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Neural associative memories are perceptron-like single-layer networks
with fast synaptic learning typically storing discrete associations between
pairs of neural activity patterns. Previous work optimized the memory ca-
pacity for various models of synaptic learning: linear Hopfield-type rules,
the Willshaw model employing binary synapses, or the BCPNN rule of
Lansner and Ekeberg, for example. Here I show that all of these pre-
vious models are limit cases of a general optimal model where synaptic
learning is determined by probabilistic Bayesian considerations. Asymp-
totically, for large networks and very sparse neuron activity, the Bayesian
model becomes identical to an inhibitory implementation of the Will-
shaw and BCPNN-type models. For less sparse patterns, the Bayesian
model becomes identical to Hopfield-type networks employing the co-
variance rule. For intermediate sparseness or finite networks, the optimal
Bayesian learning rule differs from the previous models and can signifi-
cantly improve memory performance. I also provide a unified analytical
framework to determine memory capacity at a given output noise level
that links approaches based on mutual information, Hamming distance,
and signal-to-noise ratio.

1 Introduction

An associative memory is an alternative computing architecture in which,
unlike the classical von Neumann machine, computation and data storage
are not separated. For example, as illustrated by Figure 1, an associative
memory can store a set of associations between pairs of pattern vectors
{(uμ → vμ) : μ = 1, . . . , M}. Similar to random access memory, a query pat-
tern uμ entered in associative memory can serve as an address for accessing
the associated content pattern vμ. However, unlike random access memory,
an associative memory accepts arbitrary query patterns ũ, and the compu-
tation of any particular output involves all stored data records rather than a
single one. Specifically, the associative memory task consists of comparing
a query ũ with all stored addresses and returning an output pattern equal
(or similar) to the pattern vμ associated with the address uμ most similar to
the query. Thus, the associative memory task includes the random access
task but is not restricted to it. It also includes computations such as pattern
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Figure 1: Pattern storage and retrieval in an associative memory. The task is
to store M associations between address patterns uμ and content patterns vμ.
Address patterns uμ are binary vectors of size m with an average number of
k̄ = mp active units. Similarly, the content patterns vμ have size n and mean ac-
tivity l̄ = nq . During retrieval, the memories are addressed by a query pattern
ũ being a noisy version of one of the address patterns with component tran-
sition probabilities p10 := pr[ũi = 0|uμ

i = 1] and p01 := pr[ũi = 1|uμ

i = 0] corre-
sponding to miss noise and add noise, respectively. Thus, the query contains,
on average, a fraction of λ̃ = 1 − p10 correctly active units and another frac-
tion of κ̃ = p01(1 − p)/p falsely active units. The total fraction of wrong query
components is called query noise ε̃ = 1 − λ̃ + κ̃ . Similarly, the output noise
ε̂ = 1 − λ̂ + κ̂ is the fraction of wrong components in the retrieval output pattern
v̂ where q10 := pr[v̂ j = 0|vμ

j = 1] and q01 := pr[v̂ j = 1|vμ

j = 0] are the transition
probabilities of the corresponding memory channel.

completion, denoising, or data retrieval using incomplete cues. Moreover,
neural implementations of associative memory are closely related to Heb-
bian cell assemblies and play an important role in neuroscience as models
of neural computation for various brain structures, for example, neocor-
tex, hippocampus, cerebellum, mushroom body (Hebb, 1949; Braitenberg,
1978; Palm, 1991; Fransen & Lansner, 1998; Pulvermüller, 2003; Johansson &
Lansner, 2007; Lansner, 2009; Gardner-Medwin, 1976; Rolls, 1996; Bogacz,
Brown, & Giraud-Carrier, 2001; Marr, 1969, 1971; Albus, 1971; Kanerva,
1988; Laurent, 2002).

In its simplest forms, neural associative memories are single-layer per-
ceptrons with fast, typically one-shot, synaptic learning realizing the storage
of M discrete associations between binary address and content patterns uμ

and vμ. The one-shot constraint favors local learning rules where a synaptic
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weight wi j depends on only uμ

i and v
μ

j . Alternative nonlocal learning meth-
ods are typically time-consuming and require gradient descent (such as
error backpropagation) that is based on global error signals obtained from
repeated training of the entire pattern set. Instead, associative memories use
simple Hebbian-type learning rules where synaptic weights increase if both
the presynaptic and postsynaptic neurons are active during presentation of
a pattern pair.

The performance of neural associative memory models can be evaluated
by storage capacity, which can be defined, for example, by the number of
memories M a network of a given size can store or by the Shannon informa-
tion C that a synapse can store. More recent work considers also structural
compression of synaptic networks and the energy or time requirements
per retrieval (Poirazi & Mel, 2001; Stepanyants, Hof, & Chklovskii, 2002;
Lennie, 2003; Knoblauch, 2003, 2005, 2009b; Knoblauch, Palm, & Sommer,
2010).

The simplest one-shot learning model is the so-called Steinbuch or Will-
shaw model with binary synapses and clipped Hebbian learning (Willshaw,
Buneman, & Longuet-Higgins, 1969; Steinbuch, 1961; Palm, 1980, 1991;
Golomb, Rubin, & Sompolinsky, 1990; Nadal, 1991; Sommer & Dayan, 1998;
Sommer & Palm, 1999; Knoblauch et al., 2010). Here a single coincidence of
presynaptic and postsynaptic activity is sufficient to increase the synaptic
weight from 0 to 1, while further coincidences do not cause further changes.

An alternative model is the linear associative memory, where contribu-
tions of different pattern pairs add linearly (Kohonen, 1972; Kohonen &
Oja, 1976; Anderson, Silverstein, Ritz, & Jones, 1977; Hopfield, 1982; Palm,
1988a; 1988b; Tsodyks & Feigel’man, 1988; Willshaw & Dayan, 1990; Dayan
& Willshaw, 1991; Palm & Sommer, 1992, 1996; Chechik, Meilijson, &
Ruppin, 2001; Sterratt & Willshaw, 2008). For example, for binary memory
patterns uμ

i , v
μ

j ∈ {0, 1} the general linear learning rule can be described
by four values ruμ

i v
μ

j
specifying the weight increments for the possible

combinations of presynaptic and postsynaptic activity.
Surprisingly, the maximal storage capacity C in bits per synapse is al-

most identical for the two models: the Willshaw model can achieve up
to 0.69 bits per synapse (bps), whereas the linear models achieve only a
slightly higher capacity of 0.72 bps in spite of employing real-valued synap-
tic weights. However, closer investigation reveals that the Willshaw model
can achieve nonzero capacity only for extremely sparse activity, where the
number of active units per pattern vector scales logarithmic with the vector
size. In contrast, the linear model achieves the maximum C = 0.72 bps for
a much larger range of moderately sparse patterns. Only for a nonvanish-
ing fraction of active units per pattern vector does the performance drop
from 0.72 bps to the capacity of the original (nonsparse) Hopfield network
(e.g., C = 0.14 bps in Hopfield, 1982; Hertz, Krogh, & Palmer, 1991; Palm
& Sommer, 1996, or, as we will see below, C = 0.33 bps for the hetero-
associative feedforward networks considered here). The linear learning
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model achieves maximal storage capacity only for the optimal covariance
learning rule (e.g., Sejnowski, 1977a, 1977b; Dayan & Willshaw, 1991;
Dayan & Sejnowski, 1993; Palm & Sommer, 1996), which becomes equal
to the Hebb rule for very sparse patterns and equal to the Hopfield rule
for nonsparse patterns. Moreover, simulation experiments show that the
capacity of the optimal linear model remains well below the capacity of
the Willshaw model for any reasonable finite network size (e.g., C = 0.2
bps versus C = 0.5 bps for n = 105 neurons; see Knoblauch, 2009a; Palm &
Sommer, 1992). This suggests that the linear covariance rule is not always
optimal, in particular not for finite networks and sparse memory repre-
sentations as found in the brain (Waydo, Kraskov, Quiroga, Fried, & Koch,
2006).

A third model class is based on the Bayesian confidence propagation
neural network (BCPNN) rule (Lansner & Ekeberg, 1987, 1989; Kononenko,
1989, 1994; Lansner & Holst, 1996; Sandberg, Lansner, Petersson, & Ekeberg,
2000; Lansner, 2009). This model employs Bayesian maximum-likelihood
heuristics for synaptic learning and retrieval (see also a related approach
based on maximizing the entropy of synaptic weights: MacKay, 1991).
Therefore, it has been suspected that the BCPNN model could achieve
optimal performance, or at least exceed the performance of Willshaw and
linear models. These conjectures have been supported by some numerical
investigations; however, theoretical analyses of the BCPNN model have
been lacking so far. As we will see, the BCPNN model becomes optimal
only for a limited range of very sparse memory patterns.

This article (see also Knoblauch, 2009a, 2010a) develops the generally
optimal associative memory that minimizes output noise and maximizes
storage capacity by activating neurons based on Bayesian maximum like-
lihood decisions. The corresponding neural interpretation of this Bayesian
associative memory corresponds in general to a novel nonlinear learning
rule resembling the BCPNN rule. Specifically, a theoretical analysis includ-
ing query noise shows that the previous learning models are only special
limit cases of the generally optimal Bayesian model. Asymptotically, for
large networks and extremely sparse memory patterns, the Bayesian model
becomes essentially identical to the binary Willshaw model (but imple-
mented with inhibitory rather than excitatory synapses; see Knoblauch,
2007). Similarly, the BCPNN model is optimal for a less restricted range
of sparse memory patterns where the fraction of active units per memory
vector still vanishes. For less sparse and nonsparse patterns, the Bayesian
model becomes identical to the linear model employing the covariance
rule. For a large range of intermediate sparseness and finite networks, the
Bayesian learning rule is shown to perform significantly better than previ-
ous models. As a by-product, this work also provides a unified analytical
framework to determine memory capacities at a given output noise level
that links approaches based on mutual information, Hamming distance,
and signal-to-noise ratio.
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The organization of the paper is as follows. Section 2 describes the model
of neural associative memory with optimal Bayesian learning and analyzes
signal-to-noise ratio and storage capacity. Section 3 compares the Bayesian
associative memory to previous models in the literature, including in-
hibitory implementations of the Willshaw network, linear learning models
with the covariance rule, and BCPNN-type models, and determines asymp-
totic conditions when the respective models become equivalent to optimal
Bayesian learning. Section 4 presents results from numerical simulation ex-
periments verifying the theoretical results concerning signal-to-noise-ratio,
output noise, and storage capacity. Further experiments compare the per-
formance of various learning models for finite network sizes. Section 5
summarizes and discusses the main results of this work. The appendixes
include a description for appropriate implementations of Bayesian asso-
ciative memory (appendix A), an analysis for computing optimal firing
thresholds (appendix D), an analysis of the relationship between signal-to-
noise ratio and Hamming-distance-based measures for output noise and
storage capacity (appendix E), and signal-to-noise ratio analyses for the
linear and BCPNN-type models (appendixes G, H).

2 Model of Bayesian Associative Memory

2.1 Memory Storage in Neural and Synaptic Countervariables. The
task is to store M associations between address patterns uμ and content
patterns vμ where μ = 1, . . . , M. Here uμ and vμ are binary vectors of size
m and n, respectively. Memory associations are stored in first-order (neural)
and second-order (synaptic) countervariables. In particular, each address
neuron i and each content neuron j can memorize its unit usage:

M1( j) := #{μ : v
μ

j = 1}, (2.1)

M0( j) := #{μ : v
μ

j = 0} = M − M1( j), (2.2)

M′
1(i) := #{μ : uμ

i = 1}, (2.3)

M′
0(i) := #{μ : uμ

i = 0} = M − M′
1(i). (2.4)

Similarly, each synapse i j can memorize its synapse usage:

M11(i j) := #{μ : uμ

i = 1, v
μ

j = 1}, (2.5)

M01(i j) := #{μ : uμ

i = 0, v
μ

j = 1} = M1( j) − M11(i j), (2.6)

M00(i j) := #{μ : uμ

i = 0, v
μ

j = 0} = M′
0(i) − M01(i j), (2.7)

M10(i j) := #{μ : uμ

i = 1, v
μ

j = 0} = M0( j) − M00(i j), (2.8)
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where i = 1, . . . , m and j = 1, . . . , n. Note that it is sufficient to memorize
M, M1, M′

1, and M11. Thus, an implementation on a digital computer
requires about (mn + m + n + 1)ldM memory bits. The following analy-
ses consider optimal Bayesian retrieval, assuming that each output unit
j = 1, . . . , n has access to the variables in the set

M( j) := {M, M1( j), M′
1(i), M11(i j) : i = 1, . . . , m}. (2.9)

The following analyses will show that the mean values of the coincidence
counters M11 := E(M11) and unit usages, M1 := E(M1), M′

1 := E(M′
1), have a

major role in determining the regime of operation for Bayesian associative
memory (see Table 2).

2.2 Neural Formulation of Optimal Bayesian Retrieval. Given a query
pattern ũ and the countervariables of section 2.1, the memory task is to find
the most similar address pattern uμ and return a reconstruction v̂ of the
associated content vμ. In general, query ũ is a noisy version of uμ, assuming
component transition probabilities given the activity of a content neuron,
v

μ

j = a ∈ {0, 1}:

p01|a(i j) := pr[ũi = 1|uμ

i = 0, v
μ

j = a], (2.10)

p10|a(i j) := pr[ũi = 0|uμ

i = 1, v
μ

j = a]. (2.11)

Now the content neurons j have to decide independently of each other
whether to be activated or remain silent. Given the query ũ, the optimal
maximum likelihood decision is based on the odds ratio r j ,

v̂ j =

⎧⎪⎨
⎪⎩

1, r j := pr[vμ

j = 1|ũ, M( j)]

pr[vμ

j = 0|ũ, M( j)]
≥ 1

0, otherwise

, (2.12)

which minimizes the expected Hamming distance dH(vμ, v̂) := ∑n
j=1 |vμ

j −
v̂ j | between original and reconstructed content. If the query pattern com-
ponents are conditional independent given the activity of content neuron j
(e.g., assuming independently generated address and query components),
we have for a ∈ {0, 1}

pr[ũ|vμ

j = a, M( j)]

=
m∏

i=1

pr[ũi |vμ

j = a, M( j)]
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=
m∏

i=1

Mũi a(i j)(1 − pũi (1−ũi )|a(i j)) + M(1−ũi )a(i j)p(1−ũi )ũi |a(i j)
Ma( j)

.

(2.13)

With the Bayes formula pr[vμ

j = a|ũ, M( j)] = pr[ũ|vμ

j = a, M( j)]pr[vμ

j =
a|M( j)]/pr[ũ|M( j)], the odds ratio is

r j =
(

M0( j)
M1( j)

)m−1

×
m∏

i=1

Mũi 1(i j)(1 − pũi (1−ũi )|1(i j)) + M(1−ũi )1(i j)p(1−ũi )ũi |1(i j)
Mũi 0(i j)(1 − pũi (1−ũi )|0(i j)) + M(1−ũi )0(i j)p(1−ũi )ũi |0(i j)

. (2.14)

For a more plausible neural formulation, we can take logarithms of the
probabilities and obtain dendritic potentials xj := log r j . With f(ũi , i j) being
the ith factor in the product of equation 2.14, it is

xj − (m − 1) log
M0( j)
M1( j)

=
m∑

i=1

log f(ũi , i j)

=
m∑

i=1

(log f(0, i j) + ũi (log f(1, i j) − log f(0, i j))).

Thus, synaptic weights wi j , dendritic potentials xj , and retrieval output v̂ j

are finally

wi j = log
(M11(1 − p10|1) + M01 p01|1)(M00(1 − p01|0) + M10 p10|0)
(M10(1 − p10|0) + M00 p01|0)(M01(1 − p01|1) + M11 p10|1)

, (2.15)

xj = (m − 1) log
M0

M1
+

m∑
i=1

log
M01(1 − p01|1) + M11 p10|1
M00(1 − p01|0) + M10 p10|0

+
m∑

i=1

wi j ũi ,

(2.16)

v̂ j =
{

1, xj ≥ 0

0, otherwise
, (2.17)

such that pr[vμ

j = 1|ũ, M( j)] = 1/(1 + e−xj ) writes as a sigmoid function of
xj , and a content neuron fires, v̂ j = 1, iff the dendritic potential is nonneg-
ative. Note that indices of M0( j), M1( j), p01|a(i j), p10|a(i j), M00(i j), M01(i j),
M10(i j), and M11(i j) are skipped for readability. Also note that optimal
Bayesian learning is nonlinear and, for autoassociation with uμ = vμ and
nonzero query noise, asymmetric with wi j �= w j i . Note further that synaptic
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weights and dendritic potentials may be infinite, such that accurate imple-
mentations require two values per variable for finite and infinite compo-
nents, respectively (see appendix A).

Nevertheless, evaluating equation 2.16 is much cheaper than equa-
tion 2.14,1 in particular for sparse queries having only a small number
of active components with ũi = 1. However, the synaptic weights of equa-
tion 2.15 may not yet satisfy Dale’s law that a neuron is either excitatory or
inhibitory. To be more consistent with biology, we may add a sufficiently
large constant w0 := − mini j wi j to each weight. Then all synapses have
nonnegative weights w′

i j := wi j + w0 and the dendritic potentials remain
unchanged if we replace the last sum in equation 2.16 by

m∑
i=0

wi j ũi =
m∑

i=0

w′
i j ũi − w0

m∑
i=0

ũi . (2.18)

Here the negative sum could be realized, for example, by feedforward
inhibition with a strength proportional to the query pattern activity, as sug-
gested by Knoblauch and Palm (2001) and Knoblauch (2005), for example.

The transition probabilities, equations 2.10 and 2.11, can be estimated
by maintaining countervariables similar as in section 2.1. For example, if
the μth memory vμ has been queried by M̃μ address queries ũ(μ,μ′) (where
μ′ = 1, 2, . . . , M̃μ), then we could estimate for a, b, c ∈ {0, 1},

pbc|a(i j) = #{(μ,μ′) : uμ

i = b, ũ(μ,μ′)
i = c, v

μ

j = a}
#{(μ,μ′) : uμ

i = b, v
μ

j = a, 1 ≤ μ′ ≤ M̃μ} , (2.19)

which requires four countervariables per synapse in addition to M11. To
reduce storage costs, one may assume

pbc|a(i j) = pbc(i) :=
∑

a∈{0,1}
pr[vμ

j = a]pbc|a(i j)

= #{(μ,μ′) : uμ

i = b, ũ(μ,μ′)
i = c}

#{(μ,μ′) : uμ

i = b, 1 ≤ μ′ ≤ M̃μ} , (2.20)

independent of j , as do most of the following analyses and experiments for
the sake of simplicity, although this assumption may reduce the number
of discovered rules (corresponding to infinite wi j ) describing deterministic
relationships between ui and v j .

1Evaluating equation 2.14 during retrieval requires about 5m multiplications and 2m
additions even for sparse query activity with |ũ| := ∑m

i=1 ũi 	 m/2. By contrast, evaluat-
ing equation 2.16 requires only |ũ| multiplications and m additions, as the “bias” (first and
second summands) of xj is independent of ũ and therefore can be computed in advance.
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2.3 Analysis of the Signal-to-Noise Ratio. We would like to build a
memory system with high retrieval quality, for example, where the expected
Hamming distance,

EdH(vμ, v̂) =
n∑

j=1

q ( j)q10( j) + (1 − q ( j))q01( j), (2.21)

is small. Here, dH is as defined below equation 2.12, and q ( j) := pr[vμ

j = 1]
is the prior probability of an active content unit. Thus, retrieval quality is
determined by the component output error probabilities,

q01( j) := pr[v̂ j = 1|vμ

j = 0] = pr[xj ≥ � j |vμ

j = 0], (2.22)

q10( j) := pr[v̂ j = 0|vμ

j = 1] = pr[xj < � j |vμ

j = 1], (2.23)

where the � j are firing thresholds (e.g., � j = 0 for dendritic potentials
xj as in equation 2.16). Intuitively, retrieval quality will be high if the
high-potential distribution pr[xj |vμ

j = 1] and the low-potential distribution
pr[xj |vμ

j = 0] are well separated, that is, if the signal-to-noise ratio (SNR),

R( j) := μhi( j) − μlo( j)
max(σlo( j), σhi( j))

. (2.24)

is large for each content neuron j (Amari, 1977; Palm, 1988a, 1988b; Dayan
& Willshaw, 1991; Palm & Sommer, 1996). Here μlo := E(xj |vμ

j = 0) and
σ 2

lo := Var(xj |vμ

j = 0) are the expectation and variance of the low-potential
distribution, and μhi = E(xj |vμ

j = 1) and σ 2
hi := Var(xj |vμ

j = 1) are the expec-
tation and variance of the high-potential distribution. Appendix E shows
that under some conditions, the SNR and the Hamming distance are equiv-
alent measures of retrieval quality.

Appendix B computes the SNR R := R( j) for a particular content neuron
j with q := M1( j)/M using the following simplifications:

1. The activation of an address unit i does not depend on other units,
and all address units i have the same prior probability p := p(i) :=
pr[uμ

i = 1] of being active. Thus, on average, an address pattern has
k̄ := mp active units.

2. Query noise for an address unit i does not depend on other units,
and all query components i have the same noise transition proba-
bilities p01 := p01(i) = p01|a(i j) and p10 := p10(i) = p10|a(i j). Thus, on
average, a query will have λ̃k̄ correct and κ̃ k̄ false one-entries, where
λ̃ := 1 − p10 and κ̃ := (1 − p)p01/p define fractions of average miss
noise and add noise, respectively, normalized to the mean address
pattern activity k̄.
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Figure 2: (Left) For the analysis of SNR, we assume that the query pattern ũ
corresponds to one of the original address patterns uμ that has k one-entries
(and m − k zero-entries). Due to query noise, the query ũ has only c correct one-
entries overlapping with uμ and an addition of f false one-entries. Without loss
of generality, the analysis assumes the setting as illustrated. (Right) Contour plot
of the relative SNR ρ2 for sparse address activity with p → 0 (see equation 2.29)
as a function of miss noise 1 − λ̃ ≈ (k − c)/k ≈ p10 and add noise κ̃ ≈ f/k ≈
p01(1 − p)/p contained in the query ũ used for memory retrieval.

3. Retrieval involves a particular query pattern ũ being a noisy version
of an address pattern uμ that has exactly k one-entries, where the
query has c out of k correct one-entries and, additionally, f false
one-entries. Without loss of generality, we can assume a setting as
illustrated by Figure 2 (left), that is, the address pattern has one-
entries uμ

i = 1 at components i = 1, 2, . . . , k and zero-entries uμ

i = 0 at
i = k + 1, k + 2, . . . , m whereas the query has false entries ũi = 1 − uμ

i
at i = c + 1, c + 2, . . . , k + f .

4. The average values of the synaptic coincidence counters diverge:
M11 = Mpq → ∞. Note that this assumption also implies diverging
unit usages, M1 = Mq → ∞ and M′

1 = Mp → ∞. For reasons that
will become apparent in section 3, the condition M11 → ∞ is also
referred to as the linear learning regime, whereas M11 	 ∞ will be
called the nonlinear learning regime.

From the results of appendix B, we obtain the SNR, equation 2.24 in
the asymptotic limit of large M11 = Mpq → ∞ where all variables will be
close to their expectations due to the law of large numbers. In particular, we
can assume k ≈ mp, and, for consistent error estimates, p01 = f/(m − k) =
κ̃ p/(1 − p), p10 = (k − c)/k = 1 − λ̃. Then we obtain from equation B.6
the mean difference �μ := μhi − μlo between high potentials and low
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potentials:

�μ

(λ̃ − p
1−p κ̃)(1/M1 + 1/M0)

≈ λ̃p(1 − p)m − κ̃ p2m
p(1 + κ̃ − 1 + λ̃)

+ mp − mp2 − κ̃mp2 − (mp − λ̃mp)(1 − p)
(1 − p)(1 − p

1−p κ̃ + p
1−p (1 − λ̃))

= m
λ̃(1 − p) − κ̃ p

(λ̃ + κ̃)(1 − p(λ̃ + κ̃))
. (2.25)

Similarly, we obtain from equation B.8 for the potential variance:

σ 2
lo/hi

(λ̃ − p
1−p κ̃)2(1/M1 + 1/M0)

≈ pm(λ̃ + κ̃)(1 − p)
p(1 + κ̃ − 1 + λ̃)2

+ mp(1 − p(λ̃ + κ̃))
(1 − p)(1 − p

1−p κ̃ + p
1−p (1 − λ̃))2

= m
(1 − p)

(λ̃ + κ̃)(1 − p(λ̃ + κ̃))
. (2.26)

In order to include randomly diluted networks with connectivity P ∈ (0; 1]
where a content neuron v j receives synapses from only a fraction P of the
m address neurons, we can simply replace m by Pm. With M1 ≈ Mq and
M0 ≈ M(1 − q ), the asymptotic SNR R = �μ/σ is

R2 ≈ Pm(1/M1 + 1/M0)
(λ̃(1 − p) − κ̃ p)2

(1 − p)(λ̃ + κ̃)(1 − p(λ̃ + κ̃))
(2.27)

≈ Pρ2 m
Mq (1 − q )

(2.28)

with

ρ2 ≈ (λ̃(1 − p) − κ̃ p)2

(1 − p)(λ̃ + κ̃)(1 − p(λ̃ + κ̃))
≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ̃2

λ̃ + κ̃
, p → 0

(λ̃ − κ̃)2

(λ̃ + κ̃)(2 − λ̃ − κ̃)
, p = 0.5

.

(2.29)

Thus, for zero query noise, λ̃ = 1, κ̃ = 0, the SNR for optimal Bayesian learn-
ing is identical to the asymptotic SNR of linear learning with the optimal
covariance rule (e.g., see ρCovariance

3 in Dayan & Willshaw, 1991, p. 259, or
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equation 3.28 in Palm & Sommer, 1996, p. 95; see also section 3.2). Nonzero
query noise according to λ̃ < 1 or κ̃ > 0 decreases the SNR R by a factor
ρ < 1. Note that ρ characterizes the basin of attraction, defined as the set of
queries {ũ : v̂ ≈ vμ} that get mapped to a stored memory vμ. For example,
we can evaluate which combinations of λ̃ and κ̃ achieve a fixed desired ρ

(and thus R). It turns out that for sparse address patterns, p < 0.5, miss noise
λ̃ < 1 impairs network performance more severely than add noise κ̃ > 0
(see Figure 2, right). As a consequence, the basins of attraction for neural
associative memories employing sparse address patterns are not necessar-
ily spheres, but they can be heavily distorted, enlarging toward queries
with add noise and shrinking toward queries with miss noise. This implies
that the similarity metrics employed by associative networks can strongly
deviate from commonly used Hamming or Euclidean metrics. Instead, as-
sociative networks appear to follow an information-theoretic metric based
on mutual information or transinformation (Cover & Thomas, 1991). This
is true at least for random address patterns uμ storing a sufficiently large
number of memories such that the synapse usages, in particular M11, are
almost never zero. Numerical simulations discussed in section 4 reveal that
basins of attraction can behave quite differently if these assumptions are
not fulfilled.

2.4 Analysis of Storage Capacity. Let us determine the maximal num-
ber of memories that can be stored in an associative network or, equivalently,
the maximal amount of information that a synapse can store. To this end,
we define storage capacity at a given level of output noise,

ε̂ := EdH(vμ, v̂)
l̄

= 1 − λ̂ + κ̂, (2.30)

being the expected Hamming distance, equation 2.21 normalized to the
mean content pattern activity l̄ := ∑n

j=1 q ( j). As for query noise, we can
write output noise as a sum of miss noise 1 − λ̂ and add noise κ̂ . For ergodic
q := q ( j), q01 := q01( j), q10 := q10( j) (or considering only a single output
unit j), we have miss noise 1 − λ̂ = q10 and add noise κ̂ = (1 − q )q01/q . The
weighing between miss noise and add noise can be expressed by the output
noise balance,

ξ̂ := κ̂

ε̂
= (1 − q )q01

qq10 + (1 − q )q01
∈ [0; 1]. (2.31)

For any given distribution of dendritic potentials, there exists a unique opti-
mal firing threshold (see appendix D) and, hence, a corresponding optimal
noise balance (see equation E.10) that minimize the output noise ε̂. This
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minimal output noise ε̂min := minξ̂ ε̂ is an increasing function of the num-
ber M of stored memories (see equation E.6). Therefore, we can define the
pattern capacity

Mε := max{M : ε̂min ≤ ε}, (2.32)

as the maximal number of memory patterns that can be stored such that the
output noise does not exceed a given value ε. Assuming that the dendritic
potentials follow approximately a gaussian distribution (which is not al-
ways true; e.g., see Henkel & Opper, 1990; Knoblauch, 2008), we can apply
the results of appendix E and obtain Mε from the SNR, equation 2.24, by
solving the equation R(Mε) = Rmin(ε, q ) for Mε . Here R(Mε) is approxi-
mately equal to equation 2.28, and Rmin is the minimal SNR required for
output noise level ε and can be computed from solving equation E.6 for R
(or, more conveniently, by iterating equations E.9 and E.10). Thus,

Mε = R−1(Rmin(ε, q )) ≈ Pρ2 m
q (1 − q )(Rmin(ε, q ))2 . (2.33)

where the approximation becomes exact for large networks in the limit
Mpq → ∞.

An alternative capacity measure normalizes the stored Shannon infor-
mation (of the content memories) to the number Pmn of synapses employed
in a given network. This is the network capacity

Cε := MεnT(q ; q01, q10)
Pmn

≈ ρ2

2 ln 2
T(q ; q01, q10)

q (1 − q )(Rmin(ε, q ))2 (2.34)

where T is the transinformation equation F.4 with error probabilities q01,
q10 as in equations E.4 and E.5 using R = Rmin. We can refine these results
for two important cases using the results of appendixes E and F.

First, for nonsparse content patterns with q = 0.5, it is

Mε ≈ Pρ2 m

(Gc−1(ε/2))2
(2.35)

Cε ≈ ρ2

2 ln 2
1 − I (ε/2)

(Gc−1(ε/2))2
≤ 1

2π (ln 2)2 ≈ 0.3313. (2.36)

As can be seen in Figures 3a and 3b, the upper bound of Cε is achieved for
zero query noise (1 − λ̃ = κ̃ = 0) and low fidelity with ε → 1, while Cε → 0
for high fidelity with ε → 0.
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Figure 3: Generalized asymptotic network capacity Cεξ for zero query noise
(λ̃ = 1, κ̃ = 0, ρ = 1) displayed as a function of output noise parameter ε,
noise balance parameter ξ , and content pattern activity q (see text below equa-
tion 2.38). Here Cε of equation 2.34 is a special case for optimal noise balance
ξ = ξ̂opt as in equation E.10 minimizing output noise ε̂ (see equation 2.30). (a) Cε

as function of output noise ε for nonsparse memories, q = 0.5, and optimal
noise balance ξ = ξ̂opt = 0.5. (b) Contour plot of general Cεξ as function of pa-
rameters ε and ξ for nonsparse q = 0.5. (c) Contour plot of Cε as function of q
and ε for optimal ξ = ξ̂opt. (d) Optimal ξ̂ corresponding to panel c. For q → 0
miss noise is dominating with ξ̂ → 0 (cf. equation D.10). (e) Contour plot of Cεξ

similar to panel b, but for sparse content memories with q = 0.1. (f) Similar to
panel e, but for extremely sparse q = 0.0000001. Note that q → 0 implies that
the maximum of Cεξ occurs for low fidelity ε > 1 and dominating add-noise
with ξ > 0.5. Thus, although minimizing the Hamming-distance-based output
noise, the “optimal” firing threshold �opt of appendix E does not necessarily
maximize Cεξ unless ε → 0.
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Second, for sparse content patterns with q → 0 and any fixed ε, it is

Mε ≈ Pρ2 m
−2q (1 − q ) ln q

, (2.37)

Cε ≈ ρ2 I (q )(1 − ε)
−2q (1 − q ) ln q

≈ ρ2(1 − ε)
2 ln 2

≤ 1
2 ln 2

≈ 0.7214. (2.38)

where the upper bound of Cε can be reached for zero query noise and
high fidelity with ε → 0. Not surprisingly, this upper bound equals the
one found for the linear covariance rule (Palm & Sommer, 1996) as well as
the general capacity bound for neural networks (Gardner, 1988). Numerical
evaluations (see Figures 3c to 3f) show that a network capacity close to Cε ≈
0.72 requires extremely sparse content memories and very large networks.
In fact, finite networks of practical size can reach less than half of the
asymptotic value (see Figure 3f). Note that Mε and Cε are defined only
for ε < 1 assuming optimal firing thresholds to minimize output noise ε̂

corresponding to an optimal noise balance ξ̂ := κ̂/ε̂ → 0 as in equation E.10,
where output errors are dominated by miss noise (see equation D.10). For
generalized definitions of pattern capacity Mεξ and network capacity Cεξ at
a given output noise balance ξ̂ = ξ , we can replace Rmin(ε, q ) by Rmin(ε, q , ξ )
as given by equation E.9. Here finite networks achieve maximal capacity
at low fidelity ε � 1 and ξ → 1 where output errors are dominated by add
noise.

For self-consistency, the analyses so far are valid only for diverging
Mε pq ∼ −mp/ log q → ∞. Thus, the results are not reliable for extremely
sparse memory patterns, for example, mp = O(log n), where at least the bi-
nomially distributed synaptic countervariables M11 ∼ BM,pq are small and
cannot be approximated by gaussians (where BN,P is defined below equa-
tion B.1). In particular for queries without any add noise, κ̃ = p01 = 0, small
M11 implies very large or even infinite synaptic weights (see equation 2.15)
that would also violate the gaussian assumption for the distribution of den-
dritic potentials. As will be shown below, the Bayesian associative mem-
ory becomes equivalent to the Willshaw model with a decreased maximal
network capacity Cε ≤ ln 2 ≈ 0.69 (or, rather, Cε ≤ 1/(e ln 2) ≈ 0.53 for in-
dependently generated address pattern components uμ

i with binomially
distributed pattern activities, kμ := ∑m

i=1 uμ

i ∼ B(m, p), as assumed here;
see Willshaw et al., 1969; Knoblauch et al., 2010, appendix D). The follow-
ing section investigates more closely the relationships to the Willshaw net,
linear Hopfield–type learning rules, and the BCPNN model.

3 Relationships to Previous Models

3.1 Willshaw Model and Inhibitory Networks. The Willshaw or Stein-
buch model is one of the simplest models for distributed associative
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memory employing synapses with binary weights:

wi j = min(1, M11(i j)) ∈ {0, 1}. (3.1)

The dendritic potentials of the content neurons are simply xj = ∑m
i=1 wi j ũi .

Exact potential distributions are well known and can be used to compute
optimal firing thresholds (Palm, 1980; Buckingham & Willshaw, 1992, 1993;
Knoblauch, 2008; Knoblauch et al., 2010).

The Willshaw model works particularly well for “pattern part retrieval”
with zero add noise κ̃ = p01 = 0. Then the active units of a query ũ are
a subset of an address pattern uμ and the optimal threshold is maximal,
that is, equal to the query pattern activity, � j = ∑m

i=1 ũi . Thus, a single
missing query input, ũi = 1 but wi j = 0, excludes activation of content neu-
ron j . Based on this observation, it has been suggested that the Willshaw
model should be interpreted as an essentially inhibitory network where zero
weights become negative, positive weights become zero, and the optimal
firing threshold becomes zero (Knoblauch, 2007). Such inhibitory imple-
mentations of the Willshaw network are very simple and efficient for a wide
parameter range of moderately sparse memory patterns with p � log(n)/n
where a small number of inhibitory synapses can store a large amount of in-
formation, C S ∼ log n bps, even for diluted networks with low connectivity
P < 1. Moreover, the inhibitory interpretation offers novel functional hy-
potheses for strongly inhibitory circuits in the brain, for example, involving
basket or chandelier cells (Markram et al., 2004). By contrast, the common
excitatory interpretation is efficient only for very sparse memory patterns
and cannot implement optimal threshold control in a simple and biologi-
cally plausible way (Buckingham & Willshaw, 1993; Graham & Willshaw,
1995).

The following arguments show that the inhibitory Willshaw network is
actually a limit case of the optimal Bayesian associative memory in the
nonlinear learning limit when synaptic coincidence counters are small,
M11 = Mpq 	 ∞, but unit usages are still large, M′

1 = Mp → ∞, M1 =
Mq → ∞. For pattern part retrieval with queries containing miss noise
only, p01|a = 0, the optimal Bayesian synaptic weights wi j of equation 2.15
become

wi j = log
M11(1 − p10|1)(M00 + M10 p10|0)
M10(1 − p10|0)(M01 + M11 p10|1)

≈ log
M11 M00

M10 M01
, (3.2)

where the approximation is valid if query noise is independent of the con-
tent, p10|0 = p10|1, and address patterns have sparse activity, p 	 1, such that
M00 � M10 and M01 � M11. In case p10|0 �= p10|1, the approximation is still
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valid up to an additive offset, w0 := log((1 − p10|1)/(p10|0)), where optimal
retrieval can be implemented as described for equation 2.18.2

Thus, the optimal Bayesian model has strongly inhibitory weights, wi j =
−∞, for M11 = 0 when the original Willshaw network would have zero
weights. For sufficiently small M11 = Mpq 	 ∞, the fraction of synapses
with zero coincidence counters will be significant, p0 := pr[M11 = 0] =
(1 − pq )M ≈ exp(−Mpq ) � 0, and, thus, the dendritic potentials will be
dominated by the strongly inhibitory inputs. For still diverging unit usages,
M′

1 = Mp → ∞ and M1 = Mq → ∞, the remaining synaptic countervari-
ables will be large and close to their mean values, M00 ≈ M(1 − p)(1 − q ),
M01 ≈ M(1 − p)q , M10 ≈ Mp(1 − q ), and therefore approximately equal for
all synapses. Thus, up to an additive constant, the synaptic weights become

wi j ≈ log M11 (3.3)

corresponding to a nonlinear incremental Hebbian learning rule. At least
for large p0 → 1, this rule will degenerate to the clipped Hebbian rule of the
inhibitory Willshaw model where wi j = −∞ with probability pr[M11 = 0] =
p0 and wi j = 0 with probability pr[M11 = 1] ≈ 1 − p0 whereas pr[M11 >

1] ≈ 0 becomes negligible. Since p0 → 1 is equivalent to M11 = Mpq →
0, this means that the Willshaw model becomes equivalent to Bayesian
learning at least for max(1/p, 1/q ) 	 M 	 1/(pq ) (see Figure 6, left panels).
Numerical experiments suggest that the Willshaw model may be optimal
even for smaller p0 → 0.5 corresponding to logarithmic pattern activity,
mp → λ̃−1ldn, where the Willshaw capacity becomes maximal, C → λ̃ ln 2 ≈
0.69λ̃ bps, given that individual address pattern activities kμ are narrowly
distributed around mp (see Figure 7b; see also Knoblauch et al., 2010). For
even smaller p0 < 0.5 corresponding to mp > λ̃−1ldn the Willshaw model
cannot be optimal because then C < 0.69λ̃, whereas the capacity of the
optimal Bayesian model increases toward C → 0.72λ̃ bps.3

3.2 Linear Learning Models and the Covariance Rule. In general, the
synaptic weights of the Bayesian associative network (see equation 2.15)
are a nonlinear function of presynaptic and postsynaptic activity. This sec-
tion shows that in the limit M11 = Mpq → ∞, the optimal Bayesian rule,
equation 2.15, can be approximated by a linear learning rule,

wi j = w0 + r00 M00 + r01 M01 + r10 M10 + r11 M11, (3.4)

2For this, the offset w0 should not depend on i .
3Note that p0 → 0.5 corresponds to M11 = Mpq → ln 2 ≈ 0.69. The same argumen-

tation for independently generated address pattern components with binomially dis-
tributed kμ ∼ Bm,p would even suggest optimality until p0 → 1/e ≈ 0.37 and M11 → 1
where the Willshaw model achieves the maximal capacity C → λ̃/(e ln 2) ≈ 0.53λ̃ (see
Knoblauch et al., 2010, eq. D.12).
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with offset w0 and learning increments ruv specifying the change of
synaptic weight when the presynaptic and postsynaptic neurons have
activity u ∈ {0, 1} and v ∈ {0, 1}, respectively. In fact, for diverging unit
usages, M1, M0 → ∞, the synapse usages will be close to expectation:
M00 ≈ M00 = M0(1 − p), M01 ≈ M01 = M1(1 − p), M10 ≈ M10 = M0 p, and
M11 ≈ M11 = M1 p. These approximations make only a negligible relative
error if the standard deviations are small compared to the expectations. The
most critical variable is the coincidence counter M11 having expectation
M1 p and standard deviation

√
M1 p(1 − p).4 Thus, the approximations are

valid for large values of the coincidence counter, that is, M11 ≈ Mpq → ∞
for q := M1/M. Then the argument of the logarithm in equation 2.15 will be
close to

a0 := (p(1 − p10|1) + (1 − p)p01|1)((1 − p)(1 − p01|0) + pp10|0)
(p(1 − p10|0) + (1 − p)p01|0)((1 − p)(1 − p01|1) + pp10|1)

= d∗
1 d∗

2

d∗
3 d∗

4
,

(3.5)

where d∗
1 : = p(1 − p10|1) + (1 − p)p01|1, d∗

2 := (1 − p)(1 − p01|0) + pp10|0,
d∗

3 := p(1 − p10|0) + (1 − p)p01|0, and d∗
4 := (1 − p)(1 − p01|1) + pp10|1. Lin-

earizing the logarithm around a0 yields

wi j ≈ f (M00, M01, M10, M11)

:= log a0 +
(M11(1−p10|1)+M01 p01|1)(M00(1−p01|0)+M10 p10|0)
(M10(1−p10|0)+M00 p01|0)(M01(1−p01|1)+M11 p10|1) − a0

a0

= log a0 + a0
−1 d1d2

d3d4
− 1, (3.6)

where d1 := M11(1 − p10|1) + M01 p01|1, d2 := M00(1 − p01|0) + M10 p10|0,
d3 := M10(1 − p10|0) + M00 p01|0, and d4 := M01(1 − p01|1) + M11 p10|1 for
brevity. Similarly, the resulting function f can be linearized around the
expectations of the synapse usages. This gives a learning rule of the form
of equation 3.4 with offset w0 = log a0 and

r00 := ∂ f
∂ M00

|Muv=Muv
= d1

a0d4

(1 − p01|0)d3 − d2 p01|0
d3

2 |Muv=Muv

= d∗
1

d∗
3 d∗

4 a0 M(1 − q )

(
1 − p01|0 − d∗

2

d∗
3

p01|0

)
= η00 pq , (3.7)

4Without loss of generality, p := pr[uμ
i ] ≤ 0.5 (otherwise, invert the address pattern

components).
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r01 := ∂ f
∂ M01

|Muv=Muv
= d2

a0d3

p01d4 − d1(1 − p01)
d4

2 |Muv=Muv

= d∗
2

d∗
3 d∗

4 a0 Mq

(
p01|1 − d∗

1

d∗
4

(1 − p01|1)
)

= −η01 p(1 − q ), (3.8)

r10 := ∂ f
∂ M10

|Muv=Muv
= d1

a0d4

p10d3 − d2(1 − p10)
d3

2 |Muv=Muv

= d∗
1

d∗
3 d∗

4 a0 M(1 − q )

(
p10|0 − d∗

2

d∗
3

(1 − p10|0)
)

= −η10(1 − p)q , (3.9)

r11 := ∂ f
∂ M11

|Muv=Muv
= d2

a0d3

p01d4 − d1(1 − p01)
d4

2 |Muv=Muv

= d∗
2

d∗
3 d∗

4 a0 Mq

(
1 − p10|1 − d∗

1

d∗
4

p10|1

)
= −η11(1 − p)(1 − q ), (3.10)

where

η00 := 1
Mpq (1− p)(1−q )

×
(

(1− p)(1− p01|0)
(1− p)(1− p01|0) + pp10|0

− (1− p)p01|0
p(1− p10|0) + (1− p)p01|0

)
,

η01 := 1
Mpq (1− p)(1−q )

×
(

(1− p)(1− p01|1)
(1− p)(1− p01|1) + pp10|1

− (1− p)p01|1
p(1− p10|1) + (1− p)p01|1

)
,

η10 := 1
Mpq (1− p)(1−q )

×
(

p(1− p10|0)
p(1− p10|0) + (1− p)p01|0

− pp10|0
(1− p)(1− p01|0) + pp10|0

)
= η00,

η11 := 1
Mpq (1− p)(1−q )

×
(

p(1− p10|1)
p(1− p10|1) + (1− p)p01|1

− pp10|1
(1− p)(1− p01|1) + pp10|1

)
= η01.

(3.11)

If the query noise is independent of the contents, p01 = p01|0 = p01|1
and p10 = p10|0 = p10|1, then the four constants become identical,
η := η11 = η10 = η01 = η00, the offset becomes zero, w0 = 0, and the
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synaptic weight becomes

wi j

η
≈ pq M00 − p(1 − q )M01 − (1 − p)q M10 + (1 − p)(1 − q )M11.

(3.12)

This is essentially (up to factor η) the linear covariance rule as discussed in
much previous work (e.g., Sejnowski, 1977a, 1977b; Hopfield, 1982; Palm,
1988a, 1988b; Tsodyks & Feigel’man, 1988; Willshaw and Dayan, 1990;
Dayan & Willshaw, 1991; Palm & Sommer, 1992, 1996; Dayan & Sejnowski,
1993; Chechik et al., 2001; Sterratt & Willshaw, 2008). Thus, together
with the results of section 2.3, this shows that, in the asymptotic limit
M11 = Mpq → ∞ with query noise being independent of contents, optimal
Bayesian learning becomes equivalent to linear learning models employing
the covariance rule. If query noise depends on contents, Bayesian learning
differs from the covariance rule, but up to an additive offset, it still follows
a linear learning rule.5

3.3 BCPNN-Type Models. The BCPNN rule is an early learning model
for neural associative memory employing a Bayesian heuristics (Lansner &
Ekeberg, 1987, 1989; Kononenko, 1989). The original rule is

� j = − log
M1( j)

M
, (3.13)

wi j = log
M11(i j)M

M1( j)M′
1(i)

= log
M11(i j)(M00(i j) + M01(i j) + M10(i j) + M11(i j))

(M01(i j) + M11(i j))(M10(i j) + M11(i j))
, (3.14)

where wi j is the synaptic weight and, given a query ũ, an output neuron
will be activated, v̂ j = 1, if the dendritic potential xj = ∑m

i=1 wi j ũi exceeds
the firing threshold � j (see Lansner & Ekeberg, 1989, p. 79).

The following summarizes the main results of a technical report
(Knoblauch, 2010a) comparing the BCPNN rule to the optimal Bayesian
rule, equation 2.15. Obviously the two rules are not identical. The reason
for this discrepancy is that Lansner and Ekeberg derived the BCPNN rule

5For example, if address “feature” ui = 1 is positively correlated with content v j = 1,
then it typically occurs that p10|1(i j) < p10|0(i j) and p01|1(i j) > p01|0(i j), such that the
optimal coincidence increment, r11(i j), is smaller than expected from the covariance rule,
η11/η00 < 1, whereas the offset is positive, w0(i j) > 0. The deviation from the covariance
rule can be significant, for example, p = q = 0.1, λ̃ = 0.75, κ̃ = 0.25 (corresponding to
p10 = 0.25, p01 = 0.025), p10|1 = 0.1p10, p01|1 = 10p01 yields η11/η00 ≈ 0.3 and w0 ≈ 1.8.
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from the following maximum likelihood decision,

v̂ j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, pr[vμ

j = 1|1ũ, M( j)]

= pr[vμ

j = 1|M( j)]pr[1ũ|vμ

j = 1, M( j)]

pr[1ũ|M( j)]
≥ 1/2

0, otherwise

, (3.15)

where 1ũ := {i : ũi = 1} is the set of active query components. Thus, there are
two main differences to the optimal Bayesian decision, equation 2.12. One
is that the BCPNN model considers only active query components i ∈ 1ũ

and ignores inactive components i ∈ 0ũ := {i : ũi = 0}. In contrast, the opti-
mal Bayesian model considers both active and inactive query components.
Second, the BCPNN model needs to compute pr[1ũ|M( j)], which becomes
viable only by wrongly assuming that the query components would be
independent of each other, that is, by using

pr[1ũ|M( j)] ≈
m∏

i∈1ũ

pr[ũi = 1|M( j)] =
∏
i∈1ũ

M′
1(i)
M

. (3.16)

This approximation is inaccurate because the query components given the
storage variables depend on each other even for independently generated
query components with pr[ũ] = ∏

i pr[ũi ]. For example, consider the fol-
lowing simple network motif of two input units, m = 2, and a single output
unit, n = 1. After storing M memories, let

M10(1) = 0, M11(1) = 1, M10(2) = 1, M11(2) = 0, M1 = 1, (3.17)

where, for brevity, the indices are skipped for the output unit. Then, for
zero query noise, it is pr[ũ1 = 1|M( j)] > 0, but pr[ũ1 = 1|ũ2 = 1, M( j)] = 0.
Note that the optimal Bayesian model avoids this problem by computing
the odds ratio pr[vμ

j = 1|ũ, M( j)]/pr[vμ

j = 1|ũ, M( j)] such that pr[ũ|M( j)]
cancels.

Appendix H generalizes the BCPNN rule for noisy queries and describes
two improved BCPNN-type rules, each of them fixing one of the two prob-
lems described: the BCPNN2 rule (see equation H.9), includes inactive
query components but still uses an approximation similar to equation 3.16,
and the BCPNN3 rule (see equation H.12) does not employ approximation
equation 3.16, but still ignores inactive query components. For the latter, it
is possible to compute the SNR in analogy to section 2.3. It turns out that in
the linear learning regime, M11 = Mpq → ∞, the squared SNR R2 (and thus
also storage capacity Mε and Cε) is factor 1 − p(λ̃ + κ̃) below the optimal
value equation 2.28. This implies also that the original BCPNN rule per-
forms at least factor 1 − p(λ̃ + κ̃) worse than the optimal Bayesian rule and
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thus, at most, is equivalent to the suboptimal linear homosynaptic rule (e.g.,
see rule R3 in Dayan & Willshaw, 1991). In the complementary nonlinear
regime M11 	 ∞ corresponding to very sparse patterns, similar arguments
as in section 3.1 show that the BCPNN model becomes equivalent to optimal
Bayesian learning and the Willshaw model.

4 Results from Simulation Experiments

This section has two purposes: to verify the theoretical results and compare
the performances of the different learning models. To this end, I have imple-
mented associative memory networks with optimal Bayesian learning (see
section 2.2), BCPNN-type learning (see appendix H and section 3.3), lin-
ear learning (see appendix G and section 3.2), and Willshaw-type clipped
Hebbian learning (see section 3.1). All experiments assume full network
connectivity (P = 1).

4.1 Verification of SNR R. A first series of experiments illustrated by
Figure 4 implemented networks of size m = n = 1000 and compared exper-
imental SNR R of dendritic potentials (black curves; see equation 2.24) to
the theoretical values (gray curves). Here the theoretical values have been
computed from equation 2.28 (Bayes), equations G.7 to G.9 (linear), and
equation H.21 (BCPNN3). Data correspond to four experimental conditions
testing sparse versus nonsparse memory patterns and queries having miss
noise versus add noise. For each condition, the corresponding plot shows
SNR R as a function of stored memories M. All experiments assumed ideal
conditions where each query pattern ũ was generated from an address
pattern uμ having k = pm one-entries, where ũ contained c = λ̃k correct
one-entries and f = κ̃k false one-entries (see Figure 2, left). Furthermore,
all tested content neurons had unit usages M1 = Mq .

For most conditions and models, the theoretical predictions match the
experimental SNR very well. This is true in particular for the three tested
linear models (Hebb rule, homosynaptic rule, and covariance rule), but
also for the Bayesian and BCPNN-type rules if the mean value of the co-
incidence counter is sufficiently large, M11 = Mpq � 1, as presumed at the
beginning of section 2.3. For example, for nonsparse patterns, the theoretical
results become virtually exact for M > 70 or M11 > 70/4 = 17.5. For fewer
coincidences, M11 �� 1, the SNR curves of the Bayesian and BCPNN-type
models are similar as for the Willshaw model. Here the SNR is not a good
predictor of retrieval quality and cannot easily be compared to the regime
with M11 � 1 for the following reasons. First, variances of dendritic poten-
tials between high and low units become significantly different, σhi �≈ σlo

(cf. equation 2.26).6 Second, the distributions of dendritic potentials become

6For example, σhi = 0 for pattern part retrieval in the Willshaw model (see section 3.1).
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Figure 4: Verification and comparison of SNR R for different learning models
(see equation 2.24). Each plot shows SNR R as a function of stored memories
M for a network of size m = n = 1000, with data from simulation experiments
(black) and theory (gray). Individual curves correspond to the optimal Bayesian
model (thick solid; see section 2.2, equation 2.28), linear covariance rule (thick
dashed; see appendix G), Willshaw model (thick dash-dotted; see section 3.1),
BCPNN rule (medium solid; see section H.1), BCPNN2 rule (medium dashed;
see section H.2), BCPNN3 rule (medium dash-dotted; see sections H.3 and
H.4, equation H.21), linear homosynaptic rule (thin solid; see appendix G), and
the linear Hebb rule (thin dashed; see appendix G). Top panels correspond to
pattern part retrieval with miss noise only (λ̃ = 0.5, κ̃ = 0). Bottom panels cor-
respond to queries including add noise (λ̃ = 1, κ̃ = 0.5). Left panels correspond
to nonsparse memory patterns with p = q = 0.5. Right panels correspond to
(moderately) sparse patterns with p = q = 0.1. Each data value averages over
10,000 networks, each tested with a single query under ideal theoretical condi-
tions (see text).

nongaussian (Knoblauch, 2008; cf. appendix E). Third, in particular for very
small M11 	 1, dendritic potentials may be contaminated by infinite synap-
tic inputs (see equations 2.15, 3.2, and 3.14). This reasoning also explains
the nonmonotonicity of the SNR curves visible in Figure 4 for the Bayesian
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and BCPNN-type models as a transition from a nonlinear Willshaw-type to
a linear covariance-type regime of operation.

4.2 Verification of Output Noise ε̂. In a second step, I verified the theory
for output noise ε̂ (see equation 2.30) as described in appendix E using the
same network implementations as described before. In fact, appendix E
shows that there is a bijective relation between the SNR R and (minimal)
output noise ε̂ if the dendritic potentials are gaussian and the high and low
potentials have identical variances. Thus, given that the theory of SNR is
correct, here it is tested whether these two conditions hold true.

Figure 5 shows output noise ε̂ as a function of stored memories M as-
suming the same conditions as described for Figure 4. As before, for most
conditions and models, the theoretical predictions match the experimental ε̂
very well. In fact, the match is good even for the Bayesian and BCPNN-type
rules when assuming relatively small M11 where the theoretical estimates
of SNR are still inaccurate. Again, the theory is inaccurate only for the
Bayesian and BCPNN-type models for the condition of sparse memories
and miss noise only. Here the theory basically suggests equivalence to the
linear covariance rule, whereas the Bayesian and BCPNN-type models per-
form much better due to the infinitely negative synaptic weights caused by
the M11 = 0 events, which allow rejecting a neuron activation by a single
presynaptic input.

4.3 Verification of Storage Capacity Mε . A further series of experiments
illustrated by Figure 6 tested the theory of storage capacity Mε (see equa-
tions 2.32 and 2.33) for different network sizes m = n = 100, 1000, 10,000,
a larger range of pattern activities mp (=nq ), and relaxing the restric-
tive assumption of having fixed k, c, f , M1. This means that a query
pattern was generated by randomly selecting one of the M address pat-
terns uμ and applying query noise according to parameters p10 = 1 − λ̃

and p01 = κ̃ p/(1 − p). Similarly, all content neurons were included in
the analysis. Thus, the previously fixed parameters became binomials,
k ∼ Bm,p, c ∼ Bm,λ̃p, f ∼ Bm,κ̃ p, M1 ∼ BM,q , where BN,P is as explained be-
low equation B.1.

Each plot shows output noise ε̂ as a function of mean pattern activity
mp. For each value of mp, the number of stored patterns, Mε , was computed
from equation 2.33 for the optimal Bayesian rule and a low-output noise
level ε = 0.01 (see parameter sets 1–6 in Table 1). For small networks (m =
n = 100; upper panels) the theory is generally inaccurate. For example,
for the optimal Bayesian learning rule, the theory strongly overestimates
storage capacity for sparse memory patterns and underestimates capacity
for nonsparse patterns. For larger networks (middle and bottom panels),
there is a large range of mp where the theory precisely predicts storage
capacity. Only for very sparse memory patterns (with small M11 	 1) does
the theory remain inaccurate. For queries containing add noise, the theory
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Figure 5: Verification and comparison of output noise ε̂ for different learning
models (see equation 2.30). Each plot shows ε̂ as a function of stored memories M
for a network of size m = n = 1000, including data from simulation experiments
(black) and theory (gray; see equation E.6). Individual curves correspond to
the optimal Bayesian model (thick solid; see section 2.2, equation 2.28), linear
covariance rule (thick dashed; see appendix G), Willshaw model (thick dash-
dotted; see section 3.1), BCPNN rule (medium solid; see section H.1), BCPNN2
rule (medium dashed; see section H.2), BCPNN3 rule (medium dash-dotted;
see sections H.3 and H.4 and equation H.21), linear homosynaptic rule (thin
solid; see appendix G), and the linear Hebb rule (thin dashed; see appendix G).
Top panels correspond to pattern part retrieval with miss noise only (λ̃ = 0.5,
κ̃ = 0). Bottom panels correspond to queries including add noise (λ̃ = 1, κ̃ =
0.5). Left panels correspond to nonsparse memory patterns with p = q = 0.5.
Right panels correspond to (moderately) sparse patterns with p = q = 0.1. Each
data value averages over 10,000 networks each tested with a single query under
ideal theoretical conditions (see text; same data as in Figure 4).

generally overestimates true capacity. For queries containing only miss
noise, the theory overestimates capacity for extremely sparse patterns but
underestimates capacity for patterns with intermediate sparseness.

For larger networks and M11 � 1, the theory becomes very precise for
the optimal Bayes rule, the BCPNN3 rule, and the linear covariance rule.
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Figure 6: Verification and comparison of pattern capacity Mε for different learn-
ing models (see equation 2.32). Each plot shows output noise ε̂ as function of
mean pattern activity mp = nq when storing memories at the theoretical capac-
ity limit Mε of Bayesian learning for low output noise (equation 2.33, ε = 0.01;
see parameter sets 1–6 in Table 1). Plots show data from simulation experiments
(black; see equation 2.30) and theory (gray; see equation E.6). Individual curves
correspond to the optimal Bayesian model (thick solid; see section 2.2, equa-
tion 2.28), linear covariance rule (thick dashed; see appendix G), Willshaw model
(thick dash-dotted; see section 3.1), BCPNN rule (medium solid; see section H.1),
BCPNN2 rule (medium dashed; see section H.2), and BCPNN3 rule (medium
dash-dotted; see sections H.3 and H.4), linear homosynaptic rule (thin solid; see
appendix G), and the linear Hebb rule (thin dashed; see appendix G). Left panels
correspond to pattern part retrieval with miss noise only (λ̃ = 0.5, κ̃ = 0). Right
panels correspond to queries including add noise (λ̃ = 1, κ̃ = 0.5). Top panels
correspond to small networks with m = n = 100. Middle panels correspond to
medium networks with m = n = 1000. Bottom panels correspond to larger net-
works with m = n = 10,000. Each data value averages over 10,000 retrievals in
100 networks storing random patterns with independent components.
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In contrast, even for m = n = 10,000 and pm > 1000, the theory for the
linear homosynaptic rule underestimates output noise ε̂ by about a fac-
tor of two. The underestimation of ε̂ is even worse for the linear Hebbian
rule. Here the reasoning is that in contrast to covariance and homosy-
naptic rule, the mean synaptic weight w̄i j/M = r00(1 − p)(1 − q ) + r01(1 −
p)q + r10 p(1 − q ) + r11 pq is nonzero for the Hebbian rule. Therefore inho-
mogeneities in c, f , and k can cause a much larger variance in dendritic
potentials than predicted by the theory, assuming fixed given values for c,
f , and k.

4.4 Comparison of the Different Learning Models. The simulation ex-
periments confirm that the Bayesian learning rule is the general optimum
leading to maximal SNR, minimal output noise, and highest storage capac-
ity. Nevertheless, the simulations show also that for particular parameter
ranges, some of the previous learning models can also become optimal.

The linear covariance rule becomes optimal in the linear learning regime,
M11 = Mpq → ∞, which, for given output noise level ε̂, corresponds to
moderately sparse or nonsparse memory patterns with mp/ ln q → ∞ (see
equations 2.35 and 2.37). However, for sparse memory patterns of finite
size, the linear rules can perform much worse than the optimal Bayesian
model—even worse than the Willshaw model.

Similarly, the BCPNN-type models become optimal in the limit of sparse
query activity, p(λ̃ + κ̃) → 0. For finite size or nonsparse query patterns, the
storage capacity can be significantly (factor 1 − p(λ̃ + κ̃)) below the optimal
value.

Finally, the Willshaw model becomes optimal only for pattern part re-
trieval (κ̃ = 0) and few coincidence counts, M11 	 ∞ corresponding to
very sparse memory patterns with mp = O(ln q ). For finite networks, the
Willshaw model achieves the performance of the Bayesian model only if the
output noise level ε̂ is low and the address pattern activities kμ are constant
or narrowly distributed around mp. In all other cases, the Willshaw model
performs much worse than the optimal Bayesian rule.

4.5 Further Results Concerning Memory Statistics and Retrieval
Methods. Figure 7 shows additional simulation experiments testing the
various learning models for different retrieval methods and different ways
of generating random patterns (m = n = 1000 and pattern part retrieval
with λ̃ = 0.5, κ̃ = 0). Since the Bayesian theory can strongly overestimate
pattern capacity Mε for very sparse memory patterns (see equation 2.37),
memories were stored at the much lower capacity limit of the Willshaw
model assuming a fixed pattern activity kμ = mp for all memories (see equa-
tion 57 in Knoblauch et al., 2010; see parameter set 7 in Table 1). Then testing
the networks again with random patterns having independent components
(and binomial activity kμ ∼ Bm,p) yields qualitatively similar results as be-
fore (compare the top left panel of Figure 7 to the middle left panel of
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Figure 7: Effect of memory statistics and retrieval method on the performance
of different learning models. Each plot shows output noise ε̂ as a function of
mean pattern activity mp = nq when storing memories at the theoretical capac-
ity limit Mε of the Willshaw model (ε = 0.01; see parameter set 7 in Table 1)
assuming network size m = n = 1000 and queries containing miss noise only
(λ̃ = 0.5, κ̃ = 0). Plots show data from simulation experiments (black; see equa-
tion 2.30) and theory (gray; see equation E.6). Individual curves correspond to
the optimal Bayesian model (thick solid; see section 2.2, equation 2.28), linear
covariance rule (thick dashed; see appendix G), Willshaw model (thick dash-
dotted; see section 3.1), BCPNN rule (medium solid; see section H.1), BCPNN2
rule (medium dashed; see section H.2), BCPNN3 rule (medium dash-dotted; see
sections H.3, and H.4), linear homosynaptic rule (thin solid; see appendix G),
and the linear Hebb rule (thin dashed; see appendix G). Left panels correspond
to random memory patterns with independently generated components, that
is, kμ := ∑m

i=1 uμ

i follows a binomial distribution, kμ ∼ Bm,p . Right panels cor-
respond to random memory patterns with a fixed pattern activity kμ = mp.
Top panels correspond to fixed optimal firing thresholds � j (see appendix D).
Bottom panels correspond to l-winners-take-all retrieval activating the l := nq
neurons having the largest dendritic potentials xj . Each data value averages
over 10,000 retrievals in 100 networks.
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Figure 6). Further simulations suggest that the Bayesian and BCPNN-type
models have a high-fidelity capacity for very sparse patterns that is almost
as low as reported for the Willshaw model (basically Mε = 1 for ε 	 1 and
k/ log n → 0; see appendix D in Knoblauch et al., 2010).

In contrast, for random patterns with fixed activity kμ = mp, the Bayesian
and BCPNN-type models perform equivalent to the Willshaw model for a
large range of sparse patterns (see Figure 7, top right panel). Moreover, for
less sparse patterns, BCPNN2 becomes equivalent to the BCPNN rule, and
BCPNN3 becomes equivalent to optimal Bayesian learning. There is also
a strong improvement for the linear homosynaptic and Hebb rules now
closely matching the theoretical values (for independent pattern compo-
nents and binomial kμ) where the homosynaptic rule becomes equivalent
to the covariance rule.

So far, retrieval used fixed firing thresholds to minimize output noise (see
appendix D). A simple alternative is l̄-winners-take-all (WTA) retrieval ac-
tivating the l̄ := nq neurons with the largest dendritic potentials xj (as may
be implemented in the brain by recurrent inhibition, for example).7 Figure 7
(bottom left panel) shows simulation results for l̄-WTA and memory pat-
terns with independent components and binomial kμ ∼ Bm,p. Surprisingly,
all of the various learning models show almost identical performance at rel-
atively high levels of output noise ε̂. There are two reasons that can partly
explain this result. First, l̄-WTA cannot achieve high fidelity with ε̂ → 0 be-
cause the content patterns vμ have a distributed pattern activity lμ ∼ Bn,q

which is unknown beforehand. Thus, activating the l̄ most excited units
causes a positive baseline level of output noise. Second, storing patterns at
the relatively low-capacity limit of the Willshaw model implies, for fixed
thresholds, low output noise for all models. Therefore, the actual output
noise for l̄-WTA will be dominated by the baseline errors described. Nev-
ertheless, further simulations confirmed that even for a larger number of
stored patterns, the performances of the different models are much more
similar than for fixed firing thresholds.

For l-WTA and fixed pattern activity lμ = nq the performance generally
improves (Figure 7, bottom right panel). As before, l-WTA seems to even
out the performance differences of various synaptic learning models:
Surprisingly, the linear Hebbian, homosynaptic, and covariance rule now
show identical high performance, precisely matching the theoretical values
for the covariance rule. Also the Bayesian and BCPNN-type rules show
identical performance. Further simulations show that for queries including
add noise (κ̃, p01 > 0), l-WTA retrieval becomes identical even between
the Bayesian-type and linear model groups. These results support the view
that homeostatic mechanisms, such as regulating total activity level, may
play an equally important role as tuning the synaptic learning parameters

7Although l-WTA retrieval is simple to implement, it is much more difficult to analyze.
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(Turrigiano, Leslie, Desai, Rutherford, & Nelson, 1998; Van Welie, Van
Hooft, & Wadman, 2004; Chechik et al., 2001; Knoblauch, 2009c).

5 Summary and Discussion

Neural associative memories are promising models for computations in
the brain (Hebb, 1949; Anderson, 1968; Willshaw et al., 1969; Marr, 1969,
1971; Little, 1974; Gardner-Medwin, 1976; Braitenberg, 1978; Hopfield, 1982;
Amari, 1989; Palm, 1990; Lansner, 2009), as well as they are potentially
useful in technical applications such as cluster analysis, speech and object
recognition, or information retrieval in large databases (Kohonen, 1977;
Bentz, Hagstroem, & Palm, 1989; Prager & Fallside, 1989; Greene, Parnas,
& Yao, 1994; Huyck & Orengo, 2005; Knoblauch, 2005; Mu, Artiklar, Watta,
& Hassoun, 2006; Wichert, 2006; Rehn & Sommer, 2006).

In this paper, I have developed and analyzed the generally optimal
neural associative memory that minimizes the Hamming-distance-based
output noise ε̂ and maximizes pattern capacity Mε and network storage ca-
pacity Cε by making Bayesian maximum likelihood considerations. In gen-
eral, the resulting optimal synaptic learning rule, equation 2.15 is nonlinear
and asymmetric, and it differs from previously investigated linear learn-
ing models of the Hopfield type, simple nonlinear learning models of the
Willshaw type, and BCPNN-type Bayesian learning heuristics. As revealed
by detailed theoretical and experimental comparisons, the previous models
are rather special cases of Bayesian learning that becomes optimal only in
the asymptotic limit of large networks and for particular ranges of pattern
activity p, q and query noise λ̃, κ̃ (see Table 2).

For example, the Willshaw model becomes optimal only in the limit of
small coincidence counters, M11 = Mpq ≤ 1, for queries without any add
noise, κ̃ = p01 = 0. For maximal M = Mε at the capacity limit, M11 	 ∞ can
be achieved only for extremely sparse memory patterns where the num-
ber of active units per memory vector scales typically logarithmic in the
population size, for example, p, q ∼ log n/n (Knoblauch et al., 2010). Nev-
ertheless, one may be surprised how a simple model employing binary
synapses can already perform optimal Bayesian retrieval. The reason is that
a low value of M11 = Mpq guarantees that a large fraction p0 := (1 − pq )M

of synaptic weights remains zero in the Willshaw model or minus infinity in
the corresponding Bayesian interpretation (see equation 3.2). Then retrieval
gets dominated by rejecting activations of postsynaptic neurons based on
single but strongly inhibitory inputs. In particular, for small but nonvanish-
ing p0, the inhibitory Willshaw network becomes very efficient by storing
large amounts of information with a small number of synapses (Knoblauch,
2007). Such an inhibitory interpretation of associative memory may also of-
fer novel functional hypotheses for strongly inhibitory cortical circuits, for
example, involving chandelier or basket cells (Markram et al., 2004), and



1424 A. Knoblauch

Table 2: Asymptotic Conditions When the Various Learning Rules Become
Optimal (Equivalent to the Bayesian Rule).

General Conditions Conditions at Capacity
Learning Rule for Optimality Limit M = Mε

Optimal Bayesian None None
BCPNN type p → 0 p → 0
Linear covariance M11 → ∞ (mp)/ log m → ∞
Linear homosynaptic M11 → ∞ and p → 0 (mp)/ log m → ∞ and p → 0
Linear heterosynaptic M11 → ∞ and q → 0 (mp)/ log m → ∞ and q → 0
Linear Hebb M11 → ∞ and p, q → 0 (mp)/ log m → ∞ and p, q → 0
Linear Hopfield M11 → ∞ and p, q → 0.5 p, q → 0.5
Willshaw M11 ≤ 1 and M1, M′

1 → ∞ mp ∼ log m and κ̃ → 0
and κ̃ → 0

Notes: The constraints depend on the fraction of active units in an address pattern (p :=
pr[uμ

i = 1]) or content pattern (q := pr[vμ
j = 1]), the size of the address population (m),

the mean value of the synaptic coincidence counter (M11 = Mpq , where M is the number
of stored memories), the mean unit usages (M1 = Mq , M′

1 = Mp), and the fraction of add
noise in the query pattern (κ̃). The right column reexpresses the general conditions of the
middle column for the case when M equals the pattern capacity Mε .

also for inhibition-dominated brain structures such as cerebellum and basal
ganglia (Marr, 1969; Albus, 1971; Kanerva, 1988; Wilson, 2004).

In contrast to the Willshaw model, the linear covariance rule becomes
optimal in the linear learning regime where the synaptic coincidence coun-
ters diverge, M11 = Mpq → ∞. Then linearization of the optimal Bayesian
rule yields the covariance rule, and the two rules have the same asymp-
totic SNR. Correspondingly, the fraction of synapses with infinite weights
vanishes, p0 → 0, which, at the capacity limit M = Mε (see equation 2.33),
corresponds to moderately or nonsparse memory patterns with typically
p, q � log n/n. Numerical experiments indicate that in reasonably large
but finite networks, the optimal Bayesian model still performs signifi-
cantly better than the linear covariance rule for a large range of pattern
activities p 	 0.5. Furthermore, the SNR analysis allows a characteriza-
tion of basins of attraction in terms of miss noise and add noise (see
equation 2.29 and Figure 2, right). It turns out that in the linear learn-
ing regime, M11 → ∞, the network is more vulnerable against miss noise
(λ̃ < 1) than add noise (κ̃ > 0). This contrasts with the nonlinear learning
regime, M11 	 ∞, where the network is more vulnerable against add noise,
mainly because add noise destroys the network’s ability to reject postsy-
naptic activations by single strongly inhibitory synaptic inputs. Alternative
linear learning models such as the Hebb, homosynaptic, and heterosynaptic
rules behave similar to the covariance rule but have a lower signal-to-noise
ratio unless p → 0 and/or q → 0 (Dayan & Willshaw, 1991).
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The original BCPNN model of Lansner and Ekeberg has a similar formu-
lation as the optimal Bayesian model but neglects inactive query neurons
and employs an inaccurate approximation (see equation 3.16). More recent
hypercolumnar variants of the BCPNN model for discrete valued memories
remedy the first problem by employing extra neurons to represent inactiv-
ity (Lansner & Holst, 1996; Johansson, Sandberg, & Lansner, 2002), but
require (at least) double the network size of the optimal Bayesian model.
For comparison, I have extended the original BCPNN model to include
query noise and derived two improved BCPNN-type rules: The BCPNN2
rule also considers the inactive query neurons, whereas the BCPNN3 rule
does not make use of the inaccurate approximation. Similar to the Willshaw
model, the BCPNN-type rules become optimal at least in the nonlinear
learning regime, M11 	 ∞, corresponding to very sparse patterns where
active units dominate the total information contained in a query pattern.
Moreover, for the linear learning regime M11 = Mpq → ∞, I have analyzed
the SNR of the BCPNN3 rule being an upper bound for the original BCPNN
rule. The analysis revealed that the SNR of the BCPNN3 model is equiva-
lent to the linear homosynaptic rule, that is, factor 1 − p(λ̃ + κ̃) worse than
for optimal Bayesian learning (see also Dayan & Willshaw, 1991). Thus, the
original BCPNN rule achieves at most the capacity of the homosynaptic
rule and becomes optimal only for sparse address patterns with p → 0 or
low query activity with small λ̃ + κ̃ → 0. Even for sparse address patterns
with p → 0, the BCPNN-type models have reduced basins of attraction in
the sense that they are more vulnerable to add noise with large κ̃ � 0 than
the optimal Bayesian model.

MacKay (1991) has suggested a learning model based on maximizing the
entropy of synaptic weights that is closely related to optimal Bayesian asso-
ciative memory. In particular, he arrived at a similar learning rule and also
discussed the convergence to the covariance rule as well as the necessity of
infinite synaptic weights. The current approach goes beyond these previous
results by generalizing the learning rule for query noise and providing an
SNR analysis for Bayesian learning. The latter, in connection with the re-
sults of appendix E, rigorously proves the equivalence of Bayesian learning
and the covariance rule in the limit M11 → ∞ (whereas Taylor expansion
of the BCPNN rule, for example, also leads to the covariance rule in spite
of BCPNN being suboptimal; see section H.4). Moreover, this analysis also
discusses convergence of the Bayesian learning rule to linear learning rules
other than the covariance rule when the query noise is not independent of
the stored contents (as can be expected for any real-world data).

As with most previous approaches, the “optimal” Bayesian memory
model still makes the naive assumption that address attributes are inde-
pendent of each other. Although this assumption is almost never fulfilled in
real-world data, experiments reveal that naive Bayesian classifiers perform
surprisingly well or even optimal in many domains that contain clear at-
tribute dependencies (Zhang, 2004; Domingos & Pazzani, 1997). Moreover,
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it may be possible to extend the model by semi-naive approaches including
higher-order dependencies, for example, as suggested by Kononenko (1991,
1994).

At least for independent address attributes, the Bayesian neural asso-
ciative memory presented in this work is, by definition, the optimal local
learning model maximizing Mε and Cε . On the other hand, there exist gen-
eral bounds on the storage capacity of neural networks that do not refer to
any particular learning algorithm (Gardner, 1988; Gardner & Derrida,
1988). As the linear covariance rule, the optimal Bayesian model reaches
the Gardner bound for sparse memory patterns p, q → 0 in the limit
Mpq → ∞ corresponding to moderately sparse patterns with mp � log(n)
where the network can store Cε = 1/(2 ln 2) ≈ 0.72 bps (compare equa-
tion 37 to equation 40 in Gardner, 1988). However, for logarithmic sparse
memory patterns with mp ∼ log n, the storage capacity of the optimal
Bayesian rule is below the Gardner bound and cannot exceed the max-
imal capacity of the Willshaw model, which is at Cε = ln 2 ≈ 0.69 bps
(or, rather, Cε = 1/e ln 2 ≈ 0.53 bps for distributed pattern activities; see
Knoblauch et al., 2010, appendix D). For even sparser memory patterns with
mp/ log n → 0, the storage capacity vanishes, Cε → 0. Also for nonsparse
patterns where p → 0.5, the Gardner bound of 2 bps cannot be reached.
Here the optimal Bayesian rule achieves at most Cε ≈ 0.33 bps for very low-
fidelity retrieval with ε → 1, and only Cε → 0 for high-fidelity retrieval with
vanishing output noise ε → 0 (see Figure 3). Thus, as noted by Sommer and
Dayan (1998), at least for nonsparse address patterns with p → 0.5, local
learning is insufficient, and the optimal synaptic weights must be found by
more sophisticated algorithms, including nonlocal information.

Even if the Bayesian associative memory could reach the Gardner bound,
the resulting storage capacity of at most 2 bits per synapse would be
low compared to the physical memory actually required to represent real-
valued synaptic weights (or, alternatively, the countervariables described
in section 2.1). Even worse, an accurate neural implementation of the
Bayesian associative memory requires two numbers per synaptic weight:
a real-valued variable for the finite contributions and an integer variable
for the infinite contributions (see appendix A). In fact, if we take into ac-
count the computational resources required to represent the resulting net-
work, the Willshaw model outperforms all other models due to the binary
weights (Knoblauch et al., 2010): For implementations on digital hardware,
the Willshaw model can reach the theoretical maximum of C I = 1 bit per
computer bit (Knoblauch, 2003). Correspondingly, parallel hardware imple-
mentations of structurally plastic Willshaw networks can reach the theoret-
ical maximum of C S = log n bits per synapse (Knoblauch, 2009b). However,
these high capacities (per synapse) are achieved only for a relatively low
absolute number of stored memories, M, far below the Gardner bound,
equation 2.37. Some preliminary work (Knoblauch, 2009c, 2010b) indicates
that the Bayesian associative memory can be efficiently discretized such
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that structurally compressed network implementations can store C I → 1
bit per computer bit or C S → log n bits per synapse, whereas M (and C)
can still be close to the Gardner bound. Another future direction will be
to investigate more closely the biological relevance of Bayesian learning by
implementing more realistic network models that include spikes, forget-
ful synapses, and inhibitory circuits (Sandberg et al., 2000; Fusi, Drew, &
Abbott, 2005; Markram et al., 2004).

Appendix A: Implementation of Infinite Weights and Thresholds

As noted in section 2.2, synaptic weights (see equation 2.15) and dendritic
potentials (see equation 2.16) may be plus or minus infinity. Naive neu-
ral network implementations lead to suboptimal performance if neglecting
that positively and negatively infinite contributions may cancel each other.
To obtain accurate results, it is necessary to represent synaptic weights
and firing thresholds each with two numbers for finite and infinite com-
ponents. For d1 := M11(1 − p10|1) + M01 p01|1, d2 := M00(1 − p01|0) + M10 p10|0,
d3 := M10(1 − p10|0) + M00 p01|0, d4 := M01(1 − p01|1) + M11 p10|1, the synaptic
weight, equation 2.15, can be expressed by

wi j = log
F(d1)F(d2)
F(d3)F(d4)

, (A.1)

w∞
i j = G(d3) + G(d4) − G(d1) − G(d2) ∈ {−2,−1, 0, 1, 2}, (A.2)

with the gating functions F(x) = x for x > 0 and F(x) = 1 for x ≤ 0, and
G(x) = 0 for x > 0 and G(x) = 1 for x ≤ 0. Thus, wi j represents the finite
weight-neglecting infinite components, whereas w∞

i j counts the number
of contributions toward plus and minus infinity. Similarly, the finite and
infinite components of firing thresholds (corresponding to the “bias” in
equation 2.16) write as

� j = −(m − 1) log
F(M0)
F(M1)

−
m∑

i=1

log
F(d4)
F(d2)

, (A.3)

�∞
j = −(m − 1)(G(M1) − G(M0)) −

m∑
i=1

(G(d2) − G(d4)). (A.4)

Then finite and infinite components of dendritic potentials are xj =∑m
i=1 ũiwi j and x∞

j = ∑m
i=1 ũiw

∞
i j , such that a postsynaptic neuron j gets

activated if either x∞
j > �∞

j or x∞
j = �∞

j and xj ≥ � j .
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Appendix B: Analysis of the SNR for Optimal Bayesian Retrieval

The following computes the SNR (see equation 2.24) for neural associa-
tive memory with optimal Bayesian learning (section 2.2) making the same
definitions and simplifications as detailed at the beginning of section 2.3.
Section B.1 computes the mean difference �μ := μhi − μlo between the den-
dritic potential of a high and a low unit, and section B.2 computes the vari-
ances σ 2

hi and σ 2
lo for the corresponding distributions of dendritic potentials.

B.1 Mean Values of Dendritic Potentials. Equivalent to equation 2.16
(but replacing m − 1 by m and skipping indices i, j for brevity), a content
neuron j will be activated if the dendritic potential xj exceeds the threshold
� j := log(M0/M1) (instead of � j = 0), where

xj = m log
M0

M1
+

c∑
i=1

log
M11(1 − p10) + M01 p01

M10(1 − p10) + M00 p01

+
k∑

i=c+1

log
M01(1 − p01) + M11 p10

M00(1 − p01) + M10 p10

+
k+ f∑

i=k+1

log
M11(1 − p10) + M01 p01

M10(1 − p10) + M00 p01

+
m∑

i=k+ f +1

log
M01(1 − p01) + M11 p10

M00(1 − p01) + M10 p10

= m log
M0

M1
+

c∑
i=1

log
M1 p01 + M11(1 − p01 − p10)

M0(1 − p10) − M00(1 − p01 − p10)

+
k∑

i=c+1

log
M1(1 − p01) − M11(1 − p01 − p10)

M0 p10 + M00(1 − p01 − p10)

+
k+ f∑

i=k+1

log
M1 p01 + M11(1 − p01 − p10)

M0(1 − p10) − M00(1 − p01 − p10)

+
m∑

i=k+ f +1

log
M1(1 − p01) − M11(1 − p01 − p10)

M0 p10 + M00(1 − p01 − p10)
. (B.1)

Given M1, M0, the remaining variables are binomially distributed—M00 ∼
BM0,1−p and M11 ∼ BM1,p, where pr[BN,P = z] = (N

z

)
Pz(1 − P)N−z. For large

NP(1 − P) the binomial BN,P can be approximated by a gaussian Gμ,σ with
mean μ = NP and variance σ 2 = NP(1 − P). Given uμ

i and v
μ

j , we then
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have

M11(i, j)

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

BM1,p ∼ G M1 p,
√

M1 p(1−p), (uμ

i , v
μ

j ) = (0, 0)

BM1,p ∼ G M1 p,
√

M1 p(1−p), (uμ

i , v
μ

j ) = (1, 0)

BM1−1,p ∼ G(M1−1)p,
√

(M1−1)p(1−p), (uμ

i , v
μ

j ) = (0, 1)

1 + BM1−1,p ∼ G1+(M1−1)p,
√

(M1−1)p(1−p), (uμ

i , v
μ

j ) = (1, 1)

, (B.2)

M00(i, j)

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+ BM0−1,1−p ∼ G1+(M0−1)(1−p),
√

(M0−1)p(1−p), (uμ

i , v
μ

j ) = (0, 0)

BM0−1,1−p ∼ G(M0−1)(1−p),
√

(M0−1)p(1−p), (uμ

i , v
μ

j ) = (1, 0)

BM0,1−p ∼ G M0(1−p),
√

M0 p(1−p), (uμ

i , v
μ

j ) = (0, 1)

BM0,1−p ∼ G M0(1−p),
√

M0 p(1−p), (uμ

i , v
μ

j ) = (1, 1)

,

(B.3)

From this, we can approximate the distribution of the dendritic potential
xj for low units and high units, respectively. For large k and m − k, the
sums of logarithms in equation B.1 are approximately gaussian distributed.
In principle, the mean potentials μlo and μhi for low units and high units
can be computed exactly from equation B.12. Fortunately, it turns out that
the mean potential difference �μ := μhi − μlo required for the SNR can
be well approximated by using only the first-order term in equation B.12
(while all higher-order terms become virtually identical for μhi and μlo;
for more details, see Knoblauch, 2009a, appendixes D, F). These first-order
approximations μ′

lo, μ
′
hi of μlo, μhi are

μ′
lo = m log

M0

M1
+ c log

M1 p01 + M1 p(1 − p01 − p10)
M0(1 − p10) − (M0 − 1)(1 − p)(1 − p01 − p10)

+ (k − c) log
M1(1 − p01) − M1 p(1 − p01 − p10)

M0 p10 + (M0 − 1)(1 − p)(1 − p01 − p10)

+ f log
M1 p01 + M1 p(1 − p01 − p10)

M0(1 − p10) − (1 + (M0 − 1)(1 − p))(1 − p01 − p10)

+ (m − k − f ) log
M1(1 − p01) − M1 p(1 − p01 − p10)

M0 p10 + (1 + (M0 − 1)(1 − p))(1 − p01 − p10)

= c log
M0(p01 + p(1 − p01 − p10))

M0(p01 + p(1 − p01 − p10)) + (1 − p)(1 − p01 − p10)
+ (k − c)

× log
M0(p10 + (1 − p)(1 − p01 − p10))

M0(p10 + (1 − p)(1 − p01 − p10)) − (1 − p)(1 − p01 − p10)

+ f log
M0(p01 + p(1 − p01 − p10))

M0(p01 + p(1− p01 − p10))− p(1− p01 − p10)
+ (m−k − f )
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× log
M0(p10 + (1 − p)(1 − p01 − p10))

M0(p10 + (1 − p)(1 − p01 − p10)) + p(1 − p01 − p10)

≈−c
(1 − p)(1 − p01 − p10)

M0(p01 + p(1 − p01 − p10))

+ (k − c)
(1 − p)(1 − p01 − p10)

M0(p10 + (1 − p)(1 − p01 − p10))

+ f
p(1 − p01 − p10)

M0(p01 + p(1 − p01 − p10))

− (m − k − f )
p(1 − p01 − p10)

M0(p10 + (1 − p)(1 − p01 − p10))
(B.4)

μ′
hi = m log

M0

M1
+ c log

M1 p01 + (1 + (M1 − 1)p)(1 − p01 − p10)
M0(1 − p10) − M0(1 − p)(1 − p01 − p10)

+ (k − c) log
M1(1 − p01) − (1 + (M1 − 1)p)(1 − p01 − p10)

M0 p10 + M0(1 − p)(1 − p01 − p10)

+ f log
M1 p01 + (M1 − 1)p(1 − p01 − p10)

M0(1 − p10) − M0(1 − p)(1 − p01 − p10)

+ (m − k − f ) log
M1(1 − p01) − (M1 − 1)p(1 − p01 − p10)

M0 p10 + M0(1 − p)(1 − p01 − p10)

= c log
M1(p01 + p(1 − p01 − p10)) + (1 − p)(1 − p01 − p10)

M1(p01 + p(1 − p01 − p10))
+ (k − c)

× log
M1(p10 + (1 − p)(1 − p01 − p10)) − (1 − p)(1 − p01 − p10)

M1(p10 + (1 − p)(1 − p01 − p10))

+ f log
M1(p01 + p(1− p01 − p10))− p(1− p01 − p10)

M1(p01 + p(1− p01 − p10))
+ (m−k − f )

× log
M1(p10 + (1 − p)(1 − p01 − p10)) + p(1 − p01 − p10)

M1(p10 + (1 − p)(1 − p01 − p10))

≈ c
(1 − p)(1 − p01 − p10)

M1(p01 + p(1 − p01 − p10))

− (k − c)
(1 − p)(1 − p01 − p10)

M1(p10 + (1 − p)(1 − p01 − p10))

− f
p(1 − p01 − p10)

M1(p01 + p(1 − p01 − p10))

+ (m − k − f )
p(1 − p01 − p10)

M1(p10 + (1 − p)(1 − p01 − p10))
. (B.5)
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where the approximations are valid for large M0 p, M1 p → ∞ and suffi-
ciently small p01, p10. Therefore, the mean difference �μ := μhi − μlo be-
tween the high and low distributions is

�μ

1 − p01 − p10

≈ μ′
hi − μ′

lo

1 − p01 − p10
≈ c(1 − p)

p01 + p(1 − p01 − p10)

(
1

M1
+ 1

M0

)

− (k − c)(1 − p)
p10 + (1 − p)(1 − p01 − p10)

(
1

M1
+ 1

M0

)

− f p
p01 + p(1 − p01 − p10)

(
1

M1
+ 1

M0

)

+ (m − k − f )p
p10 + (1 − p)(1 − p01 − p10)

(
1

M1
+ 1

M0

)

=
(

c(1 − p) − f p

p(1 + 1−p
p p01 − p10)

+ (m − k − f )p − (k − c)(1 − p)
(1 − p)(1 − p01 + p

1−p p10)

)

×
(

1
M1

+ 1
M0

)
. (B.6)

B.2 Variance of Dendritic Potentials. In order to get the SNR, equa-
tion 2.24, we have to compute the variances σ 2

lo and σ 2
hi for xj in equa-

tion B.1. Given the unit usages M1( j), the random variables M00(i, j) and
M11(i, j) are independent, and thus the variances simply add. Because
each variance summand is positive, for large M1 p, M0 p → ∞, we can sim-
ply assume M11 ∼ G M1 p,

√
M1 p(1−p) and M00 ∼ G M0(1−p),

√
M0 p(1−p) in all cases

(cf. equations B.2 and B.3). With equation B.13 we get

Var(log(M1 p01 + M11(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M1 p(1 − p)
(M1 p01 + M1 p(1 − p01 − p10))2 ,

Var(log(M0(1 − p10) − M00(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M0 p(1 − p)
(M0(1 − p10) − M0(1 − p)(1 − p01 − p10))2 ,

Var(log(M1(1 − p01) − M11(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M1 p(1 − p)
(M1(1 − p01) − M1 p(1 − p01 − p10))2 ,
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Var(log(M0 p10 + M00(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M0 p(1 − p)
(M0 p10 + M0(1 − p)(1 − p01 − p10))2 ,

Var(log(M1 p01 + M11(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M1 p(1 − p)
(M1 p01 + M1 p(1 − p01 − p10))2 ,

Var(log(M0(1 − p10) − M00(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M0 p(1 − p)
(M0(1 − p10) − M0(1 − p)(1 − p01 − p10))2 ,

Var(log(M1(1 − p01) − M11(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M1 p(1 − p)
(M1(1 − p01) − M1 p(1 − p01 − p10))2 ,

Var(log(M0 p10 + M00(1 − p01 − p10)))

≈ (1 − p01 − p10)2 M0 p(1 − p)
(M0 p10 + M0(1 − p)(1 − p01 − p10))2 . (B.7)

Thus, the variances Var(xj ) for the potentials of both low units and high
units are approximately

σ 2
lo

(1 − p01 − p10)2

≈ σ 2
hi

(1 − p01 − p10)2 ≈ c
1 − p

M1 p(1 + 1−p
p p01 − p10)2

+ c
1− p

M0 p(1+ 1 − p
p p01 − p10)2

+ (k −c)
p

M1(1− p)(1− p01 + p
1−p p10)2

+ (k − c)
p

M0(1 − p)(1 − p01 + p
1−p p10)2

+ f
1 − p

M1 p(1 + 1−p
p p01 − p10)2

+ f
1 − p

M0 p(1 + 1−p
p p01 − p10)2

+ (m − k − f )p
M1(1 − p)(1 − p01 + p

1−p p10)2 + (m − k − f )p
M0(1 − p)(1 − p01 + p

1−p p10)2

= (c + f )(1 − p)(1/M1 + 1/M0)

p(1 + 1−p
p p01 − p10)2

+ (m − c − f )p(1/M1 + 1/M0)
(1 − p)(1 − p01 + p

1−p p10)2
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=
(

(c + f )(1 − p)

p(1 + 1−p
p p01 − p10)2

+ (m − c − f )p
(1 − p)(1 − p01 + p

1−p p10)2

)

×
(

1
M1

+ 1
M0

)
. (B.8)

B.3 Lemmas for Computing Dendritic Potential Distributions. Let X
be a random variable with normal distribution, X ∼ G0,σ , that is, X is a
gaussian with zero mean and variance σ 2. Then the dth moment is

E(Xd ) =
{

0, d = 2i + 1

1 · 3 · · · (d − 1)σ d , d = 2i
. (B.9)

Proofs can be found in standard textbooks of statistics and probability
theory (e.g., see equation 5.44 in Papoulis, 1991).

Then the Taylor expansion of log(x) around μ (also called the Newton-
Mercator series) is

log(μ + �) = log μ + log(1 + �/μ)

= log μ + �

μ
− 1

2
(�/μ)2 + 1

3
(�/μ)3 + . . . (B.10)

= log μ +
∞∑

d=1

(−1)d+1 (�/μ)d

d
(B.11)

for −1 < �/μ ≤ 1. Proofs can be found in standard textbooks of analysis
(e.g., see Borwein & Bailey, 2003; Weisstein, 1999; Abramowitz & Stegun,
1972).

Now let X be a gaussian random variable, X ∼ Gμ,σ , with mean μ and
variance σ 2. Then for σ 	 μ, we have

E(log X) = log μ −
∞∑

i=1

1 · 3 · · · (2i − 1)
2i

(σ/μ)2i ≈ log μ (B.12)

Var(log X) ≈
(

σ

μ

)2

, (B.13)

where the approximations are tight for σ/μ → 0 if μ �→ 1.

Proof. We can write X = μ + � where � is normal with variance σ 2.
Then equation B.12 follows from eqs. B.9 and B.11. Similarly, the variance
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Var(log X) = E((log X)2) − (E(log X))2 follows from

(log X)2 =
(

log μ +
∞∑

d=1

(−1)d+1 (�/μ)d

d

)2

= (log μ)2 + 2(log μ)
∞∑

d=1

(−1)d+1 (�/μ)d

d

+
∞∑

d1=1

∞∑
d2=1

(−1)d1+d2
(�/μ)d1+d2

d1d2
,

E((log X)2) = (log μ)2 + 2(log μ)
∞∑

d=1

(−1)d+1 E(�d )
dμd

+
∞∑

d1=1

∞∑
d2=1

(−1)d1+d2
E(�d1+d2 )
d1d2μd1+d2

,

(E(log X))2 = (log μ)2 + 2(log μ)
∞∑

d=1

(−1)d+1 E(�d )
dμd

+
∞∑

d1=1

∞∑
d2=1

(−1)d1+d2
E(�d1 )E(�d2 )

d1d2μd1+d2
,

Var(log X) =
∞∑

d1=1

∞∑
d2=1

(−1)d1+d2
E(�d1+d2 ) − E(�d1 )E(�d2 )

d1d2μd1+d2
,

where in the last equation for σ/μ → 0, the first summand (d1 = d2 = 1)
dominates.

Appendix C: Gaussian Tail Integrals

Let g(x) be the gaussian probability density:

g(x) := 1√
2π

e−x2/2. (C.1)

Then the complementary gaussian distribution function is the right tail
integral:

Gc(x) :=
∫ ∞

x
g(t)dt = 1 − erf(x/

√
2)

2
= erfc(x/

√
2)

2
<≈ e−x2/2

√
2πx

<
e−x2/2

2
.

(C.2)
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The first bound is true for any x > 0, and the corresponding approximation
error becomes smaller than 1% for x > 10. The second bound is true for any
x > 0. Inverting Gc yields

Gc−1(x) := y|Gc (y)=x =
√

2erf−1(1 − 2x) =
√

2erfc−1(2x)

<≈
√

−2 ln(
√

2πxGc−1(x)) <
√

−2 ln(2x). (C.3)

The two approximations correspond to those of equation C.2. In the first
approximation, the term Gc−1(x) can be replaced, for example, by the second
approximation

√−2 ln(2x).

Appendix D: Optimal Firing Thresholds

Given a query pattern ũ resembling one of the original address patterns uμ,
our goal is to minimize the expected Hamming distance dH(vμ, v̂) between
the corresponding content vμ and the retrieval output v̂ (see equation 2.21).
To this end, each content neuron v j has to adjust its firing threshold � in
order to minimize

H(�) := qq10 + (1 − q )q01, (D.1)

where q := pr[vμ

j = 1] is the prior and

q01 :=
∫ ∞

�

glo(x)dx and q10 :=
∫ �

−∞
ghi(x)dx (D.2)

are the probabilities of making an output error (e.g., equations 2.22 and
2.23) assuming a given low distribution glo(x) := pr[xj = x|vμ

j = 0] and
high distribution ghi(x) := pr[xj = x|vμ

j = 1] for the dendritic potential
xj (e.g., see equation 2.16). Minimizing H(�) requires d H/d� = 0 or,
equivalently,

(1 − q )glo(�) = qghi(�), (D.3)

as illustrated by Figure 8 (left). The optimal threshold �opt can be obtained
by solving equation D.3, which is easy if the distributions of dendritic
potentials are gaussians. Then equation D.3 is rewritten as

(1 − q )g
(

� − μlo

σlo

)
= qg

(
� − μhi

σhi

)
, (D.4)

where g is the Gaussian density, equation C.1, and μlo, μhi, σlo, σhi are means
and standard deviations of the low and high dendritic potentials similar as
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Figure 8: Optimal firing threshold and minimal SNR. (Left) Expected normal-
ized distributions (1 − q )glo(x) and qghi(x) of dendritic potential x for low-units
(with v

μ

j = 0) and high-units (with v
μ

j = 1), respectively. The optimal firing
threshold is at dendritic potential x = �opt where the two distributions are
equal. For sparse content patterns with q < 0.5 the resulting miss noise qq10

is larger than the add noise (1 − q )q01. In fact, for q → 0 and constant ε the
add noise becomes negligible (see equation D.10; see also Knoblauch, 2009a).
(Right) Contour plot showing the minimal SNR Rmin(ε̂, q ) (see appendix E) re-
quired to obtain output noise ε̂ for content pattern activity q and optimal firing
threshold equation D.9.

defined below equation 2.24. Taking logarithms yields a quadratic equation
in � with the solution

�opt,1/2 = −B ± √
B2 − 4AC

2A
, (D.5)

A=
(

1
2σ 2

hi

− 1
2σ 2

lo

)
, (D.6)

B = −
(

μhi

σ 2
hi

− μlo

σ 2
lo

)
, (D.7)

C = log
(

1 − q
q

σhi

σlo

)
− 1

2

(
μlo

σlo

)2

+ 1
2

(
μhi

σhi

)2

, (D.8)

where the optimal threshold is either �1 or �2. If the standard deviations
are equal, σlo = σhi, then A = 0, and equation D.4 has the unique solution

�opt = −C/B. (D.9)

The following lemma characterizes the weighing of add noise (vμ

j = 0 but
v̂ j = 1) versus miss noise (vμ

j = 1 but v̂ j = 0) in the retrieval result v̂ when
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choosing the optimal firing threshold: If we assume a given constant out-
put noise ε̂ := H(�opt)/q (cf. equation 2.30), gaussian potentials with equal
standard deviations σlo = σhi and optimal firing threshold � = �opt as in
equation D.9, then

q → 0 implies
(1 − q )q01

qq10
→ 0 and thus ξ̂ → 0. (D.10)

that is, for sparse content patterns, the output errors are dominated by
miss noise (see equation 2.31). A formal proof of the lemma can be found
in Knoblauch (2009a, appendix A, equation 74). Figure 8 (left) gives an
intuition as to why the lemma is true. Here H(�opt) is the intersection
area of high and low distribution, where the left and right parts of the
area correspond to miss noise qq10 and add noise (1 − q )q01, respectively
(see the arrows). Requiring constant H(�opt)/q implies that the intersection
area H(�opt) must be a constant fraction of the area below qghi(x). Thus,
q → 0 implies for σlo = σhi that the decrease of (1 − q )glo(x) with x becomes
very steep compared to the increase of qghi(x) and finally approaches the
dashed line corresponding to �opt.

Appendix E: The Relation Between SNR R and Output Noise ε̂

We can use two different measures to evaluate retrieval quality: section 2.3
uses the SNR R (see equation 2.24), whereas section 2.4 uses output noise ε̂,
which is based on the Hamming distance (see equation 2.30). This appendix
shows that the two measures are actually equivalent if we assume that (1)
all content neurons j have the same priors q := pr[vμ

j = 1] and the same dis-
tributions for high and low dendritic potentials; (2) all dendritic potentials
follow a gaussian distribution; (3) each content neuron optimally adjusts
the firing threshold in order to minimize output noise ε̂ (see appendix D);
and (4) the distributions of high and low dendritic potentials have the same
standard deviation, σ := σlo = σhi. Note that all assumptions are fulfilled at
least in the limit Mpq → ∞ for reasons discussed in section 2.3.

We first write the output noise ε̂ as a function of the SNR R: Due to
assumption 1, we can write the output noise, equation 2.30 in terms of the
output error probabilities, equations 2.22 and 2.23:

ε̂ := (1/q − 1)q01 + q10. (E.1)

Due to assumption 2, the output error probabilities write

q01 = Gc
(

�opt − μlo

σlo

)
and q10 = Gc

(
μhi − �opt

σhi

)
, (E.2)
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where Gc(x) is the tail integral of a gaussian (see equation C.2), and,
due to assumption 3, �opt is the optimal firing threshold as explained in
appendix D. Due to assumption 4, �opt is as in equation D.9:

�opt =
ln 1−q

q + 1
2

μhi
2−μlo

2

σ 2

μhi−μlo
σ 2

= σ

R
ln

1 − q
q

+ 1
2
σ R + μlo ≥ μlo + μhi

2
.

(E.3)

The last bound implies that the optimal threshold shifts toward the high
potentials for sparse patterns with q < 0.5 and centers only for q = 0.5.
Thus, the error probabilities at optimal threshold are

q01 = Gc
(

�opt − μlo

σ

)
= Gc

(
R/2 + ln(1/q − 1)

R

)
, (E.4)

q10 = Gc
(

μhi − �opt

σ

)
= Gc

(
R − R/2 − ln(1/q − 1)

R

)

= Gc
(

R/2 − ln(1/q − 1)
R

)
, (E.5)

and thus the minimal output noise level ε̂ that can be achieved with SNR
R equals

ε̂min(R, q ) = (1/q − 1)Gc
(
R/2 + ln(1/q−1)

R

)
+ Gc

(
R/2 − ln(1/q−1)

R

)
(E.6)

where Gc can be evaluated with equation C.2.
Vice versa, we obtain the minimal SNR Rmin(ε̂, q ) required for an output

noise level ε̂ by resolving equation E.6 for R. We can do this easily for two
special cases. First, for nonsparse content patterns with q = 0.5, we have
ε̂min = 2Gc(r/2) and thus

Rmin(ε̂, 0.5) = 2Gc−1(ε̂/2), (E.7)

where Gc−1 is as in equation C.3. Second, for sparse content patterns with
q → 0, miss-noise will dominate output errors according to equation D.10.
Correspondingly, the output noise, equation E.6, is dominated by the second
summand. Therefore, q → 0 implies

Rmin(ε̂, q ) ≈ Gc−1(ε̂) +
√

(Gc−1(ε̂))2 + 2 ln(1/q − 1) ≈
√

−2 ln q . (E.8)
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Alternatively, and in particular for 0 �≈ q �= 0.5, we can compute Rmin by
iteratively applying the following two equations:

Rmin(ε̂, q , ξ̂ ) = Gc−1
(

ξ̂ ε̂q
1 − q

)
+ Gc−1((1 − ξ̂ )ε̂), (E.9)

ξ̂opt = 1 − Gc(R/2 − ln(1/q−1)
R )

ε̂

= 1 − q
q ε̂

Gc
(

R/2 + ln(1/q − 1)
R

)
, (E.10)

starting with ξ̂ = 0.5, for example. In the first step, equation E.9 computes
the minimal SNR required to obtain output noise ε̂ where, in contrast to
assumption 3, firing thresholds are chosen such that a given fraction ξ̂ ∈
[0; 1] of the expected output errors is add noise, and the remaining fraction
1 − ξ̂ is miss noise (here, ξ̂ is the output noise balance, equation 2.31; see
also equation E.1 and Figure 8, left). In the second step, we insert R =
Rmin from the first step into equation E.10 and compute the optimal noise
balance ξ̂ = ξ̂opt such that output noise ε̂ is minimal and assumption 3 is
fulfilled again. In practice, few iterations of this procedure (e.g., fewer than
10) are sufficient to obtain an accurate estimate of Rmin(ε̂, q ), which may
be further verified by insertion into equation E.6. For more details, see
Knoblauch (2009a, appendix A). Figure 8 (right) computes Rmin(ε̂, q ) for
relevant parameters ε̂ and q .

Appendix F: Binary Channels

For a random variable X ∈ {0, 1} with q := pr[X = 1] the information I(X)
equals (Shannon & Weaver, 1949)

I (q ) := −q · ldq − (1 − q ) · ld(1 − q )

≈
{

−q · ldq , q 	 0.5

−(1 − q ) · ld(1 − q ), 1 − q 	 0.5
. (F.1)

It is I (q ) = I (1 − q ) and I (q ) → 0 for q → 0. A binary memory-less channel
is determined by the two error probabilities q01 for add noise and q10 for
miss noise. For two binary random variables X and Y, where Y is the result
of transmitting X over the binary channel, we can write

I (Y) = IY(q , q01, q10) := I (q (1 − q10) + (1 − q ) q01) , (F.2)

I (Y|X) = IY|X(q , q01, q10) := q · I (q10) + (1 − q ) · I (q01), (F.3)

T(X; Y) = T(q , q01, q10) := IY(q , q01, q10) − IY|X(q , q01, q10). (F.4)
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For the analysis of storage capacity of associative networks at noise level
ε (see section 2.4), we are interested in fulfilling the high-fidelity criterion,
equation E.1, with a “noise balance” parameter ξ weighing between add
noise and miss noise,

q01 = ξεq
1 − q

and q10 = (1 − ξ )ε, (F.5)

such that

T
(

q ,
ξεq

1 − q
, (1 − ξ )ε

)
= I (q − εq (1 − 2ξ )) − q I ((1 − ξ )ε)

− (1 − q )I
(

ξεq
1 − q

)
. (F.6)

Thus, we can compute the component transinformation for several inter-
esting cases:

T
(

q ,
ξεq

1 − q
, (1 − ξ )ε

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

= I
(

1 − ε(1 − 2ξ )
2

)
− 0.5(I ((1 − ξ )ε) + I (ξε)), q = 0.5

≈ I (q ), ε/q → 0

≈ I (q )
(

1 − ε(1 − ξ + ldε

ldq
)
)

, q/ε → 0

≈ I (q ), q , ε → 0

.

(F.7)

For details see Knoblauch (2009a, appendix E). Three approximations are
of particular interest. For q = 0.5 and ξ = 0.5, we have T ≈ 1 − I (ε/2). For
q → 0, constant ε, and dominating miss noise with ξ → 0, we have T ≈
I (q )(1 − ε). For q → 0, constant ε, and dominating add noise with ξ → 1,
we have T ≈ I (q ).

Appendix G: Analysis of the SNR for Linear Learning Rules

Here we analyze the SNR for the linear learning rule, equation 3.6, in
analogy to the analysis in section 2.3. Without loss of generality, we assume
that the query pattern ũ ≈ uM resembles the Mth address pattern and,
similarly as illustrated by Figure 2 (left), contains c correct one-entries and
f false one-entries. The synaptic weight writes as the linear sum of learning
increments ruv due to individual memory associations with presynaptic
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activity u ∈ {0, 1} and postsynaptic activity v ∈ {0, 1},

wi j = r00 M00 + r01 M01 + r10 M10 + r11 M11 =
M∑

μ=1

ruμ

i v
μ

j
(G.1)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ruM
i 1 +

M0∑
μ=1

ruμ

i 0 +
M−1∑

μ=M0+1

ruμ

i 1, vM
j = 1

ruM
i 0 +

M1∑
μ=1

ruμ

i 1 +
M−1∑

μ=M1+1

ruμ

i 0, vM
j = 0

, (G.2)

where, without loss of generality, for a high unit (vM
j = 1), we assume that

v
μ

j = 1 for μ = M0 + 1, . . . , M; and for a low unit (vM
j = 0), we assume that

v
μ

j = 1 for μ = 1, . . . , M1. Then the dendritic potential xj = ∑m
i=1 wi j F (ũi )

with F (1) = 1 and F (0) = a is

xj =
c∑

i=1

wi j |uM
i =1 +a

k∑
i=c+1

wi j |uM
i =1 +

k+ f∑
i=k+1

wi j |uM
i =0 +a

m∑
i=k+ f +1

wi j |uM
i =0.

(G.3)

Thus, the mean dendritic potentials for high and low units are

μhi = (c + (k − c)a )[r11 + M0 E(ruμ

i 0) + (M1 − 1)E(ruμ

i 1)]

+ ( f + (m − k − f )a )[r01 + M0 E(ruμ

i 0) + (M1 − 1)E(ruμ

i 1)]

= (c + (k − c)a )r11 + ( f + (m − k − f )a )r01

+ (c + f + (m − c − f )a )[M0((1 − p)r00 + pr10)

+ (M1 − 1)((1 − p)r01 + pr11)], (G.4)

μlo = (c + (k − c)a )[r10 + M1 E(ruμ

i 1) + (M0 − 1)E(ruμ

i 0)]

+ ( f + (m − k − f )a )[r00 + M1 E(ruμ

i 1) + (M0 − 1)E(ruμ

i 0)]

= (c + (k − c)a )r10 + ( f + (m − k − f )a )r00

+ (c + f + (m − c − f )a )[M1((1 − p)r01 + pr11)

+ (M0 − 1)((1 − p)r00 + pr10)], (G.5)

using E(ruμ

i 0) = (1 − p)r00 + pr10 and E(ruμ

i 1) = (1 − p)r01 + pr11. Similarly,
we can compute the variances of dendritic potentials by replacing a by a2
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and E by Var and leaving out constant terms,

σ 2
hi = (c + (k − c)a2)[M0Var(ruμ

i 0) + (M1 − 1)Var(Ruμ

i 1)]

+ ( f + (m − k − f )a2)[M0Var(ruμ

i 0) + (M1 − 1)Var(ruμ

i 1)]

= (c + f + (m − c − f )a2)p(1 − p)[M0(r10 − r00)2

+(M1 − 1)(r11 − r01)2], (G.6)

σ 2
lo = (c + (k − c)a2)[M1Var(ruμ

i 1) + (M0 − 1)Var(ruμ

i 0)]

+ ( f + (m − k − f )a2)[M1Var(ruμ

i 1) + (M0 − 1)Var(ruμ

i 0)]

= (c + f + (m − c − f )a2)p(1 − p)[M1(r11 − r01)2

+ (M0 − 1)(r10 − r00)2], (G.7)

using Var(ruμ

i 0) = p(1 − p)(r10 − r00)2 and Var(ruμ

i 1) = p(1 − p)(r11 − r01)2.
Then the mean potential difference �μ := μhi − μlo is

�μ = (c + (k − c)a )(r11 − r10) + ( f + (m − k − f )a )(r01 − r00)

+ (c + f + (m − c − f )a )[(1 − p)r00 + pr10 − (1 − p)r01 − pr11],

(G.8)

= (c + (k − c)a )(r11 − r10) − ( f + (m − k − f )a )(r00 − r01)

− (c + f + (m − c − f )a )[p(r11 − r10) − (1 − p)(r00 − r01)]. (G.9)

With this, we can compute the SNR R := �μ/ max(σhi, σlo) (see equa-
tion 2.24), optimal firing thresholds (see appendix D), and storage capac-
ity (see section 2.4). It is well known that the optimal linear rule (maxi-
mizing R) is the so-called covariance rule r00 = pq , r01 = −p(1 − q ), r10 =
−(1 − p)q , r11 = (1 − p)(1 − q ), and a = −(λ̃ + κ̃)p/(1 − (λ̃ + κ̃)p) where
p := pr[uμ

i = 1] and q := pr[vμ

j = 1] (see Dayan & Willshaw, 1991; Palm &
Sommer, 1996). Further rules of interest are, for example, the Hebbian rule
r11 = 1, r00 = r01 = r10 = a = 0; the homosynaptic rule r11 = 1 − q , r10 = −q ,
r00 = r01 = a = 0; and the heterosynaptic rule r11 = 1 − p, r01 = −p, r00 =
r10 = a = 0.

Appendix H: Generalized BCPNN-Type Learning Rules

H.1 Generalizing the BCPNN Rule for Query Noise. Section 3.3 dis-
cusses the original BCPNN rule of Lansner & Ekeberg (1989). The original
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BCPNN rule, equation 3.14, does not consider query noise. We can general-
ize the BCPNN rule including query noise as we have done for the optimal
Bayesian rule in section 2.2. Defining pbc(i) := pr[vμ

j = 0]pbc|0 + pr[vμ

j =
1]pbc|1 (for any j), it is

pr[ũi = 1|M( j)] = M′
1(i)
M

(1 − p10(i)) + M′
0(i)
M

p01(i), (H.1)

pr[1ũ|M( j)] ≈
∏
i∈1ũ

pr[ũi = 1|M( j)], (H.2)

pr[vμ

j = 1|1ũ, M( j)] = pr[vμ

j = 1|M( j)]pr[1ũ|vμ

j = 1, M( j)]

pr[1ũ|M( j)]

= M1

M

∏
i∈1ũ

M11(1 − p10|1) + M01 p01|1

M1
M′

1(1−p10)+M′
0 p01

M

=
(

M
M1

)z−1 ∏
i∈1ũ

M11(1 − p10|1) + M01 p01|1
M′

1(1 − p10) + M′
0 p01

, (H.3)

where z := |1ũ| = ∑m
i=1 ũi denotes the number of one-entries in the query

vector. Thus, taking logarithms yields synaptic weights wi j and firing
thresholds � j ,

−� j = log 2 + log
M1

M
, (H.4)

wi j := log
(M11(1 − p10|1) + M01 p01|1)M

(M′
1(1 − p10) + M′

0 p01)M1
, (H.5)

where we have again skipped indices i, j for brevity. Transition probabilities
can again be estimated as in equations 2.19 and 2.20.

H.2 The BCPNN2 Rule: Including Inactive Query Components. As
discussed in section 3.3, we can improve the BCPNN rule by also consider-
ing the zero-entries in a query pattern, that is, by computing

pr[vμ

j = 1|ũ, M( j)] = M1

M

∏
i∈1ũ

M11(1−p10|1)+M01 p01|1
M1

M′
1(1−p10)+M′

0 p01

M

∏
i∈0ũ

M01(1−p01|1)+M11 p10|1
M1

M′
0(1−p01)+M′

1 p10

M

,

(H.6)
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=
(

M
M1

)m−1 m∏
i=1

M01(1 − p01|1) + M11 p10|1
M′

0(1 − p01) + M′
1 p10

×
∏
i∈1ũ

(M11(1 − p10|1) + M01 p01|1)(M′
0(1 − p01) + M′

1 p10)
(M01(1 − p01|1) + M11 p10|1)(M′

1(1 − p10) + M′
0 p01)

,

(H.7)

and thus

−� j = log 2 + (m − 1) log
M
M1

+
m∑

i=1

log
M01(1 − p01|1) + M11 p10|1

M′
0(1 − p01) + M′

1 p10
,

(H.8)

wi j = log
(M11(1 − p10|1) + M01 p01|1)(M′

0(1 − p01) + M′
1 p10)

(M01(1 − p01|1) + M11 p10|1)(M′
1(1 − p10) + M′

0 p01)
. (H.9)

H.3 The BCPNN3 Rule: Eliminating pr[ũ]. As discussed in section 3.3,
we can improve the BCPNN rule by computing the odds ratio:

pr[vμ

j = 1|1ũ, M( j)]

pr[vμ

j = 0|1ũ, M( j)]
= pr[vμ

j = 1|M( j)]pr[1ũ|vμ

j = 1, M( j)]

pr[vμ

j = 0|M( j)]pr[1ũ|vμ

j = 0, M( j)]

=
M1
M

∏
i∈1ũ

M11(1−p10|1)+M01 p01|1
M1

M0
M

∏
i∈1ũ

M10(1−p10|0)+M00 p01|0
M0

=
(

M0

M1

)z−1 ∏
i∈1ũ

M11(1 − p10|1) + M01 p01|1
M10(1 − p10|0) + M00 p01|0

, (H.10)

and thus

−� j = log
M1

M0
, (H.11)

wi j = log
(M11(1 − p10|1) + M01 p01|1)M0

(M10(1 − p10|0) + M00 p01|0)M1
. (H.12)

H.4 The SNR of the BCPNN3 Rule. One can show that linearizing
the BCPNN-type rules also yields the covariance rule, as shown in sec-
tion 3.2 for the optimal Bayesian rule (Knoblauch, 2010a). By this, one may
be tempted to believe that the BCPNN model would also be optimal in
the limit Mpq → ∞. However, asymptotically identical first-order terms of
single synaptic weights is not a sufficient condition for identical network
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performance since Mpq → ∞ implies a diverging synapse number. In fact,
the following analysis shows that the BCPNN3 rule has a lower SNR than
the optimal Bayes rule, which also excludes the optimality of the BCPNN
model. We can easily adapt the SNR analysis of section 2.3 to the BCPNN3
rule simply by skipping all terms relating to inactive query components
ũi = 0. Equivalently to equations H.11 and H.12, the biological formulation
of the BCPNN3 model as

v̂ j = 1 ⇔ (c + f ) log
M0

M1
+

m∑
i=1

ũi log
M11(1 − p10) + M01 p01

M10(1 − p10) + M00 p01

≥ � j := log
M0

M1
. (H.13)

In analogy to equation B.1, the potential xj of content neuron j writes as

xj = (c + f ) log
M0

M1
+

c∑
i=1

log
M1 p01 + M11(1 − p01 − p10)

M0(1 − p10) − M00(1 − p01 − p10)

+
k+ f∑

i=k+1

log
M1 p01 + M11(1 − p01 − p10)

M0(1 − p10) − M00(1 − p01 − p10)
. (H.14)

In analogy to equations B.4 and B.5, the first-order approximations of mean
low and high potentials are

μ′
lo ≈ −c

(1 − p)(1 − p01 − p10)
M0(p01 + p(1 − p01 − p10))

+ f
p(1 − p01 − p10)

M0(p01 + p(1 − p01 − p10))
,

(H.15)

μ′
hi ≈ c

(1 − p)(1 − p01 − p10)
M1(p01 + p(1 − p01 − p10))

− f
p(1 − p01 − p10)

M1(p01 + p(1 − p01 − p10))
.

(H.16)

In analogy to equation B.6 the mean difference �μ := μhi − μlo between the
high and low distributions is

�μ

1 − p01 − p10
≈ c(1 − p) − f p

p(1 + 1−p
p p01 − p10)

(
1

M1
+ 1

M0

)
. (H.17)
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In analogy to equation B.8, the variances of dendritic potentials are

σ 2
lo

(1 − p01 − p10)2 ≈ σ 2
hi

(1 − p01 − p10)2

≈ (c + f )(1 − p)

p(1 + 1−p
p p01 − p10)2

(
1

M1
+ 1

M0

)
. (H.18)

Thus, asymptotically, for c = λ̃k and f = κ̃k and assuming large net-
works and consistent error estimation such that k = pm, p01 = f/(m − k) =
κ̃ p/(1 − p), p10 = (k − c)/k = 1 − λ̃, we obtain in analogy to equations 2.25
and 2.26,

�μ

(λ̃ − p
1−p κ̃)(1/M1 + 1/M0)

≈ m
λ̃(1 − p) − κ̃ p

λ̃ + κ̃

×
σ 2

lo/hi

(λ̃ − p
1−p κ̃)2(1/M1 + 1/M0)

(H.19)

≈ m(1 − p)
λ̃ + κ̃

. (H.20)

Therefore, similar to equation 2.28, for large M1 ≈ Mq and including net-
work connectivity P , the SNR R = �μ/σ can be obtained from

R2 ≈ Pm
Mq (1 − q )

(1 − p)(λ̃ − p
1−p κ̃)2

λ̃ + κ̃
. (H.21)

Thus, asymptotically for Mpq → ∞, the squared SNR for the BCPNN3 rule
is factor 1 − p(λ̃ + κ̃) worse than for the optimal Bayesian model.
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