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Abstract

We present a system for the classification of intonation patterns

in human robot interaction. The system distinguishes ques-

tions from other types of utterances and can deal with addi-

tional reverberations, background noise, as well as music in-

terfering with the speech signal. The main building blocks of

our system are a multi channel source separation, robust funda-

mental frequency extraction and tracking, segmentation of the

speech signal, and classification of the fundamental frequency

pattern of the last speech segment. We evaluate the system with

Japanese sentences which are ambiguous without intonation in-

formation in a realistic human robot interaction scenario. Dis-

tortions present in the speech signal are room reverberations,

background noise, and a music source at 60◦. Despite the chal-

lenging task our system is able to classify the intonation pattern

with good accuracy. With several experiments we evaluate the

contribution of the different aspects of our system.

Index Terms: Intonation pattern classification, human robot in-

teraction, source separation, pitch tracking

1. Introduction

It is well known that prosodic information plays an important

role for human-human communication. Nevertheless, it is still

rarely used in human-machine interaction [1, 2, 3, 4]. Reasons

for this are a limited understanding of the prosodic structure

of speech, ambiguities in the prosodic cues, and difficulties of

robustly extracting the relevant cues.

In human robot communication one important additional

challenge is to cope with acoustically adverse environments. To

render the communication natural it is required that the robot

perceives its acoustical environment not via a headset worn by

the user but via microphones mounted on the robot. As a con-

sequence the speech signals acquired by the robot are impaired

by room reflections and additional sound sources present in the

room, thereby further complicating the extraction of prosodic

cues. Nevertheless, some steps towards integrating them into

human-robot interaction have been made [5, 6].

In this paper we present a system which is able to distin-

guish different intonation patterns form utterances directed to a

robot. In contrast to other approaches we do not use any lexical

information. Our focus is to investigate how reliable the rele-

vant acoustic cue, i. e. the fundamental frequency variation in

the speech signal, can be extracted in a realistic interaction sce-

nario with additional noise sources present. As the fundamen-

tal frequency alone does not yield reliable cues to distinguish

statements, affirmations, and denials we restrict our system to

distinguish questions from these classes. Questions typically

show a rising fundamental frequency on the final speech seg-

ment [7]. Consequently we determine the final speech segment

and classify the found fundamental frequency pattern.

Our system combines different building blocks to obtain a

robust extraction and classification of the relevant fundamen-

tal frequency contours (compare Fig. 1). The first is a multi

channel source separation which enhances the signal. The sec-

ond step is an algorithm for fundamental frequency extraction,

whose percept is called pitch, which takes inspirations from

models of human pitch perception. The next step is the de-

ployment of a Bayesian tracking algorithm on the resulting his-

tograms. A voicing detection serves to determine for which seg-

ments the pitch has to be evaluated. For reliable Voice Activity

Detection (VAD) we apply a post filter on the speech signal after

source separation and add a further component for the elimina-

tion of crosstalk. On this signal we perform VAD. Using an

energy based syllabification we determine the final and for our

task relevant last segment of the utterance. We then classify the

pitch movement in this final segment by comparing it to several

reference patterns via Dynamic Time Warping (DTW).

In the following we will detail the building blocks of the

proposed system for intonation classification. After this we will

give an overview on the human-robot interaction scenario in

which we tested our algorithm. The presentation of the results

and their discussion will conclude the paper.

2. Geometric-constrained High-order
Decorrelation-based Source Separation

We use Geometric-constrained High-order Decorrelation-

based Source Separation (GHDSS) for sound source separation,

mainly to suppress directional noise sources. It builds upon

Decorrelation-based Source Separation (DSS) using Indepen-

dent Component Analysis (ICA) in the frequency domain and

includes Geometric-constraints to overcome permutation and

scaling problems [8]. Furthermore, it features an adaptive step-

size control to cope with changes in the environment.

After the separation for further processing the source from

the frontal direction is chosen and transformed back into the

time domain via application of the Inverse Fast Fourier Trans-

form (IFFT).

3. Voicing Calculation

The information on the voicing of a segment is needed to deter-

mine if pitch has to be evaluated for this segment. We consider

a segment voiced if the normalized cross correlation qNCCF(k),
given by

qNCCF(k, κ) =
1

N

k+N
∑

j=k

r(j)r(j + κ)

√

e(k)e(k + κ)
, (1)

where r(k) is the signal at time index k and e(k) its correspond-

ing energy, is larger than a given threshold tv [9].



Figure 1: System overview

4. Pitch Estimation

The algorithm we apply for pitch extraction is inspired by hu-

man pitch perception models [10] and relies on the calcula-

tion of a histogram of zero crossing distances and a subse-

quent inhibition of side peaks resulting form harmonics and

sub-harmonics of the true fundamental frequency [11, 12].

First we split the signal into different frequency channels

via the application of a Gammaton filter bank. Next we scan

through possible fundamental frequency hypotheses f ′

0 and set

up a comb filter with teeth at the location of the harmonics l ·f ′

0.

By comparing found patterns with expected patterns from har-

monics and subharmonics of the current hypothesis f ′

0 we are

able to suppress spurious side peaks at these harmonics and sub-

harmonics. Summing up all hypotheses we obtain a histogram

h of likelihoods for the different hypotheses [11, 12].

On the histogram h we apply a tracking algorithm based

on Bayesian filtering [13, 14]. It sequentially integrates in the

estimation of the state xk at time k information from a model

on the pitch dynamics p(xk|xk−1) and observations from the

pitch histogram p(zk|xk). A subsequent backward pass, termed

Bayesian smoothing, integrates information on future observa-

tions to improve performance [13].

5. Voice Activity Detection

For the proposed intonation classification we use the pitch

movement of the final speech segment. Therefore, the pre-

cise determination of the end of the speech segment is crucial.

To obtain this we apply a three stage Voice Activity Detection

(VAD) processes. The first two stages further enhance the sig-

nal resulting from the GHDSS and the third one performs the

actual VAD.

5.1. Histogram-based Recursive Level Estimation (HRLE)

To further enhance the speech signal after the GHDSS we

use Histogram-based Recursive Level Estimation (HRLE) [15].

Since HRLE uses recursive averages it calculates a time-varying

histogram in real-time. Therefore, the noise level estimation

smoothly and quickly adapts to the environmental changes.

5.2. Crosstalk Suppression (CTS)

After application of the GHDSS we have access to two signal

streams: the separated speech signal, yS(k) and the separated

music signal yM(k). To minimize crosstalk between these two

signals during Voice Activity Detection (VAD) we determine the

regions in the spectrograms S[] of these two signals where the

energy of either of the two streams is higher than the other.

From this we calculate an enhanced speech spectrogram

SSEnh(k, ω) =

{

SS(k, ω) if SS(k, ω) > SM(k, ω)

0 otherwise
(2)

which contains only those regions in the speech stream where

speech dominates. The signal energy eSEnh(k) is then obtained

by summing SSEnh(k, ω) over all frequencies.

5.3. Final VAD

Prior to the GHDSS we already performed a coarse Voice Activ-

ity Detection (VAD) with the MUSIC algorithm as implemented

in [16]. Based on this segmentation we calculate the mean en-

ergy of the enhanced speech signal ēSEnh(k). Values larger than

60% of this value are taken as speech activity. Applying a me-

dian filter of length 100ms on this signal fills gaps shorter than

100ms. A second median filter of length 200ms on one hand

fills the gaps further but more importantly removes segments

shorter than 200ms.

6. Intonation Classification

We use the pitch track resulting form the previous step to iden-

tify the intonation pattern.

For doing so we first have to identify the final segment of

the speech signal on which the classification should be based.

More precisely, based on the VAD we determine the final seg-

ment, and classify it as belonging to one of four different pat-

terns.

6.1. Segmentation

To find the last segment in the speech segment detected by the

VAD we use a syllabification algorithm [17]. It is based on

the algorithm described in [18] and only uses the signal energy

to find the syllable boundaries. This results in general in an

over segmentation which is counterbalanced by following post-

processing which yields reasonable estimates of the final speech

segment. If the found segment, i. e. syllable, is shorter than

150ms we add further syllables until they span at least 150ms.
A final segment longer than 300ms is cut to 300ms. As pitch is

undefined in unvoiced regions we linearly interpolate between

the surrounding voiced segments for all unvoiced regions.

6.2. Classification

For classification we compare the pitch movement in the final

speech segment sF to four different prototypes s
(i)
P depicted in

Fig. 2. These prototypical pitch movements aim to cover ris-

ing pitch movements in questions (r: a rising final segment, p:

falling from a higher level with a final rise) and pitch move-

ments found in the other classes (f: a flat final segment, d: a

falling final segment). The prototypes have equal length and a

mean of zero.

We apply Dynamic Time Warping (DTW) [19] to compare

the final segment sF to these prototypes. For doing so we also

subtracted the mean pitch value from sF . The prototype s
(i)
P

yielding the smallest distance is selected as the matching one.
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Figure 3: Spectrograms of one utterance for (a) the BestMic, (b) the GHDSS, and (c) the Headset case are shown. The extracted pitch

contour is visualized in green and the detected speech region with the black dashed curve. Grey dashed lines indicate a transition from

a voiced to an unvoiced region. The arrows and the grey dotted line indicate the final segment used for the classification of the pitch

movement. Note that in the unvoiced regions pitch is interpolated.
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Figure 2: (a) prototypical pitch movements used for classifica-

tion, (b) our robotics platform Haerbo.

7. Evaluation

We asses the performance of our intonation classification sys-

tem in a human-robot interaction scenario. Different people

spoke to our robotics platform Hearbo, a wheeled platform with

a humanoid upper body (compare Fig. 2). Hearbo has a height

of 120 cm. In total it has 34 degrees-of-freedom and features

different sensors. It perceives its acoustical environment via an

8 channel MEMS-based microphone array mounted around the

top of its head. The sound acquisition and the GHDSS run on

the robot in the open-sourced real time robot audition software

HARK (HRI-JP Audition for Robots with Kyoto university)

[16]. The remainder of the processing presented here is per-

formed off-board and off-line even though the pitch extraction

also runs in an online system [14]. We use the Robot Operat-

ing System (ROS) developed by Willow Garage, Inc. to control

Hearbo.

The interactions took place in a 4 m × 7 m room with RT20

= 300 ms1. The users were standing at a natural interaction dis-

tance of ≈ 1.5 m and talking at an angle of 0◦ from the front to

Hearbo. In addition we also made recordings from a headset the

users were wearing. We used this signal only to benchmark our

system. The signals recorded on the robot are already impaired

by the reverberations from the room and the background noise

present in the room. In addition to this we also added music to

the signals. The music signal was not present during the record-

ings but added artificially by convolving the music signal with

a transfer function measured for a direction of 60◦ from the left

of the robot. Thereby the music signal had approximately the

1
RT20 is better suited for measurements in noisy environments. It

gives the decay measured at 20 dB extrapolated to 60 dB decay

same power as the speech signal, i. e. the Signal-to-Noise Ratio

was around 0 dB.

During the interaction 4 male users were uttering 40 differ-

ent Japanese sentences which are ambiguous without intonation

information. They were uttering them with different intonation

patterns, e. g. TA NO SHI KA Q TA (I enjoyed it./Did you enjoy

it?). As intonation patterns we used 152 questions, 148 affirma-

tions, and 104 denials, yielding 404 utterances. For the classifi-

cation we combined affirmation and denial into one class such

that the distinction is only between 152 questions and 252 items

in the remaining class.

The signals are recorded with 16 kHz sampling rate. We

use a Gammatone filter bank with 100 channels with center fre-

quencies from 50. . . 5000 Hz for the pitch extraction. The max-

imal pitch value was set to 500 Hz and the Bayesian smoothing,

a part of the Bayesian tracking, was performed on 200 ms .

To asses the contribution of the different parts of our system

we performed different tests. First we evaluated the intonation

classification from the microphone closest to the speakers (re-

ferred to as BestMic)2. In a second test we use the same sig-

nal but perform the VAD calculation on the signal at the output

of the GHDSS (referred to as BestMicGHDSSVAD). This high-

lights the importance of the segmentation. The comparison of

the BestMic results with those obtained after the source sep-

aration via GHDSS show the contribution of the GHDSS. In a

further test we added the HRLE post filter mentioned in Sec. 5.1

and the cross talk suppression mentioned in Sec. 5.2 to the VAD

calculation (referred to as GHDSS+PostProc.). Thereby we can

determine the impact of this further enhancement step. Finally

we also use the headset signal (referred to as Headset). These

results allow us to delineate the impact of the adverse acoustical

environment we face in realistic human-robot interaction.

For all cases mentioned above we performed the pitch

tracking not only with the algorithm described in Sec. 4 but also

with two publicly available and commonly used pitch tracking

frameworks. These are get f0 from ESPS in the implementation

of the WaveSurfer toolkit [20, 9] and praat [21]. Both frame-

works are based on an autocorrelation calculated from the full-

band signal.

In Fig. 3 the spectrograms for the BestMic, GHDSS and

Headset case are shown. These results illustrate some of the

difficulties encountered during the intonation classification. De-

spite the distortions in the signal in this example the voice activ-

ity detection and the pitch tracking is accurate in all three cases.

2This is in fact a virtual microphone as it also includes the contribu-

tion of the simulated interfering music signal.



Table 1: Classification error rates in %.

BestMic BestMic GHDSS GHDSS Headset
GHDSS VAD +Post Proc.

praat 38 29 28 26 20

get f0 38 28 27 25 13

proposed 42 25 23 16 10

However, the voicing detection is notably impaired. As a con-

sequence also the pitch extraction is impaired as pitch tracks are

only evaluated in voiced regions. This can be seen by compar-

ing the final part of the BestMic case with the other two cases.

In Table 1 the classification results for the different cases

are given. In the Headset case we obtain 40 ( i. e. 10%) errors

when using the proposed pitch tracking. Of these are 16 due to

erroneous pitch tracking, 10 due to wrong voicing decision, 2

resulting from wrong segmentation, and in 12 cases our proto-

typical pitch patterns do not match the data ( e. g. some nega-

tions have a rising pitch at the end). One can see that the degra-

dation from the Headset condition to the condition without fur-

ther processing (BestMic) is very significant and performance is

close to chance level (50%). Supplying a better speech segmen-

tation by using the GHDSS for VAD improves performance a

lot. Separating the signals via GHDSS before classification fur-

ther improves the performance. Finally, incorporating the post

processing steps (GHDSS+PostProc.) additionally reduces the

error rates. When looking on the different pitch extraction al-

gorithms one can see that the pitch extraction we proposed per-

forms better than either praat or get f0 in all cases tested ,except

for the BestMic case without the VAD from GHDSS. In fact

our pitch extraction performs on the unprocessed but correctly

segmented signal (BestMicGHDSSVAD) already better than the

other two on the signal after source separation.

8. Conclusion

We obtain good intonation classification results on the clean sig-

nal. Nevertheless, some errors are present. The detailed anal-

ysis above for the headset case illustrated that they reflect the

general difficulty of the precise extraction of the fundamental

frequency as well as voicing information and the ambiguous

nature of the pitch movements in respect to speech acts.

We could show that the classification results don’t dete-

riorate too much in an acoustically challenging environment

mainly due to the source separation via GHDSS, enhanced

VAD, and the robust pitch extraction. Hereby the correct seg-

mentation of the signal plays a crucial role. It is worth noting

that when using the proposed source separation and the pro-

posed pitch extraction the results on the noisy signals are al-

most as good as those obtained by applying the standard pitch

extraction algorithms on the clean signal.

The approach we followed of only classifying the final pitch

movement of the utterance is certainly too limited. To obtain

better results additional features are required. On one hand it

will be necessary to evaluate the pitch contour of the whole ut-

terance, especially relating the last segment to the mean pitch

value of a speaker. Furthermore, other cues to intonation than

pitch have to be taken into account. This comprises e. g. the en-

ergy profile and the lengthening of the syllables. Nevertheless,

we think that the results we obtain are suited such that the sys-

tem we propose can be used to improve dialog act classification

in human robot interaction and thereby serve as an additional

cue to improve human robot communication.
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[13] C. Gläser, M. Heckmann, F. Joublin, and C. Goerick, “Combining
auditory preprocessing and bayesian estimation for robust formant
tracking,” IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no.
2, pp. 224–236, 2010.
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