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Incremental Learning for Ego Noise Estimation of a Robot

Gökhan Ince, Kazuhiro Nakadai, Tobias Rodemann, Jun-ichi Imura, Keisuke Nakamura, and Hirofumi Nakajima

Abstract— Using pre-recorded templates to estimate and
suppress the ego noise of a robot is advantageous because
this method is able to cope with the non-stationarity of this
particular type of noise. However, standard template-based
estimation requires human intervention in the offline training
sessions, storage of large amounts of data and does not adapt to
the dynamical changes in the environmental conditions. In this
paper we investigate the feasibility of an incremental template
learning system to tackle these drawbacks. Incremental learning
enables the system to acquire new templates on the fly and
update the older ones appropriately. Whilst allowing the
system to continually increase its knowledge and enhancing
its estimation performance, this learning scheme also reduces
the size of the database. We evaluate the performance of the
proposed noise estimation method in terms of its estimation
accuracy, quality of speech signals enhanced by spectral
subtraction method, and size of database. The experimental
results show that our system compared to conventional single-
channel noise estimation methods achieves better performance
in attaining signal quality and improving word correct rates.

I. INTRODUCTION

The prediction of ego noise, a type of noise generated
by the fans, hardware and motors of a robot, plays a
significant role in suppressing this noise and achieving good
performance in various applications like Automatic Speech
Recognition (ASR) [1] and Sound Source Localization
(SSL) [2] while the robot is in motion. Fundamentally, the
overall ego noise of a robot depends on the contribution of
each noise signal stemming from different motors and the
static fan noise. Therefore the problem gets even tougher,
the larger number of motors are employed for a motion,
which means that the noise is even more severe for a moving
robot with many Degrees of Freedom (DoF). Besides, in a
standard task involving robot motions, acoustic properties of
the motor noise such as the power and frequency distribution
in the spectrum, as well as the locations and number of
the active motors dynamically change at each time instance.
Sawada et al. [3] uses semi-blind signal separation to obtain
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ego noise estimates by attaching additional noise sensors,
e.g. Non-Audible Murmur (NAM) microphones inside the
robot, but it requires hardware modifications on the robot.
Conventional noise estimation techniques [4]-[6] fail in
estimating the non-stationary ego noise because they are
neither able to discriminate ego-motion noise from non-
stationary speech signals, nor fast enough to track the
rapid changes in ego noise. In contrast to stationary noise
estimation methods, template estimation is well-suited to
capture the dynamic nature of the motion data represented
by a sequence of observations. Based on these observations,
it is possible to associate either a motion command [7]
or the discrete time series data representing the angular
state of motors [8],[9] with another discrete time series data
representing the ego noise spectra and predict an arbitrary
sequence of associated data. The so-called Template-based
Estimation (TE), provides a framework for a more effective
ego noise estimation that relies on templates representing the
instantaneous noise.

For example, Nishimura et al. [7] estimated the ego
noise using only motion commands as representative labels
for the corresponding ego noise spectrum. A query in the
repertoire of labeled motion commands was used to select
the appropriate ego noise template from a database consisting
of templates time-aligned and averaged manually. Ito et
al. [8] developed a new approach of frame-by-frame based
prediction with an Artificial Neural Network (ANN). The
trained network had to predict the noise spectrum by using
a discrete time series data of angular velocities of the joints.
However, they concentrated on a small robot with limited
number of DoF. For a huge dataset of motion repertoire,
ANN will have a slow training speed and online adaptation is
difficult to achieve. Instead, Ince et al. [9] proposed the usage
of a template database due to its efficiency and enhanced
the accuracy of the templates further by incorporating more
information related to the joints, such as angular positions,
velocities and accelerations. The strengths of all TE methods
presented so far, unlike the conventional stationary noise
estimators are that they are not dependent on Signal-To-
Noise Ratio (SNR), not prone to Voice Activity Detection
(VAD) errors and adaptation latency to the actual noise is
theoretically zero.

The typical problem tightly coupled to offline training for
TE is that they are not well suited to real-time, real-world
applications due to insufficiently accurate data in ego noise
templates of unknown motions (i.e., missing templates) or the
differences in environmental conditions from the conditions
in the training session. Creating databases manually is



also a tedious work. Furthermore, in case of long training
sessions, the data can grow rapidly and expand enormously
unless there is an explicit template discarding or update
algorithm. To sum up, there are two major drawbacks of
template estimation methods: 1) constantly growing database
of templates, and 2) incapacity of coping with changing
environmental noise in real world.

To our knowledge this paper is the first attempt to create
an autonomous and adaptive ego noise estimation technique
preventing the expansion of the size of the template database.
In this paper, we design an incremental learning mechanism
for learning/updating/discarding ego noise templates, which
also allows us to tackle the curse of dimensionality problem
caused by the large number of DoF of a robot. Whereas 1) is
the primary concern of this paper, 2) can be solved with our
proposed method only suboptimally. Therefore, to enhance
our system against 2), we incorporate an extended noise
estimation framework as proposed in [10], which integrates
TE with a Histogram-based Recursive Level Estimation
(HRLE)-based stationary noise estimator. We examine the
capabilities and performances of HRLE [6], TE [9] and
the unified noise estimator [10] with a special focus on
the influence of the incremental learning. Our main goals
will be (1) to improve the results obtained with performance
criteria such as Normalized Noise Estimation Error (NNEE),
SNR and Log-Spectral Distortion (LSD), (2) to increase the
robustness of other speech processing applications to noise
(e.g. ASR) and (3) to reduce the size of the database.

II. EGO NOISE REDUCTION SYSTEM

In this section we first outline the basic architecture of the
ego noise reduction system, and then focus on the estimation
block based on template estimation. Fig. 1 shows the general
configuration for single-channel noise reduction. Suppose an
input signal y(t) of time sample t is given such as

y(t) = x(t)+n(t), (1)

where x(t) is a target signal and n(t) is the noise signal
with Ego Noise (EN) and BackGround Noise (BGN). The
complex input spectrum Y (k, l) of frequency bin k and time
frame l is obtained from

Y (k, l) =
t=W−1

∑
t=0

y(t + lM)w(t)exp{ j(2π/W )tk}, (2)

where W is the window length, M is the shift length and
w(t) is the window function. The gain calculation process
calculates the optimum gain G(k, l) that yields the final
estimated target spectrum as

X̂(k, l) = G(k, l)Y (k, l). (3)

The equation for computing G(k, l) is derived from the
reduction method, e.g., for spectral subtraction (SS) [11]:

GSS(k, l) =

√
max

[
|Y (k, l)|2−λtot(k, l)

|Y (k, l)|2
,β
]
, (4)

where λtot(k, l) shows the estimated spectrum of both
stationary and non-stationary noise, max shows the maximum
value calculation and β is the flooring parameter.
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Fig. 1. General configuration for single-channel noise reduction

A. Noise Estimation Block

Template-based Estimation [9] utilizes encoders attached
to the motors of the robot, which measure the angular
position of each joint. During the motion of the
robot, actual position (θ(l)) information regarding each
motor is acquired regularly. Additionally, using the
difference between consecutive sensor outputs, velocities
(θ̇(l)) and accelerations (θ̈(l)) are calculated. Considering
that J joints are active, 3J attributes are generated.
Each feature is normalized to [0 1] so that all
features have the same contribution on the prediction.
The resulting feature vector has the form of F(l) =
[θ1(l), θ̇1(l), θ̈1(l),θ2(l), θ̇2(l), θ̈2(l), . . . ,θJ(l), θ̇J(l), θ̈J(l)].

Conventional TE methods [7]-[9] lack the ability of
filtering the BGN and therefore cannot perform adaptation to
overall noise (EN+BGN) in an environment with changing
noise conditions. They can only reproduce the templates
that exist in the database, hence they can only reflect the
noise conditions in the training session. Since EN is mixed
with BGN in a realistic situation, we assume the overall
noise (EN+BGN) consists of both stationary Ns(k, l) and non-
stationary Nn(k, l) portions such as

N(k, l) = Ns(k, l)+Nn(k, l). (5)

We propose to use stationary and non-stationary noise
estimation methods in series as in Fig. 2 in the template
generation (database creation) phase so that one feature
vector is assigned only to the non-stationary motor noise
spectral vector |Nn(l)|2 and used to label the instantaneous
noise fragment [10]. We call this data block T (l) = [F(l) :
|Nn(l)|2] a parameterized template. In the noise estimation
phase, however, a unified framework for noise estimation
consisting of two parallel and independent processes as in
Fig. 1 is used. While recursive averaging (i.e., HRLE) takes
care of Ns(k, l), the background and stationary portion of
ego noise (i.e. fan/hardware noise), TE tackles the remaining
non-stationary noise portion of motor noise Nn(k, l). The
power input spectrum calculated as |Y (k, l)|2 is used to
estimate power spectrum of stationary portion of the noise,
λSNE(k, l) [6]. The total noise power, λtot(k, l) = λSNE(k, l)+
λT E(k, l), is eventually used to compute the gains as in Eq. 4
and extract the refined signal as in Eq. 3.

Template
Generation

N(k, l) Stationary
noise 
reduction

Nn(k, l)
^

F(l)

T(l)
Template
Database

Power
extraction

|Nn(k, l)|
2^

Fig. 2. Template database generation in the offline training session
III. INCREMENTAL TEMPLATE LEARNING

In Sec. III-A we explain the basic classification model
incorporated into the core of template learning and estimation



algorithm. Sec. III-B proposes methods to enhance the
classification model and finally the template learning
algorithm is discussed in Sec. III-C.

A. Classification Model

Suppose we have a robot with 30 DoF. We gather
templates in every frame (i.e. 10 milliseconds), which
contain feature vectors F(l) consisting of 90 features and
spectral vectors |N̂n(l)|2 consisting of 128 spectrotemporal
values, all represented in floating point values. It is easy to
imagine that in several minutes huge streams of continuous
data will be stored that must be processed, learned and
updated in an online fashion. For high dimensional learning
tasks, the performance of the machine learning algorithm
plays a crucial role. One alternative is using ANNs with
sigmoidal activation functions, which learn slowly in high
dimensional spaces and are vulnerable to unlearning of
relevant knowledge when trained on new data points [12].
Instead, we prefer to use a non-parametric, instance-based
classification technique like the Nearest Neighbor (NN)
algorithm because it is easy to implement, does not need any
a priori knowledge about the data and the output of the NN
algorithm can be interpreted as an a posteriori probability of
the input pattern being the estimated pattern [13]. The last
point is especially important because it provides us a measure
of performance allowing to update existing templates in our
incremental learning algorithm based on the relative template
confidence levels.

For a given database FFF of template feature vector in
3J-dimensional feature space and a query feature vector
Q(l), we find the closest feature vector in FFF to Q(l). The
distance is measured by the Euclidean distance between two
feature vectors Q(l) = (Q1(l),Q2(l), ...,Q3J(l)) and F(l) =
(F1(l),F2(l), ...,F3J(l)), where F(l) is an element FFF .

d(Q(l),F(l)) = ||Q(l)−F(l)||=

√√√√ 3J

∑
j=1

(Q j(l)−Fj(l))2 (6)

The spectral vector |Nn(l)|2 stored in the template T (l) with
F(l) having the shortest distance to Q(l) is selected as the
ego noise estimate λ (l).

B. Extensions of the Basic Classification Model

In order to improve the robustness of template prediction,
we made the following modifications on the classification
method.

1) Inverse distance weighted average (IDWA): Instead
of using 1-NN, we assign confidence-based weights ωk to
K nearest templates F1(l) . . .FK(l) by giving the highest
weight to the closest neighbor, and compute the final spectral
vector λ̄T E(l) from their Inverse Distance Weighted Average
(IDWA) of all nearest candidates such as in Eq. 7.

λ̄T E(l) =
K

∑
n=1


1

d (Q(l),Fn(l))

∑K
m=1

1
d (Q(l),Fm(l))


︸ ︷︷ ︸

ωn

·λ n
T E(l) (7)

IDWA assumes that templates closer to the query point
are more representative than templates further away. The
denominator term is used for normalization of the ωk such
that ∑K

k=1 ωk = 1.
2) K-dimensional trees: To increase the speed of K-NN,

we suggest to utilize tree structures, such as K-dimensional
trees (KD-trees) [14]. So, the search is conducted more
efficiently by using the tree properties that quickly eliminate
large portions of the search space. Because the computation
cost is also related to the code implementation quality, the
reader is advised to address to reliable machine learning
software1, which was able to provide real-time computation
for our system implementation.

C. Learning Algorithm

Incremental learning is essential for adaptive generation
of the template database because it makes use of previously
learned knowledge about the templates to speed up the
learning. It makes the noise estimation module more robust
because errors in the training set can be corrected during
operation and it enables the system to adapt to partially-
known or dynamic environments. Therefore, it is expected
that the performance will gradually improve in time.

In the proposed system, the task of the learning system
is to autonomously extract and learn templates. The system
checks whether the acquired audio signal is mixed with a
speech signal based on the decision of VAD and discards
it if it is not only ego noise. This continuous VAD loop
determines the onset and offset times of the template update
interval. During this interval, the system also decides if each
observed template is a known template or a new template
to be learned. The observed template is searched in the
trained database and its similarity with other templates in
the database is computed using the same distance metric as
in Eq.6. Based on the comparison of dmin(l), the smallest
distance d(Q(l),F(l)) in FFF , with a given fixed distance
threshold, T , the current template is either used to update
the old template or it is inserted into the database as a
new template. When the similarity is low, the template is
treated as missing template and inserted into FFF ; otherwise
the adaptive update mechanism is active, which computes the
weighted sum of the old and current template by laying the
focus more on recently-acquired templates and less on earlier
observations. The contribution of past templates are reduced
by introducing a forgetting factor η with 0≤ η ≤ 1, which
helps to provide a moderate balance between adaptivity
(learning quality) and stability (robustness against errors).
The former is achieved by using lower η , whereas higher η
causes stability. The pseudo-code of the incremental learning
algorithm is shown below.

One key aspect of this incremental learning algorithm is
the rebuilding of the KD-tree due to practical concerns.
Insertion-based incremental construction of a KD-tree for
a long time is problematic, because the tree becomes
unbalanced eventually. The re-balancing task is tedious and

1e.g., http://www.cs.umd.edu/˜mount/ANN/



repeating it at each insertion is also costly. Therefore, we re-
build the data structure in constant time intervals determined
by τ . Until the next rebuilding phase, new templates to be
inserted are stored in a temporary buffer.

while (state(VAD)=NON-SPEECH) do
if dmin(Q(l),F(l))≥ T then
[Fnew : |Nnew

n |2]← [F(l) : |Nn(l)|2]
else
[Fold : |Nupd

n |2]← [Fold : η |Nold
n |2 +(1−η)|Nn(l)|2]

end if
if (timer=τ) then

Rebuild the tree and reset the timer
end if

end while

IV. EVALUATION

In this section, we assess the estimation and suppression
capabilities of (1) conventional TE [9] method whose
templates represent both stationary and non-stationary noise,
and (2) proposed method in Sec. II-A whose templates
represent only motor noise by applying them to the
noise signals consisting of ego noise and environmental
background noise. Since the current implementation does not
have a noise-robust VAD, we intentionally by-pass (exclude)
it in the training session by recording only ego noise. One
set of noise data (200 seconds long) for training and three
sets of noise data (100 seconds long) for testing are collected
during a continuous head motion of 2 Degree of Freedoms
(DoF) and arm motion of 4 DoF (see Fig. 3), which generates
18 features. The recording environment is a room with
the dimensions of 4.0 m×7.0 m×3.0 m with a reverberation
time (RT20) of 0.2 sec. The performance of all methods are
compared under 4 different SNR conditions for the same
signal segments as in Fig. 4. Condition (1)-(2): Noise energy
is fixed, speech signals are amplified to yield SNR(1) = 3dB
and SNR(2) =−3dB; Condition (3)-(4): Gaussian white noise
is added to (2) to represent changing conditions of static
BGN (e.g. entering into a new room or turning on the air
conditioner) with SNR(3) = −3.1dB and SNR(4) = −3.2dB.
The parameters of the HRLE are selected in a way that they
are optimal for stationary noise estimation [6]. The optimal
value of η = 0.9 for incremental learning, which pursues
stability rather than adaptivity is found empirically. For a
database size such as in our experiments, real-time conditions
are properly provided with τ = 5 frames. A minor spectral
floor β = 0.1 is used in the SS stage.

Microphone

Motor

Hardware noise

Motor (ego-mo�on) 

noise

0.2 m

0.25 m

0.2 m 0.5 m

Robot height: 1.2 m

Fig. 3. Experimental setup

A. Evaluation Criteria

1) Normalized Noise Estimation Error (NNEE): NNEE
computes the error of the noise estimate normalized by the
energy of the actual noise using the following formula:

ε̄ =
1
L ∑

l=1
10 · log10

(
∑M

k=0 ||N(k, l)|2−|N̂(k, l)|2|)
∑M

k=0 ||N(k, l)|2|

)
, (8)

where L is the number of frames.
2) Segmental SNR: The average of the SNR values is

calculated for segments of audio data such as:

SNR =
1
L

L

∑
l=1

10 · log10

(
∑t x2(t)

∑t (x(t)− x̂(t))2

)
. (9)

3) Log-Spectral Distortion [15]: This evaluation measure
computes the reconstruction error of the clean speech by
comparing the enhanced speech signal X̂(k, l) with the
original speech X(k, l) in the log domain as follows:

LSD =
1
L

L

∑
l=1

(
1
K

K

∑
k=1

[
L X(k, l)−L X̂(k, l)

]2)1/2

, (10)

where L X(k, l) , max{20log10|X(k, l)|,δ} is the log
spectrum confined to about 50 dB dynamic range, hence
δ = max

k,l
{20log10|X(k, l)|}−50.

4) Automatic Speech Recognition: The noise signals are
mixed with clean speech utterances used in a typical human-
robot interaction dialog and recorded by us. This Japanese
word dataset includes 236 words for 4 female and 4 male
speakers. We used a clean acoustic model trained with
Japanese Newspaper Article Sentences (JNAS) corpus, 60-
hour of speech data spoken by 306 male and female speakers,
hence the speech recognition is a word and speaker-open test.
We used 13 static Mel-Scale Log Spectrum (MSLS) features,
13 delta MSLS features and 1 delta power feature. Speech
recognition results are given as average Word Correct Rates
(WCR) of instances from the noisy test set.

B. Results

1) Learning performance: To assess the learning
capability of our system with respect to threshold T , we
evaluated the estimation error (NNEE) in incremental steps,
i.e. after repeating the same motion N times (1 ≤ N ≤ 20).
Because we used bounded ([0 1]) features, the values of
T are also bounded to [0

√
3J]. Fig. 5 demonstrates the

tendency of reduced error (ε) with respect to the increased
repetitions. The settings denoted as “T → 0” indicates that
there is a continuous insertion of every incoming template
into the database like in conventional template estimation
methods [8], [9] and “T → ∞” indicates that there is only
one single (mean) template updated during all repetitions.
They both yield the baseline performance. Because HRLE
is a stationary noise estimator, it cannot deal with the non-
stationary ego noise and shows also a poor performance. The
error decreases when T is sufficiently low. We also observe
that there is a negative correlation between the number of
templates stored and the value of T (see Fig. 6). Therefore,
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the system designer must consider the trade-off between
the size of the template database (i.e., data explosion) and
distance threshold. Since “T = 0.0001” among others yielded
the smallest error in our experiments, it is selected as the
optimal T for the incremental learning and we continue to
evaluate the final estimation and suppression results based
on the templates obtained with this value after 20 repetitions.
Because the number of templates almost saturate after several
repetitions, the tree reordering will not pose a problem.

TABLE I
EGO NOISE ESTIMATION PERFORMANCE FOR ALL METHODS

SNR ε̄ for given HRLE TE TE TE
[dB] interval T → 0 T → ∞ T = 0.0001
(1) Ns -5.81 -5.08 -1.74 -6.77
3.0 Ns +Nn -4.61 -4.89 -4.44 -6.59

N +Speech -4.92 -5.06 -4.78 -6.84
(2) Ns -5.81 -5.08 -1.74 -6.77
-3.0 Ns +Nn -4.61 -4.89 -4.44 -6.59

N +Speech -4.84 -5.06 -4.78 -6.84
(3) Ns -7.96 -4.95 -4.00 -6.69
-3.1 Ns +Nn -6.30 -4.95 -5.28 -6.71

N +Speech -6.71 -5.11 -5.57 -6.99
(4) Ns -8.87 -4.52 -5.04 -5.96
-3.2 Ns +Nn -7.1 -4.76 -5.56 -6.41

N +Speech -7.42 -4.92 -5.83 -6.69
2) Performance of conventional TE with incremental

learning: It is also important to investigate the performance
of these methods in the presence of speech such as depicted
in Fig. 4. Final estimates after the 20th iteration can be seen
in Fig. 7 and Fig. 8 representing TE with T → 0 and TE with
T = 0.0001, respectively. The smoothness of the spectrum
in Fig. 8 reflects the more accurate estimation results as
given in Tab. I. In conditions (1) and (2), TE (T = 0.0001)
performed better than other methods for any given time
interval, surprisingly even in the case of stationary noise,
where HRLE is more suitable to apply. The reason is that
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the BGN conditions in (1) and (2) are the same with the
database. However, unfamiliar BGN conditions such as in (3)
and (4) degrade the accuracy of the TE because the portion
of the stationary noise, compared to the ego noise, becomes
more dominant in the overall noise energy. We can clearly
see the tendency of HRLE outperforming TE (T = 0.0001)
gradually in the conditions of slightly increased BGN power.
This justifies the usage of the concatenated processing of
HRLE and TE (referred as HRLE+TE) as proposed in Fig. 1
to compensate the deteriorating performance of TE. An
alternative way to deal with the changing acoustic conditions
is letting the templates adapt to those conditions entirely
using the incremental update mechanism, but it may take
a long time and the improvements are in rather small steps
during the adaptation process with a high η , which makes
this option less feasible.

We also analyze the distribution of the estimation error
(NNEE) over the frequency bins (see Fig. 9). One important
advantage of TE is that the error is almost evenly distributed
to all frequencies. In contrast, the spectral distortion of
the noise estimate provided by semi-blind source separation
based on internal NAM microphones [3] is rather large at
low frequencies (see also Fig. 5 in [3]), which are known to
heavily contain acoustic features of speech.

3) Performance of proposed noise estimation framework
with incremental learning: Finally, we evaluate the noise
reduction performance by using the system depicted in Fig. 1.
As Tab. II demonstrates, TE-based SS with incremental
learning achieves the smallest LSD and largest WCRs among
all methods for the trained conditions (1) and (2). Besides,
HRLE+TE with incremental learning attains the second-
best results to TE, which can allow us to make a small
compromise between the best performance and adaptivity of
the noise estimation system. Conditions (3) and (4) show
the results for the simulation of changing ambient noise.
We observe that the higher the portion of the background



TABLE II
EGO NOISE REDUCTION PERFORMANCE FOR ALL METHODS

Estimation SNR(1) = 3dB SNR(2) =−3dB SNR(3) =−3.1dB SNR(4) =−3.2dB
Method SNR LSD WCR SNR LSD WCR SNR LSD WCR SNR LSD WCR
NP 3.00 9.7 78 -3.0 11.2 28.3 -3.1 12.6 25.5 -3.2 14 22.8
HRLE 3.96 8.94 84.1 -1.2 10.2 47.2 -0.75 10.0 42.1 -0.76 9.93 38.2
Standard TE (T → 0) 5.49 8.51 87.4 2.05 8.73 58.7 1.97 9.75 51.7 1.77 11.1 44.5
Standard TE (T → ∞) 4.92 8.20 85.5 2.18 8.31 64.1 2.42 8.90 59.8 1.90 10.09 52.6
Standard TE (T = 0.0001) 5.24 8.03 89.3 2.43 8.18 69.9 1.97 9.02 64.1 2.23 10.38 55.8
HRLE+TE (T → 0) 6.02 8.66 86.2 2.74 8.88 54.8 2.63 9.03 52.0 2.77 9.24 46.5
HRLE+TE (T → ∞) 5.01 8.36 84.6 2.47 8.45 62.7 2.59 8.69 59.6 2.02 9.38 55.2
HRLE+TE (T = 0.0001) 5.46 8.20 88.8 2.62 8.31 68.6 2.61 8.66 64.6 2.45 9.23 59.9
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Fig. 8. Estimated noise spectrogram by TE (T = 0.0001)
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Fig. 9. Smoothed NNEE distribution over frequency bins

noise, the more effective HRLE method gets. Under these
conditions, HRLE contributes more to cancelling the overall
noise by eliminating the background noise. Hence in its
combination with TE, TE deals only with the non-stationary
part of the overall noise regarding the ego-motion noise. This
kind of configuration increases the robustness of the noise
suppression system and makes it independent of any change
in the environmental noise condition. In terms of SNR,
HRLE+TE with incremental learning is only outperformed
by HRLE+TE with T → 0.

V. CONCLUSION

In this paper we proposed an automated learning
mechanism for an adaptive ego noise estimation framework
consisting of a stationary noise estimation (HRLE) and non-
stationary noise estimation (TE) in series. We assessed the
learning, estimation and suppression performance of this
template-based single-channel noise reduction method in
the presence of background noise and ego-motion noise.
The proposed method exhibits high robustness even against
changing conditions of the environment. We showed that
the incremental learning contributes to precise estimation of
overall noise and a high ASR accuracy under various SNR
conditions. Future plans include a performance evaluation
in real world for a dancing and beat tracking robot.

Furthermore, as the number of observed templates becomes
huge, the robot must have an effective way of storing the
acquired database for easier retrieval and organization. In
this case, a more advanced database storage technology than
KD-trees might be needed. A second direction in our future
work focuses on the integration of VAD to make our method
fully online. To resolve problems related to low SNR, we
plan to apply robust audiovisual VAD mechanisms.

REFERENCES

[1] G. Ince, K. Nakadai, T. Rodemann, Y. Hasegawa, H. Tsujino, and
J. Imura, ”A Hybrid Framework for Ego Noise Cancellation of a
Robot”, Proc. of the IEEE/RSJ International Conference on Robotics
and Automation (ICRA), pp.3623-3628, 2010.

[2] G. Ince, K. Nakamura, F. Asano, H. Nakajima and K. Nakadai,
”Assessment of General Applicability of Ego Noise Estimation -
Application to Automatic Speech Recognition and Sound Source
Localization-”, to appear in Proc. of the IEEE/RSJ International
Conference on Robotics and Automation (ICRA), 2011.

[3] H. Sawada, J. Even, H. Saruwatari, K. Shikano, T. Takatani,
”Improvement of Speech Recognition Performance for Spoken-Oriented
Robot Dialog System Using End-fire Array”, Proc. of the IEEE/RSJ
International Conference on Robots and Intelligent Systems (IROS),
pp.970-975, 2010.

[4] R. Martin, ”Spectral Subtraction Based on Minimum Statistics”, Proc.
Eur. Signal Processing, 1182-1185, 1994.

[5] I. Cohen and B. Berdugo, ”Speech enhancement for non-stationary
noise environments”, Signal Processing, vol 81, pp.2403-2481, 2001.

[6] H. Nakajima, G. Ince, K. Nakadai and Y. Hasegawa, ”An Easily-
configurable Robot Audition System using Histogram-based Recursive
Level Estimation”, Proc. of the IEEE/RSJ International Conference on
Robots and Intelligent Systems (IROS), pp.958-963, 2010.

[7] Y. Nishimura, M. Nakano, K. Nakadai, H. Tsujino and M. Ishizuka,
”Speech Recognition for a Robot under its Motor Noises by Selective
Application of Missing Feature Theory and MLLR”, ISCA Tutorial and
Research Workshop on Statistical And Perceptual Audition, 2006.

[8] A. Ito, T. Kanayama, M. Suzuki, S. Makino, ”Internal Noise
Suppression for Speech Recognition by Small Robots”, Interspeech
2005, pp.2685-2688, 2005.

[9] G. Ince, K. Nakadai, T. Rodemann, Y. Hasegawa, H. Tsujino,
and J. Imura ”Ego Noise Suppression of a Robot Using Template
Subtraction”, Proc. of the IEEE/RSJ International Conference on Robots
and Intelligent Systems (IROS), pp.199-204, 2009.

[10] G. Ince, H. Nakajima, K. Nakamura, T. Rodemann, K. Nakadai and
J. Imura ”Assesment of Single-channel Noise Estimation Methods for
Ego Noise”, to appear in Proc. of IEEE/RSJ International Conference
on Robots and Intelligent Systems (IROS), 2011.

[11] J. Deller, Discrete-Time Processing of Speech Signals, IEEE Press,
2000.

[12] S. Schaal and C. G. Atkeson, ”Constructive incremental learning from
only local information”, Neural Computation, vol. 10, 2047-2084, 1998.

[13] R. Duda and P. Hart Pattern Classification and Scene Analysis, Wiley,
New York, 1979.

[14] J. L. Bentley, ”K-d trees for semidynamic point sets”, Proc. of ACM
Symposium on Computational Geometry, pp.187-197, 1990.

[15] J. Benesty, M. M. Sondhi, Y. Huang, Speech Processing, Springer-
Verlag, 2008.


