for evolving the developmental model, whereand
activated §; = 1) and its corresponding behaviors coded iR gre parent and offspring population size, respectivelyl.[33

the SUs are performed. In this work, 1 = 30, A\ = 200, and3 elitists are used.
An SU that produces a TF (S6) also encodes all parame-  gimjjar to standard ES, Gaussian mutations are applied to

teis related to the TF, S}JCh as the affinity value, the ded®y rg e real-valued parameters in the chromosome. The strategy
D¢, the diffusion rateD; , as well as the amount of the TF parametew is fixed too = 10~* in this work.

to be produced. Which THs produced is defined in terms of  pigterent to standard ES, genetic variations such as gene

the affinity value. duplication, gene transposition and gene deletion are also
A = h(a), employed in addition to mutations. Gene duplication ranigom
5( 9 _ 1) i ar >0 copies a sequence of RUs and_SUs in the chromosome and
hi(ag) = { 1+e=20 7k k . (7 then inserts it, again randomly, into the chromosome. In the
0 otherwise case of gene transposition or deletion, this randomly micke
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Fig. 2. Block diagram of the model of a single cell.
40 ‘ ‘ ‘ ‘ wherex’ represents the position of the i-th cell and
70—min; {z*(0)} if min; {x°(0)} < — e
20 1 p1=¢ —30 if — bmax < min; {2?(0)} < —Luin
min; {z*(0)} otherwise
> O | e e e | 1 (9)
and
_o0l —70—max;{z*(0)} if max; {x?(0)} > lme=
p2=4 30 if Pmae > max; {x(0)} > bmin
max; {x(0)} otherwise

(10)

To achieve a sensible yet computationally tractable size of
body morphology, the number of cells.{ is constrained
Fig. 3. Optimal shape of the individuals. There should bescelside the D€tweenl0 and500. A penalty of600 —n. will be applied if
blue, dashed box but not outside the black, solid box. n. < 10 and a penalty of. if n. > 500. If the cells in the

developed morphology are not fully connected, a poor fitness
of 50 will be assigned. Each individual is computed fo¥
out sequence of RUs and SUs is moved to another randordgvelopmental steps, the computation is aborted if mone tha
chosen site on the chromosome, or simply removed. 700 cells are reached.

Mutation is performed with a probability one, while gene During some of the evolutionary runs, all redundant genes
duplication, gene transposition, and gene deletion iopeéd found in the chromosome are pruned. A gene is considered
with a probability ofpg., = 0.05, prrans = 0.02 andpge = @S redundant if the deletion of the gene results in no fitness
0.03, respectively. Gene duplication, transposition and émiet change. It should be pointed out that pruning of redundant
are exclusive, i.e., only one of them will be performed to thgenes is different to gene deletion in that deletion of a
same chromosome in one generation. randomly chosen sequence of RUs and SUs may change the

The goal of the evolution is to evolve an elongated shag&ness of the individual.

The individuals should have an approximated width-to-heig 10 investigate the influence of redundancy on the perfor-
ratio of a : b, we usedi, gy = 10, bynin = 60 andb,,,, — 80. mance of evolution, we examindd different pruning setups

The following fitness function is minimized: for comparison. The definitions of the different setups are
listed in Table I. We performed 15 evolutionary runs with

8y 30 -10 10 30 50
X

B _ L (1 Umaz different random seeds for each setup.
f=pi—p _mm{m}n{w ( )}’_ 2 } Setup 6 is designed for investigating the performance of
i Omaz evolution if compact chromosomes are used. In this set&p, th
Ly, ; 8 o
max {m?x {w ( )} 2 } ® positions of all RUs and SUs and the types of the SUs are



TABLE |

DEFINITIONS OF THE DIFFERENT SETUPS 3
>
5}
[ Setup no. | Specification "
setup 1 never prune 9@,) 3
setup 2 prune in generation 500 Q‘@ 3 &%
setup 3 prune every 100th generation
setup 4 prune every 10th generation
setup 5 prune once, when fithess of best individual crosges
—40
setup 6 fixed DNA with mutation, without duplication, dele}

tion and transposition using 24 RUs and 8 SUs. The
order of the RUs and SUs is predefined, also the type
of the SUs.
setup 7, 8, 9, 10| fixed DNA with mutation and transposition and with-
out duplication and deletion. The number of RUs and
SUs is 30, 50, 100, 500 respectively.

el o] e[ ] ] fae
. v J \\ v J
Gene0 Genel
Fig. 5. The genome and its connections of a good individua fitness is
‘ + ‘ + ‘ _ ‘ _ ‘die‘TF‘ ‘ + ‘ + ‘ _ ‘ _ ‘die‘TF‘ optimal) of setup 6. The dots are the genes, the predefined fEFgi@amond
shaped. The arrows define the activations between the dfiffeggenes, an
Y Y activation is represented by a dashed line, an inhibitiora ldptted line and
Gene2 Gene3 the solid lines are both, activations and inhibitions.
I [T :
\ / \ / T T T T T T T T T
Y Y
Gene4 Gene> -5p 1
Fig. 4. A predefined chromosome in setup 6, where the positiba§ RUs 10 1
and SUs, the sign of the RUs and the type of the SUs are fixed. 15k T - i
_20- _ -4
14 :
“C-’ —25t H — E

predefined and hand-coded. This setup has the fewest par £

eters and is defined for comparison because an optimizat 30} : § 1
should be easier the less parameters are to be optimized.  _3g| :

predefined genome is shown in Figure 4, the structure of o |- T - . o
individual that achieved the optimal fithess obtained irs th 40 T - : _ )
setup is provided in Figure 5. -45F = ’ E l—‘_—l : .
JE a2 Y 1]
V. RESULTS ANDANALYSIS S1 sz s3 sS4 S5 S6 ST S8 59

The boxplots of the best fitnesses from 15 independent runig 6. The boxplots of the best fitness from 15 independems uf setup
for the first 9 setups are given in Figure 6. Note, howevet, that o
in setup 10, all 15 runs result in a fithess6o, which means
there are no cells at the end of the development. Therefore,
the results are excluded from the figure. The detailed fitnessthe optimal solution, will not degrade the evolutionasr-p
profiles are shown in Figure 7 - 15. formance. Basically, this means that no genetic “raw maleri
From the fitness profiles, we can often observe long platedgsneeded anymore in later generations.
with sometimes large jumps. For all setups (except for setupOn the other hand, the results from setup 3 (pruning every
10), some runs achieve a good or optimal solution vet0Oth generation), which are worse than those from setups 1,
quickly, some with large jumps in their fitness profile fin® and 5 (yet not statistically significant), indicate thatreno
a good solution in a later stage, and others fail. The numdeequent pruning tends to worsen the performance of the EA.
of runs that find a good solution differs among different pstu The results of setup 4 (pruning every 10th generation), lwhic
and therefore will be analyzed in the following. are significantly worse than those in setups 1, 2 and 5, confirm
The results of setups 1 to 5 suggest that more frequéhat continuous pruning of the redundant genes leads to much
pruning leads to a worse performance. In addition, we notigerse performance.
that setups 1, 2 and 5 perform comparably well, which We tested the difference in the mean values with the Mann-
suggests that pruning of redundant genes in a later stagendiitney U test with a statistical significance of 95% (see J34]
evolution, or when the evolution is already more or lesselo3he means of setup 1, 2, 5, 8, and 9 are lower than the ones of
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Fig. 10. Fitness setup 4. The fitness of setup 4 run 10 is alagsand

not displayed here.
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Fig. 12. Fitness setup 6
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Fig. 15. Fitness setup 9

setup 4 and 6. Additionally setups 3 and 7 are better thap setu
6, setup 2 and 8 are better than setup 3. More experiments
would be helpful to increase the statistical significanog, the
difference in the length of the 25th and 75th percentiles of
setups 4, 6 and 8 should become smaller.

Although setup 6 is the setup with the fewest parameters,
only one of the 15 runs converges to the optimal fitness.
This indicates that for a representation that does not allow
redundancy, the evolution has difficulties in finding theiimat
solution, even if the optimal solution exists (as shown iguFée
5). This result also supports the hypothesis that redurydanc
improves evolvability.

A common belief in evolutionary computation, where direct
coding is often used, is that the performance of evolutipnar
algorithms does not scale well with the search dimensior. Th
results from setup 9 show surprisingly that this belief nigh
not be correct for developmental systems. However, it shoul
be noted that the extremely poor results in setup 10 (500 RUs
and SUs), in which none of the runs have been successful,
indicate that there is a certain upper bound of the searatespa
above which evolution does not work properly anymore.

VI. DISCcUsSION ANDCONCLUSION

In this paper, we have analyzed the role of redundancy
during evolution in a simplified computational model for the
development of a cellular elongated artificial organisme Th
development is controlled by a gene regulatory network and
the redundancy of its genes is analyzed.

In the experiments, we limited the redundancy of different
genomes by pruning all redundant genes in a variety of setups
Statistical analysis shows that there is a significant deere
in the performance of the evolutionary runs if pruning is
carried out frequently during the evolution. We also observ
that individuals with short genomes of a fixed length - which
would theoretically be sufficient to reach high quality smos
- show significantly lower performance than individuals hwit
redundant genomes of a variable length.

For future work more analyzes of the runs are of course
necessary, so we want to measure the percentage of redundant
genes during the evolutions. An analysis on how often redun-
dant genes change to functional genes during the evolutions
is also important.
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