
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Monocular Road Segmentation using Slow
Feature Analysis

Tobias Kühnl, Franz Kummert, Jannik Fritsch

2011

Preprint:

This is an accepted article published in IEEE Intelligent Vehicles Symposium
(IV). The final authenticated version is available online at: https://doi.org/[DOI
not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Monocular Road Segmentation using Slow Feature Analysis

Tobias Kühnl, Franz Kummert and Jannik Fritsch

Abstract— In this paper a novel approach for road detection
with a monocular camera is introduced. We propose a two
step approach, combining a patch-based segmentation with
additional boundary detection. We use Slow Feature Analysis
(SFA) which leads to improved appearance descriptors for road
and non-road parts on patch level. From the slow features a low
order feature set is formed which is used together with color
and Walsh Hadamard texture features to train a patch-based
GentleBoost classifier. This allows extracting areas from the
image that correspond to the road with a certain confidence.
Typically the border regions between road and non-road have
the highest classification error rates, because the appearance is
hard to distinguish on the patch level. Therefore we propose
a post-processing step with a specialized classifier applied to
the boundary region of the image to improve the segmentation
results. In order to evaluate the quality of road segmentation
we propose an application-based quality measurement applying
an inverse perspective mapping on the image to obtain a Birds
Eye View (BEV). The advantage of this approach is that the
important distant parts and boundaries of the road in the real
world, which are only a low fraction in the perspective image,
can be assessed in this metric measure significantly better
than on the pixel level. In addition, we estimate the driving
corridor width and boundary error, because for Advanced
Driver Assistant Systems (ADAS) metric information is needed.
For all evaluations in different road and weather conditions,
our system shows an improved performance of the two step
approach compared to the basic segmentation.

I. INTRODUCTION

In order to decrease the number of traffic accidents accom-
panied by an increase of driving comfort for future cars, the
topic of road detection is of high interest for ADAS. Due
to lack of generality, commercial ADAS are often limited
to specific scenarios. For example, Lane Keeping Assistant
Systems (LKAS) are restricted to highway situations with
certain conditions, e.g. a low curvature of the lane. However,
the robust recognition of arbitrary road in front of the ego-
vehicle will be needed for future ADAS operating in more
complex traffic situations, especially in inner-city. If there are
no explicit road boundaries (e.g. curbstones / lane makers)
detectable, e.g., because of parking cars on the side occluding
them, current LKAS are not working.

Road detection is beneficial for, e.g., path planning and all
kinds of object detection, because it creates knowledge about
where the ego-vehicle will probably move to and where other
road users, e.g. cars and pedestrians, will potentially appear.
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ADAS require high recognition rates which is especially
demanding for vision-based detection because coping with
changing visual appearance and illumination of the road
surface is very challenging.

The novel segmentation approach introduced in this paper
detects the road using a monocular camera. It is suitable
for any type of road because we do not apply an explicit
model for the road shape or its boundaries. Our offline-
trained system is split into two major parts, the basic
segmentation and additional boundary region detection. The
basic segmentation uses texture and appearance features to
represent road and non-road regions on the patch-level. We
found out that the use of Slow Feature Analysis [1] is very
efficient in obtaining class specific appearance descriptors for
the task of patch-based road classification. The benefit of the
proposed features for road detection is shown by training
a classifier and evaluating the results on real-world video
data. Typically the border regions between road and non-
road have the highest classification error rates, because on the
patch level they are hard to distinguish. Therefore we extend
our system with a post-processing step, the boundary region
detection. We train a specialized classifier in the extracted
boundary region, taking additional features (compared to
the basic segmentation) and increasing the complexity of
the classifier, which significantly improves the segmentation
results for distant road sections and the border between road
and non-road. Afterwards we fuse the results of both system
parts to obtain the final segmentation result.

We evaluate the system in two ways, on the pixel-level in
a perspective image, to allow the comparison to other ap-
proaches, and additionally on an application-oriented metric
representation based on the Birds Eye View (BEV) transfor-
mation. In contrast to a perspective image, in BEV the size of
a road section does not depend on the distance from the ego-
vehicle which allows far better evaluation. Therefore, image-
based evaluations as pixel-based accuracy or quality mea-
sures do not significantly reflect the requirements for ADAS
because the bigger part of the image is covered by nearby
regions. Especially in the metric evaluation the proposed
boundary region detection improves the quality significantly.
Additionally, we perform a metric driving corridor estimation
in order to assess the feasibility of detecting narrow road
sections with a single camera.

II. RELATED WORK

Vision-based road segmentation has been addressed in
many papers in the last decade. Therefore only some are
cited here.



A group of authors propose to use road boundary models
for representing the road. Features for these models are ex-
tracted from longitudinal road structures like lane markings
or road boundary obstacles (like curbstones or barriers) by
visual processing. This is mainly based on color and edge
appearance (see e.g. [2]) or 3D information from stereo
processing (see e.g. [3]) or Structure From Motion (see e.g.
[4]). From the extracted features the model parameters can
be tracked using different road shape models (see e.g. [5]). It
was shown that the range of these methods can be extended
by fusing visual information with digital map data [2], [6].
However, especially for inner-city the applicability of these
approaches is limited because of violated model assumptions
(intersections, parked cars occluding curbstones).

Pixel based classifications, using Conditional Random
Fields (CRF), can be used to identify multiple scene elements
in the field of view, including the road surface [7], [8].
These currently popular approaches from the computer vision
community are powerful, but the comparison of these rather
holistic methods with dedicated road segmentation methods
(e.g. [9]) shows that the concentration on the relevant road
surface results in a better classification performance. The
results from [10] show that the use of boosting for monocular
image classification achieves a high pixel-based accuracy
with a very low system complexity. This approach is similar
to the basic segmentation of our system. However, we use
different features and extend the system with an additional
boundary detection to improve the application-based metric
quality.

While our approach has to be trained, adaptive approaches
aim at a higher robustness when encountering unseen situ-
ations like, e.g., different weather and lighting conditions
[11]. This, however, requires adaptation criteria suitable for
arbitrary traffic situations which are often hard to define.
Alternatively, adaptation of the geometrical setup can be
performed [9]. They propose a parameter optimization for
a probabilistic model using a homography of stereo images.
Assuming a planar world, road regions are classified using
the offset of corresponding corner points mapped from the
stereo images into the homography.

III. SLOW FEATURE ANALYSIS OF TEMPORAL SIGNALS

Slow Feature Analysis (SFA) is a learning technique
which enables to find useful and invariant representations
by using unsupervised learning [1]. During the training the
algorithm performs an optimization in order to obtain a
static transformation from a highly varying multidimensional
temporal input signal to a slowly-varying output signal. This
concept is illustrated in Fig. 1. For vision-based tasks the
rapidly changing sensory inputs, namely the pixel values,
encode the behaviorally relevant visual information like class
membership only indirectly. In our patch-based classification
system the temporal signal corresponds to the change of pixel
values xi. The temporal change is generated by spatially
shifting a patch over image-areas, belonging to one class and
sampling the function value for each pixel. While therefore
the pixel values change, they all belong to the same class.

t0
t0

Fig. 1. Schematics of the optimization problem solved by slow feature
analysis. Timestep t0 marked in yellow, illustrating the instantaneous
transformation.

In order to easily separate road and non-road input signals
in feature space, we need a transformation that creates
output signals with low variance from arbitrary input signals
belonging to one class. This can be achieved with SFA
because it creates a class specific representation for our
type of input signals. Additionally it can be used for order
reduction, because in general a specified number of slow
features that are able to distinguish inputs from different
classes can be found [12]. Mathematically spoken we search
the quantity of functions gj(x) that is generating the slowest
varying output functions yj(t) from a multidimensional input
signal x(t) (see Eq. (1)).

yj(t) = gj (x(t)) (1)

Given Eq. (1) we can formulate an optimization problem:
Finding the transfer function gj(x) that minimizes the tem-
poral variance of the output signals ∆(yj) (see Eq. (2)).

∆(yj) =
〈
ẏ2j
〉
t

(2)

We require uncorrelated output signals, having an equal vari-
ance and zero mean, which leads to the constraints in Eq. (3)-
(5). Eq. (3) forces the output signals to be decorrelated,
Eq. (4)-(5) exclude trivial solutions.

∀i < j : 〈yi · yj〉t = 0 (3)〈
y2j
〉
t

= 1 (4)

〈yj〉t = 0 (5)

In Eq. (2)-(5) 〈f〉t :=
∫ t1
t0

1
t1−t0 f(t) dt means averaging the

function f over time and with the temporal derivative of
f being ḟ . A solution for the optimization problem can be
found in [1].

IV. SYSTEM

The system (see Fig. 2) consists of three parts: basic
segmentation (I), boundary detection (II) and fusion. Input
are RGB images, output is a confidence map that can be
thresholded to extract a binary road segmentation.

A. Basic segmentation

The processing of the basic segmentation (blue marked
part of Fig. 2) can be split in four major parts: The patch
extraction, feature computation, classification and mapping
to the image plane. The module computing the SFA-features
and the classifier have to be trained offline once, afterwards
the system can process input images with the learned pa-
rameters. Output of the basic segmentation is a confidence



Fusion

Road 

Classifier

Image

Mapping

Feature Computation:

SFA, Texture, Color

Patch Extraction

Safe Road

Extraction

I

II
Boundary

Classifier

Boundary

Extraction

Image

Mapping

1conf

conf
2

y
Class1,

y
Class 2,

xClass 1,

BR

xClass 2,

Fig. 2. System block diagram: Part I is the basic segmentation, part II
is the boundary detection. The fusion module combines the safe road from
part I and the expert decision from part II (binary).

map indicating for every pixel position whether it is likely
to belong to the road.
Training of SFA: As mentioned in Sec. III, we extract
patches and serialize the pixel values into signals needed
for SFA training. We realize this spatial image sampling by
using predefined constant paths which define how the point
of patch-extraction moves over the image plane. There are
two paths, one horizontal phor and one vertical path pver, as
illustrated in Fig. 3. The advantage of using two paths is that
the higher variability of the spatial input signal increases the
likeliness of finding a useful transformation.

Fig. 3. Path for spatial patch sequence extraction for SFA training: on the
left the horizontal and on the right the vertical path is illustrated. The paths
are partitioned into road (green) and non-road (red) sections.

Given a patch Pi = f(ci, aP ), defined by its center ci =
[ci,u , ci,v] and size aP = [aP,u , aP,v], we can sequentially
extract patches by shifting the center ci along a path phor|ver
with a constant step size sp which results in a spatial signal
xSFA(kt). For the patch size aP we used 21× 21 pixels and
a step size of sp = 10, the spatial index kt corresponds
to t from Eq. (1). A signal xSFA(kt) is a dk × dx matrix,
where dk describes the number of samples and dx = 212 · 3
the input dimension of an image patch. In order to mini-
mize the temporal variance for each class, temporal signals
corresponding to road xSFA,R(kt) and non-road xSFA,NR(kt)
are extracted, as it is illustrated in Fig. 3. With ground
truth information, given by a binary matrix (road = true),

the assignment for every patch along the path can be found
by thresholding the number of patch-pixels belonging to the
road class. Every patch containing more than 50% of true
pixels in the ground truth is interpreted as belonging to the
road. Applying this for every training image we are able to
train a model (linear SFA), defined by the transfer function
g(x(kt)) (cf. Sec. III), by presenting the system a certain
number of signals xSFA,R(kt) and xSFA,NR(kt), using the SFA-
TK Toolbox [13].

With the trained transformation, we are now able to extract
a slowly varying output signal ySFA(kt) for every input
image patch Pi. The signal ySFA(kt) has the dimension nslow
(nslow ≤ dx) which is the number of slow features. Here
we used nslow = 3 which is a huge reduction of the feature
space, compared to the input dimension dx.

In principle it should be sufficient to use the first slowest
feature to separate the slowly varying road from the rapidly
varying non-road (cf. [12]), but due to noise and additional
influences like changes in illumination and appearance (road
markings, different surface colors), the classification results
improve for multiple slow features.
Training of GentleBoost: We use boosting for patch-
classification, as it has been shown to be very successful
in feature selection and classification [10]. Here the Gen-
tleBoost classification method [14] is used, taking a 27× 1
dimensional feature vector xClass,1, containing 3 slow features
ySFA,3(kt), retinal position [u, v], a set of 16 Walsh Hadamard
texture features [15] and 6 simple color features (mean and
variance of the RGB values in a patch). The algorithm gener-
ates a sequentially weighted set of weak classifiers that build
a strong classifier in combination. In every iteration of the
procedure, according to the current distribution of weights
on the input signal, the method attempts to find an optimal
classifier. We set up the weak classifiers with decision stumps
(1 tree split) and a maximum of 100 boosting iterations to get
a classifier with low complexity. After training is finished,
the classifier generates a confidence value yClass,1 for a given
feature vector, indicating whether the corresponding patch
center position ci is likely belonging to the road class or
not.
Processing phase: In the processing phase of the system,
patches are extracted along a horizontal path over the com-
plete image with a step size of sp = 7 px. We reduced the
step size, compared to the training, in order to achieve finer
graduation in the results. Similar to the training, we compute
a feature vector xClass,1 for every patch and obtain patch-
based confidences yClass,1 with the trained road classifier.
Based on patch center position ci we map the confidences
yClass,1 onto the perspective image plane and obtain the
image-based confidence map conf1(u, v) by applying linear
interpolation. In conf1(u, v) a threshold th1 that maximizes
the average quality (cf. Sec. V) over all frames can be found.
A visual example of this basic segmentation result can be
seen in Fig. 4. On the system level conf1(u, v) is used for
safe road estimation and boundary region extraction in order
to use it for the boundary detection and the fusion process.



Fig. 4. Segmentation result in inner-city / overcast (frame 678): Reaching
a quality QI = 92.1% (th1 = 0), illustrated is detected (green), missed
road (magenta) and blue the wrongly detected road using ground-truth
information.

B. Boundary detection

As we will see in the evaluation, a high percentage of the
road can be detected with the basic segmentation (Sec. IV-
A). Especially untextured gray regions and lane-markings
have been learned to belong to the road and can be easily
classified. However, the real challenge is to recognize impor-
tant parts in the image like distant parts and regions close to
the road-boundary. These cover only a low percentage of the
overall image, therefore we propose to use a second process-
ing step that is focusing on the low confidential regions from
the basic segmentation to improve the classification results.
The task is more challenging compared to classification on
the whole image, because on the patch level the samples
for road and non-road have a similar appearance. Therefore
we increase the number of input features and the classifier
complexity for this postprocessing step.
Preprocessing: Before starting with the actual boundary
detection a preprocessing step is applied on the confidence
map conf1(u, v) (see Sec. (IV-A)), in order to extract the
boundary region BR of the image. A pixel position (u, v)T

belongs to BR if its confidence value conf1(u, v) satisfies
conf low ≤ conf1(u, v) ≤ conf high. The value conf low
is obtained during training by finding the region in the
confidence map conf1(u, v) that implies a false-positive rate
FPR we want to tolerate. Because we allow only a very low
rate of non-road pixels to be falsely classified (FPR < 1%),
we name the resulting binary segment safe road RSR. The
RSR is anyway part of the final road segment because it
is used in the binary fusion. In the same way conf high is
obtained, finding the threshold for the safe non-road region
RSN with a false-negative rate FNR < 1%. The amount of
the high confident classification area size SI,C is described
by the aggregated area of RSR and RSN divided by the
overall image area. For example, on urban roads (overcast)
the mean of SI,C is 85%. This illustrates that only a low
fraction of the perspective image is hard to classify.
Training and processing: We take the same patch parameter
setup (patch, step size) as in Sec. IV-A and skipped retraining
the SFA-module. However, we build a new feature vector
xClass,2 with 20 slow features, 256 Walsh Hadamard features
and 6 color features. For training the boundary classifier we
proceed like in Sec. IV-A. As mentioned we increase the
complexity of the classifier by taking 4 tree splits and 400
boosting iterations. Applying the image mapping (same like
in Sec. IV-A) to the classification result yClass,2, we obtain
the confidence map of the boundary detection conf2(u, v).

Fusion: With a simple binary fusion method the results from
basic segmentation and boundary detection are combined.
The intention is to combine the safe road RSR with the
expert decision of the boundary detection. The binary fusion
to obtain the confidence map conf fus(u, v) is given in Eq. 6.

conf fus(u, v) =


1, if (u, v) ⊆ RSR

−1, if (u, v) ⊆ RSN

conf2(u, v), else
(6)

A decision if a pixel (u, v) belongs to the road can be
made by applying a threshold thfus (determined during
training) on conf fus(u, v). An exemplary result of the system
performance is shown in Fig. 5.

Fig. 5. Segmentation result in inner-city / overcast (frame 678). The upper
image shows the distinct parts of the boundary region extraction: safe road
(green), safe non-road (red) and the boundary region (yellow). In the lower
image the segmentation result of the boundary detection is illustrated. The
fused result gives a quality QI = 94, 4% (thfus = 0).

V. EVALUATION

For the proposed system we use RGB images with a
resolution of 800×330 pixels from our video streams1 man-
ually annotated with 1Hz (recorded with 20 Hz) and a total
stream length of about 25.5 minutes (1531 annotated frames).
Corresponding to road category (highway, rural road, urban)
and weather condition, these streams can be separated into 7
datasets (see Tab. I). We split each dataset into training
and testing part by using blocking of 4 seconds (blocks
for test / train alternate). As ADAS need to handle varying
conditions the generalization is an important issue for our
trained system. Therefore dedicated and general training sets
are used. Dedicated means training and testing dataset of one
specific condition while for general training multiple datasets
were merged and training included different conditions. Two
general training sets are used: first on different road types
(highway, rural road and urban) under a specific weather
condition (overcast) and second on one specific road type
(urban) under multiple day weather conditions (overcast,
sunny, rain, snow).

For evaluation (see next subsections) several criteria from
related research [16] are used. The number of negative

1The used videos and annotations can be obtained by sending an e-mail
request to hri-road-traffic@honda-ri.de. Annotations include road, vehicles,
traffic signs and generic obstacles.



TABLE I
DATASET INFO

Name Weather Short # Frames

highway overcast H/O 94

rural road overcast RR/O 351

urban overcast U/O 200

urban sunny U/SU 210

urban rain U/R 260

urban snow U/SN 220

urban night U/N 196

N (non-road) and positive P (road) pixels and the false
positives FP and false negatives FN are obtained for every
single frame i. We use the accuracy A, given in Eq. 7, in
order to allow comparison of the system performance with
other approaches (cf. [9], [10]). In addition we use the quality
measure (cf. [11]), given in Eq. 8, as it is a criteria weighting
errors much harder, compared to the accuracy.

AI,M = 1−
∑n

i=1 (FP + FN)∑n
i=1 (P +N)

· 100% (7)

QI,M =

∑n
i=1 TP∑n

i=1 (TP + FN + FP )
· 100% (8)

We apply this measurement for the perspective image (in-
dex = I ) and the metric (index = M ) representation, which is
a more relevant application-oriented performance measure-
ment. The problem of the right evaluation criteria for road
detection methods, as it has been also discussed in [16],
becomes visible if we have a look at a metric representation
of the visual scene. Therefore we use inverse perspective
mapping, to obtain the so called Birds-Eye-View (BEV)
[17]. Under the presumption of a flat world (y = 0) and
known extrinsic camera parameters, we can map every pixel
at image position [u, v] in a cell with the coordinates [x, z]
in the BEV (resolution is 10cm × 10cm). Applying this to
the confidence maps of the basic segmentation and the fused
results, we can evaluate the metric accuracy AM and quality
QM of each system part and the quality gain ∆QM (used for
evaluating the performance gain of the boundary detection).

In general the results of the metric evaluation are always
lower than those of the perspective image (see Sec. V-B).
The reason can be seen by comparing Fig. 4 and Fig. 6
(left): the distant regions only cover a very low percentage
of the whole image, but a large area in the BEV, additionally
the borders have a higher impact in the BEV. This is a very
important issue for application oriented systems, because for
an ADAS warning a driver about oncoming narrow street
sections, the width of the road needs to be measured in a
distance of about 30-50m.

A. Basic segmentation evaluation

To asses the performance of the basic segmentation an
evaluation on the confident image region, described by its
size SI,C (cf. Sec. IV-B), is carried out (see Tab. II). The
confident region size SI,C can be seen as a degree, how much
the basic segmentation contributes to the final segmentation
result. Note, that for this evaluation the accuracies A#,C

Fig. 6. BEV (frame 678) for the basic segmentation result (left) and
fused result (right). Green is the detected, magenta the missed and blue the
wrongly detected road.

and qualities Q#,C are only measured on the confident part
(appending a subindex C) and not on the whole image /
metric space. In Tab. II we measure a quality QI,C of at
least 92.5%, where the confident region SI,C covers at least
75% of the image, for all datasets (dedicated and general
training).

TABLE II
BASIC SEGMENTATION

Test AI,C QI,C SI,C AM,C QM,C SM,C

[%] [%] [%] [%] [%] [%]

Dedicated training

H/O 99.52 99.07 97.84 98.62 97.74 91.78

RR/O 98.72 97.32 90.50 95.26 91.58 69.84

U/O 98.05 95.68 85.61 96.05 89.71 56.01

U/SU 98.37 96.47 88.41 97.72 94.51 62.38

U/R 97.81 94.39 77.10 94.42 71.45 49.91

U/SN 97.70 94.62 80.06 94.32 82.79 43.43

U/N 97.48 93.63 77.04 92.42 72.31 39.42

General training (overcast, different road types)

H/O 99.75 99.50 92.66 99.45 99.04 65.50

RR/O 98.81 97.42 87.65 95.24 90.13 60.42

U/O 97.42 94.76 85.47 94.44 90.63 52.19

General training (urban, different day weather conditions)

U/O 98.14 95.83 81.74 96.77 90.49 42.60

U/SU 98.52 96.52 81.94 96.00 85.59 50.60

U/R 97.01 92.64 76.04 94.13 76.64 36.30

U/SN 97.40 93.93 78.50 95.70 86.32 36.95

Performance differences on the particular datasets are
visible from the variations in the individual region size SM,C

and quality QM,C . For the urban datasets one can trace this
back to not uniformly shaped roads due to higher traffic,
parked cars and entry sections, compared to highway and
rural roads. The lower performance for rain, snow, and night
is caused by the challenging appearance and texture of the
road in these datasets. If we compare the general training
with dedicated training results, a decrease of SI,C and SM,C

becomes visible. This results in the boundary detection to
operating on a larger image area.



B. Complete system evaluation
To assess the performance gain of the system extension

with the boundary detection, we evaluate the quality gain
∆Q. This quality difference can be computed by subtracting
the quality of the basic segmentation, computed on the com-
plete image, from the combined system quality. Although
we measure only a minor increase of ∆QI on the pixel
level, this results in a significant increase of ∆QM in the
metric representation (especially on rural roads and urban
datasets). The offset is rather small for highway (0.45 %)
because the boundary detection is only applied on 2.2 % of
the perspective image (cf. Tab. II: SI,C = 97,8%), while for
all other test conditions (dedicated and general training) the
system shows a larger performance increase for the extended
system due to the larger boundary regions.

This offset is also visible in Fig. 6 (right), in the distant
sectors and the border regions the segmentation is improved.
For example, when using the system on the urban / overcast
dataset, with training on different weather conditions, the
boundary detection improves the quality with 12 %. As we
see that the system performance only slightly decreases for
general training, we infer that the system can cope with
different appearance and lighting conditions in the training
data and learns a representation that robustly separates road
and non-road in different scenarios.

TABLE III
COMPLETE SYSTEM EVALUATION

Test AI QI ∆QI AM QM ∆QM

[%] [%] [%] [%] [%] [%]

Dedicated training

H/O 98.95 98.04 0.29 96.09 93.66 0.45

RR/O 97.46 94.85 2.83 91.69 85.44 6.71

U/O 95.85 91.42 4.64 89.90 78.44 9.89

U/SU 96.10 91.85 2.22 91.13 80.73 4.18

U/R 93.34 85.44 4.99 85.81 63.99 14.51

U/SN 93.09 85.20 2.37 86.64 67.38 7.72

U/N 93.27 85.51 4.43 82.54 62.95 12.53

General training (overcast, different road types)

H/O 98.94 98.00 1.60 96.52 94.30 2.59

RR/O 97.28 94.44 3.49 90.79 83.62 7.98

U/O 94.82 89.61 3.19 88.25 76.27 7.77

General training (urban, different day weather conditions)

U/O 95.29 90.34 4.18 89.05 76.85 11.90

U/SU 95.35 90.32 3.58 89.01 76.30 9.18

U/R 91.79 82.60 2.75 80.73 56.15 7.60

U/SN 91.91 83.04 0.63 84.24 63.23 3.47

The direct comparison to related approaches is not possi-
ble, because the image datasets and the mounting positions of
the cameras are different. However, we see that the obtained
results are in a similar range of values like, e.g., those of Guo
et al. [9], with the advantage of our approach using only a
single camera.

C. Driving Corridor Estimation on Urban Roads
In order to assess the feasibility to detect narrow road

sections, the driving corridor width w(z) and the position of

H/O
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U/O

U/SU

U/R

U/SN

U/N
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U/R

U/SU

U/SN

U/N

Fig. 7. Example images of all datasets (see Tab. I). Dark green shows the
detected road from the basic segmentation, bright green is the road detected
by the boundary detection.

the right driving corridor boundary b(z) from the detected
road is estimated. Starting at 8m from the rear axis of the
ego-vehicle the corridor is sampled at discrete distances with
∆z = 2m. A basic outline is given in Fig. 8. To assess
the system performance on driving corridor estimation we



Fig. 8. Estimation of the driving corridor in BEV (frame 678) of the ground
truth polygon (left) and the extracted road region (right). Extracted width
and the right boundary are illustrated with red lines and green crosses.

took a subset of the urban / overcast dataset with 53 frames
of roughly straight road. For the comparison with ground
truth we introduce two error measurements: The standard
deviation of the error of the corridor width σw and the
standard deviation of the position error of the estimated
boundary σb. From these results, given in Fig. 9, we can see
that the performance of our system extension significantly
reduces the application-based error, especially for the width
estimation of distant road sections.
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Fig. 9. Evaluation of the driving corridor. The standard deviation of the
error of the corridor width (left) and the position of the right boundary of
the corridor (right) are plotted over distance to the ego vehicle.

VI. CONCLUSION AND FUTURE WORKS

We proposed a novel two step approach for road-area
segmentation. Tests with our challenging real world video
data have shown that our segmentation approach can cope
with arbitrary roads leading to comparable results on the
pixel-level as state-of-the-art approaches. This is achieved
with a single camera and no temporal integration. In addition
we propose the assessment in a metric representation for
automotive applications. We have shown that high accuracies
on the perspective image do not guarantee high accuracies
for application based metric measurements, like, e.g., a
driving corridor measurement. The system extension with
the boundary detection shows significant improvements on
the metric quality which is highly relevant for constructing
spatial representations [18]. The processing takes approxi-
mately 1 second per frame on a single core of a 2.7 GHz Intel
Xeon CPU (Clovertown). The system, working in Matlab,
is basically real-time capable, because it can be highly
parallelized due to the patch-based system progression. In the

future we will improve the system performance by enabling
the system to automatically adapt to different weather and
lighting conditions through selecting different classifiers.
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