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Abstract—Evolutionary design optimization for improving the 
performance of real world objects, like e.g. car shapes in the 
context of aerodynamic efficiency, usually depends on a well-
balanced combination of representation, optimizer and design 
evaluation method. Shape representation requires a fair trade-off 
between minimum number of design parameters and design 
flexibility which likewise guarantees a good optimization 
convergence while allowing manifold design variations. Recently, 
shape morphing methods have gained increased attention 
because of their capability to represent complex shapes with a 
reasonable number of parameters, especially powerful if coupled 
with numerical simulations for measuring design performance. 
Free-form deformation, as prominent shape morphing 
representative, relies on an initial grid of control points, the 
control volume, which allows the modification of the embedded 
shape. The set-up of the control volume is a crucial process which 
in practice is done manually based on the experience of the 
human user. Here, a method for the automated construction of 
control volumes is suggested based on a proposed measure ECV 
which relies on the concept of evolvability as a potential capacity 
of representations to produce successful designs in a reasonable 
time. It is shown for target shape matching experiments that 
optimizations based on ECV-tuned control volumes provide a 
significantly better performance in design optimization.  

Keywords-evolvability, robustness, free-form deformation, 
control volume, evolutionary design optimization 

I.  INTRODUCTION 
Shape design optimization addresses, generally spoken, the 

process of improving the performance of a physical object by 
the modification of a geometric entity. Hence, a successful 
computational design optimization is closely coupled to the 
efficient interplay of three major ingredients: (i) shape 
representation, (ii) optimization algorithm and (iii) evaluation 
method for measuring the design performance. With respect to 
the representation the number and distribution of descriptive 
shape parameters has to be chosen carefully since both effect 
strongly design flexibility as well as the convergence time of 
the optimization algorithm. Typically, a larger number of shape 
parameters increases possible geometric variations but at the 
same time it also increases the convergence time of the 
optimization algorithm due to the larger search space. Recently, 
shape deformation algorithms have been applied to allow fully 
automated optimizations of complex shapes [1], especially if 

combined with numerical simulations for the performance 
evaluation of design proposals [2, 3, 4]. In contrast to 
traditional representations, like e.g. NURBS, deformation 
algorithms do not represent the actual shape but changes to a 
baseline shape. These changes are realized by a modification of 
a lattice of control points, the so-called control volume, in 
which the baseline shape is embedded. By varying the 
positions of single or groups of control points the shape 
deformations are realized. In evolutionary design optimization 
these variations are the encodings referred to as genotype 
whereas the modified shape which is realized by the 
deformations is referred to as phenotype. 

The set-up of the control volume is usually a manual 
process and depends strongly on the experience of the human 
user. Nevertheless, since the initial control volume layout, or in 
short the control volume, influences the design variation 
possibilities, the position of each control point has to be chosen 
carefully. In the present paper, a method is proposed to support 
an automated control volume set-up process. Based on this 
method an initial control volume for a free-form deformation 
(FFD) representation is generated which provides a promising 
starting point for an efficient optimization. As a prerequisite for 
this method a measure needs to be defined which quantifies the 
quality of different control volumes. In the proposed method, 
this measure is based on the concept of evolvability. Here, the 
term evolvability refers to the characteristic of a system to 
provide a fair relationship between a many-to-one genotype-
phenotype mapping and phenotype variability. Based on the 
evolvability criteria FFD control volumes are suggested which 
are used as starting points for evolutionary design 
optimizations.  

The paper is organized as follows. In section II, FFD as 
prominent state-of-the-art deformation algorithm is introduced 
as representation in the area of design optimization. The 
derivation of the evolvability measure which is utilized for the 
quantification of FFD control volumes is explained in detail in 
section III followed by the discussion of experimental results in 
section IV. Section V summarizes the paper and provides 
concluding remarks. 

II. FREE FORM DEFORMATION IN DESIGN OPTIMIZATION 
The choice of an adequate representation plays a 

rudimentary role in any kind of optimization since it strongly 



influences the design variability as well as convergence 
behavior of the optimization algorithm. In the context of a fully 
automated design optimization, FFD techniques have proven 
their efficiency since they are capable to handle shapes of 
arbitrary complexity. They are especially attractive for the 
optimization of designs which contain structural 
inconsistencies like e.g. holes or sharp edges and provide 
additional advantages as the number of optimization 
parameters is, generally spoken, arbitrary, i.e. user dependent. 
Especially if an integration of numerical methods for the 
quantification of the design performance is required, like e.g. 
Computational Fluid Dynamics (CFD) simulation for 
aerodynamic problems, FFD unfolds to a very powerful 
representation [2, 3, 4].    

FFD has been introduced in the late 1980’s in the field of 
computer graphics [5, 6] and is based on spline mathematics. 
The basic idea behind FFD is depicted in Fig. 1. The sphere 
represents the object which is the target of the optimization, 
here given in a triangulated mesh format. It is embedded in a 
control volume which is defined by a lattice of control points 
(CP) as well as knot vectors for each spatial dimension. Based 
on the given control volume the x, y, z-coordinates of the 
object, i.e. the edges of each triangle, are mapped to the 
coordinates in the spline parameter space. If the object is a 
surface point cloud of the design or a mesh which originates 
from an aerodynamic computer simulation, each grid point 
within the control volume has to be converted into spline 
parameter space to allow the deformations. After this process 
of ‘freezing’, the object can be modified by moving one control 
point or several control points to new positions. These new 
control point positions are taken as inputs for the underlying 
spline equations and the updated geometry is calculated.  

   
Figure 1.  Free-form deformation (FFD), taken from [4]. 

In case of problems that require finite element or finite 
volume methods for the numerical analysis in the design 
evaluation step of an optimization like e.g. for computational 
fluid dynamics (CFD) or finite element analysis (FEA) 
problems, FFD has another strong advantage [1, 2, 4]. The 
fidelity of CFD/FEA simulations depends to a large degree on 
the quality of the mesh or grid that is used for the numerical 
simulation. For complex shapes and structures, mesh 
generation is a very time consuming process (several days), 
which more often than not requires manual fine-tuning or 
resolution of meshing problems. In particular, in the context of 
population based search methods like evolutionary algorithms, 
manual mesh generation is not feasible. In the FFD framework, 
the mesh is deformed just like the design is deformed. 

Therefore, the mathematical deformation procedure is applied 
to the design and to the mesh simultaneously. This has the huge 
advantage that mesh generation just has to be done once at the 
beginning of the optimization for the baseline design. Since 
everything within the control volume is deformed, a grid from 
CFD/FEA that is attached to the shape is also adapted. Hence, 
the deformation affects not only the shape of the design but 
also the grid points of the computational mesh, which is needed 
for the CFD/FEA evaluations of the proposed designs. The new 
shape and the corresponding CFD/FEA mesh are generated at 
the same time without the need for an automated or manual re-
meshing procedure. This feature significantly reduces the 
computational costs and allows a high degree of automation. 
Thus, by applying FFD the grid point coordinates are changed 
but the grid structure is kept. In practice, the complexity of 
such problems requires a thorough set-up of meaningful control 
volumes to take problem dimension, design sensitivities as well 
as design or numerical mesh constraints into account for a 
successful optimization. 

With respect to a typical evolutionary design optimization 
two steps have to be considered which are important for the 
method proposed in this paper. In the first step, the 
preprocessing step, a meaningful control volume has to be 
generated according to the given shape. In the second step, the 
actual optimization loop, the shape is optimized based on the 
control volume which has been generated in the preprocessing 
step. For visualization reasons, in the present paper the visual 
shape of an object (and not the CFD/FEA mesh) is the focus. 
Nevertheless, for numerical grids the idea is straightforwardly 
applicable. As already mentioned above, the parameter set and 
consequently the difficulty of the optimization problem can be 
tuned by the number and selection of control points or control 
point groups. When defining the parameter set of an FFD 
system, an optimal trade-off between search space dimension 
and design flexibility, i.e. freedom of variation, has to be 
found. However, compared to spline based representations, in 
the FFD framework the complexity of design variations and not 
of the initial design is the limiting factor. Therefore, the choice 
of the number and the positions of initial control points is a 
crucial question for the design optimization. Usually, it is 
purely based on the experience of the human user. For the 
automated way of calculating the initial distribution of control 
points in the preprocessing step, different control volume 
layouts have to be compared using a measure for the 
quantification of the quality of single control volumes. This 
measure relies on the concept of evolvability and is explained 
in more detail in section III.  

III. ON THE EVOLVABILITY OF FFD CONTROL VOLUMES 
In this section, a measure is introduced which quantifies the 

quality of a single FFD control volume. Based on this measure 
it is afterwards possible to apply an optimization algorithm 
which allows an automated calculation of initial control 
volumes as preferred starting points for the following design 
optimization. The proposed measure is motivated by the 
concept of robustness and evolvability of biological systems 
which is believed to have played a central role in shaping 
biological diversity and complexity [7, 8]. In this paper, 
evolvability is considered in the sense of the capacity of a 



system to produce favorable phenotypic variations of a design 
within a moderate number of generations while avoiding non-
feasible mutations. A more detailed derivation of an algorithm 
for measuring the quality of an FFD control volume is based on 
the distinction between the genotype level, i.e. the encoding, 
representation or sequence, and the phenotype level, i.e. the 
system structure, as proposed in [8] to solve the paradox of 
system robustness and evolvability for biological systems.  

Having this genotype-phenotype distinction in mind, it is 
shown in [8] for biological systems that a representation which 
generates highly robust structures promotes evolvability. For 
the RNA genotypes and phenotypes analyzed in [8] the reasons 
are given by the larger number of neutral networks which are 
associated with robust phenotypes and the different structures 
which can be evolved from neighboring samples within the 
neutral network [8]. The term neutral network describes a 
collectivity of different genotypes which encode the 
same/similar phenotype, i.e. a many-to-one genotype-
phenotype mapping. Both criteria are utilized for the derivation 
of the proposed measure for quantifying the quality of FFD 
control volumes. 

A. Set-up of FFD Control Volumes 
For simplification but without losing the generalization 

capability of the proposed method to higher dimensional FFD 
systems, in the present paper a one-dimensional FFD system is 
considered. In Fig. 2 a 3D FFD control volume is depicted 
which consists of a lattice of 4x4x4 control points. One row of 
4 control points is extracted neglecting the influence of the y- 
and z-direction and is discussed in more detail.  
 

 

 

 

 

 
 

Figure 2.  Simplified FFD control volume. 

Since FFD relies on splines, most usually B-splines, control 
volumes are defined by a spline degree, a set of control points 
and knot vectors [9]. The one dimensional ’control volume’ 
which is analyzed in this paper consists of a clamped B-spline 
of degree p=3 which is defined by 4 control points CP0, CP1, 
CP2 and CP3, i.e. n=3, and a clamped knot vector U chosen to 
the sequence [u0, u1, u2, u3, u4, u5, u6, u7]=[0, 0, 0, 0, 1, 1, 1, 1]. 
CP0 and CP3 are always kept fix at x=0.0 and x=15.0 
respectively. In practice, the assumption to keep the first and 
last control point fix corresponds to the fact that it is usually 
quite straightforward for a human user to determine the values 
for the minimum and maximum extension of a control volume. 
The more difficult task is where to place the inner control 
points to achieve the optimal control volume.  

Based on suggested positions for CP1 and CP2, the 
Cartesian coordinates C of a spline are computed according to 

[9] using the spline parameter u∈[0,1] and the B-spline basis 
functions given by 
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As mentioned above the optimal positions of CP1 and CP2 
are unknown before an optimization and are usually chosen 
relying on human experience. Typically, one or more points or 
regions of interest on the design are focused and control points 
are placed close to these points or regions. During a manual test 
the positions are then adapted and refined in a process of 
selecting and moving control points while observing their 
influence on the design. In the present paper, these positions 
will be computed automatically based on a measure ECV which 
is calculated as a combination of (i) structural robustness SCV 
and (ii) design variability VCV. 

B. Structural Robustness 
To initiate the calculation of the evolvability ECV of an FFD 

control volume a point or region of interest on the design has to 
be chosen. These points or regions can be based on design 
features which the human user regards as important for the 
optimization or, alternatively, on the results of data mining 
processes of similar designs which e.g. extract sensitive regions 
of designs using former optimization runs. In the present paper 
for illustrative reasons one single point of interest POIx is 
chosen as a typical representative. For the introductory 
example the point of interest POI7.5 or reference design is given 
at x=7.5 which results in the FFD system depicted in Fig. 3. 
The exact positions of CP1 and CP2 are unknown. 

 

 
 

Figure 3.  One dimensional FFD CVCP1,CP2, POI7.5 at x=7.5. 

For computing the structural robustness SCV for one chosen 
control volume CV, the process is as follows. First, both 
control points CP1 and CP2 are set within a range of 
CP0 ≤ CP1, CP2 ≤ CP3. As an example, CP1 is chosen to x=1.1 
and CP2 to x=2.2 as depicted in Fig. 4. The base control 
volume is denoted by CV1.1,2.2. Next, the spline coordinate of 
POI7.5 is calculated for the given set-up using the knot vector U 
by a ’freezing’ algorithm, e.g. according to [9]. In the present 
example, the spline coordinate is u7.5=0.7538.  

 

 
 

Figure 4.  One dimensional FFD CV1.1,2.2, CP1 at x=1.1, CP2 at x=2.2. 

      CP1          CP2 
    CP0=0.0                     CP3=15.0

    CP0=0.0          CP1=?    POI7.5=7.5           CP2=?       CP3=15.0 

CP0=0.0, CP1=1.1, CP2=2.2, POI7.5=7.5                              CP3=15.0



To evaluate the structural robustness SCV for the given 
control volume, in the next step, the control points CP1 and CP2 
are varied to all possible positions between CP0 and CP3. For 
each modification, the x-coordinate of POI7.5 is updated using 
(1), (2) and (3) to POI*

7.5 and compared to the initial position at 
x=7.5. If the distance dPOI between POI*

7.5 and POI7.5 is lower 
than a given threshold, the structural robustness SCV is 
increased by 1. As an illustrative example, CP1

* has been 
moved to 3.1 and CP2

* to 5.2 respectively. The result for 
POI7.5

*=9.03 is shown in Fig. 5. 
 

 
 

Figure 5.  One dimensional FFD CV1.1,2.2, CP1
*=3.1, CP2

*=5.2. 

Pseudocode for the one-dimensional control volume is 
summarized in Algorithm 1. It is straightforward to extend it to 
higher spatial dimensions, a larger number of CPs or alternative 
knot vectors, e.g. knot vectors for unclamped splines. 

 

Algorithm 1. Pseudocode for structural robustness SCV 

(a) Determine maximum control volume extensions for CP0 
            and CP3. 

(b) Set CP1 and CP2 in the range between CP0 and CP3. 
(c) Select POI and freeze POI using the control volume 
      defined by CP0, CP1, CP2 and CP3. 
(d) Repeat for all possible control point positions CP1 and  
      CP2 in the range between CP0 and CP3: 

      (d1)  Move CP1 and CP2. 
      (d2)  Update coordinates of POI to POI*. 
      (d3)  Calculate Euclidean distance dPOI between  

POI and POI*. 
      (d4)  Increase SCV by 1 if dPOI is smaller then a given 
      (c4)   threshold ε. 
(e) Assign structural robustness SCV to chosen control 

            volume. 

The idea behind Algorithm 1 is to apply all possible 
permutations on the control points for a chosen initial control 
volume and to calculate how many variations of the genotype, 
i.e. control point positions, produce a similar phenotype, i.e. 
POI* position, compared to the initial phenotype. Thus, 
following the arguments of [8], control volumes with a higher 
structural robustness SCV would provide a higher evolvability. 
This argument is supported for FFD in combination with 
evolutionary optimization. Control volumes with a high 
structural robustness provide a higher probability for successful 
mutations because the probability for mutated offspring which 
achieve at least a similar performance index compared to their 
parent(s) is higher.  

The result of Algorithm 1 for the control volume CV1.1,2.2 
depicted in Fig. 4 is plotted in Fig. 6. Because of the 
continuous character of B-splines a discrete sampling step size 
of 0.5 is introduced for the calculation of a full sampling of the 
permutations of the control points. A black dot marks the 
control point positions which produce a distance dPOI between 

POI* and POI which is within a chosen threshold ε of 0.1, i.e. 
all control point permutations which generate a POI* variation 
below ε are counted as similar. Additionally, only the upper 
triangle has been calculated. As a remark, considering only the 
upper triangle has the consequence that the control point order 
is kept, i.e. CP1 < CP2, which is important for optimizations 
which require CFD evaluations to determine the performance 
index [1]. The structural robustness SCV for control volume 
CV1.1,2.2 as depicted in Fig. 4 is finally computed by the sum of 
all black dots, thus SCV=4. 

 
Figure 6.  Structural robustness for a control volume CV1.1,2.2 shown in Fig. 4. 

In a second example, CP1 is chosen to x=7.1 and CP2 to 
x=8.2 as depicted in Fig. 7.  

 

 
 

Figure 7.  One dimensional FFD CV7.1,8.2, CP1 at x=7.1, CP2 at x=8.2. 

The structural robustness SCV for control volume CV7.1,8.2 is 
calculated to SCV=16 as shown in Fig. 8. Hence, according to 
structural robustness the potential evolvability of CV7.1,8.2 is 
significantly higher if compared to CV1.1,2.2. 

 
Figure 8.  Structural robustness for control volume CV7.1,8.2 shown in Fig. 7. 

So far, an algorithm has been derived for the calculation of 
the structural robustness SCV of a single base control volume 
CVCP1,CP2. This measure is used to compare different control 
point settings to find the optimal position of each control point. 

     CP0=0.0, CP1
*=3.1, CP2

*=5.2, POI*
7.5=9.03            CP3=15.0 

     CP0=0.0,           CP1=7.1, POI7.5=7.5, CP2=8.2          CP3=15.0 



For the search of the optimal positions, different strategies are 
applicable which become especially important for a higher 
number of control points n since the time complexity 
depending on sampling intervals m is given by T=O(mn) for a 
full sampling. These strategies range within e.g. random 
sampling, latin hypercube sampling or local/global 
optimization methods. With respect to an optimization 
algorithm the encoding is based on the control point  
x-coordinates of CP1 and CP2 as parameter set. If e.g. an 
evolutionary algorithm is used, the positions are varied by the 
mutation operator and each proposed control volume is 
evaluated according to Algorithm 1. An advantage of an 
optimization algorithm is the possibility to include various 
constraints, e.g. a required minimum distance between control 
points or fixed positions of control points. Additionally, if 
several points of interest POI have to be taken into account, the 
optimization can be carried out on multiple objectives.  

To illustrate the results for the system depicted in Fig. 3 
given a POI7.5=7.5, a full sampling has been applied, i.e. all 
possible control point settings have been generated and for 
each initial control point set-up the structural robustness SCV 
has been calculated resulting in Fig. 9. The incremental 
sampling step size has been chosen to 0.5. The black boxes 
denote the SCV values for CP1=1.1, CP2=2.2 and CP1=7.1, 
CP2=8.2 respectively as calculated above by each sum of black 
dots in Fig. 6 and Fig. 8. As it is clearly visible, the region 
containing the dark dots refers to the control volume set-ups 
providing the highest structural robustness. Note: CP1 < CP2. 

  
Figure 9.  Structural robustness SCV of control volumes for POI7.5. 

To analyze the influence of different sampling step sizes, 
the full sampling has been repeated using alternative values. In 
Fig. 10 the result for a sampling step size of 0.2 is plotted. It is 
visible that the refinement produces a similar qualitative result. 
Because of the finer sampling, SCV is higher on absolute values 
but indicate the same region for optimal control point positions. 
Nevertheless, choosing a too fine grained sampling strongly 
increases the computational time. One possible idea in the 
context of evolutionary optimization would be to choose the 
sampling step size in close relationship to the expected range of 
mutations. In the present paper, from the experience of 
different experiments a sampling step size of maximal 5% of 
the control volume extension is suggested to achieve a 
reasonable quality for the structural robustness calculation. 

 
Figure 10.  Structural robustness SCV of control volumes for POI7.5. 

As a second example to visualize the influence of the point 
of interest on the structural robustness, POI1.0 has been chosen 
to x=1.0 depicted in Fig. 11. The exact positions of CP1 and 
CP2 are unknown. 

 

 
 

Figure 11.  One dimensional FFD CVCP1,CP2, POI1.0 at x=1.0. 

Repeating the steps described above for POI7.5 allows the 
calculation of SCV for POI1.0. The result is shown in Fig. 12. It 
is clearly visible that the region to choose meaningful positions 
for the control points is broader if compared to POI7.5.  

 
Figure 12.  Structural robustness SCV of control volumes for POI1.0. 

C. Design/Phenotype Variability 
Summarizing, so far an algorithm for the calculation of the 

structural robustness of control volumes has been proposed. To 
refine the method, design or phenotype variability is 
considered. Design variability as a second ingredient has also 
been identified in [8] as an important impact factor for the 
evolvability of biological systems. With respect to FFD, design 
variability takes the influence of the control points on the 
selected point(s) of interest into account. Considering the 
results of the sampled CP1 and CP2 positions given in Fig. 12 
for POI1.0, a chosen control volume set-up CV5,10, i.e. CP1=5 

    CV1.1,2.2, SCV=4 

    CV7.1,8.2, SCV=16 

 CP0=0.0, POI1.0=1.0, CP1=?                              CP2=?       CP3=15.0 



and CP2=10, provides a similar structural robustness compared 
to a chosen control volume set-up CV12,14, i.e. CP1=12 and 
CP2=14. Nevertheless, the range of variation for CV12,14 is 
much lower. For CV5,10 the ’frozen’ spline coordinate of POI1.0 
results to u=0.0667 and for CV12,14 to u=0.02844 respectively. 
For the calculation of the maximum variability, CP1 and CP2 
are moved simultaneously for both CVs, first, to 0.0 and, 
second, to 15.0 which define the maximum extensions of the 
CV. The x-coordinate of POI1.0 is updated by FFD to POI1.0

*. 
As shown in Fig. 13 it is possible to deform POI1.0 using the 
CV5,10 set-up to a lower boundary of 0.0044 and an upper 
boundary of 2.8044. Using control volume CV12,14, the 
boundaries are 0.0003 and 1.2440. 

 

 
 

 
 

Figure 13.  One dimensional FFD CV5,10, POI1.0. 

To calculate the design variability VCV which is assigned to 
each base control volume the distance between upper and lower 
boundary is computed and divided by the maximum length, 
here L=15.0. Thus, the results for CV5,10 and CV12,14 are 
VCV5,10=(2.8044-0.0044)/15.0=0.1867 and VCV12,14=(1.2440-
0.0003)/15.0=0.0829 respectively. From these results it is 
obvious that the design variability using CV5,10 is higher than 
the one of CV12,14 which is as expected. Finally, the measure 
for quantifying the quality of FFD control volumes is the 
product of SCV and VCV which can be understood as the scaling 
of SCV on the maximum possible variation calculated by (4). 
Fig. 9 and Fig. 12 are modified according to (4) and the results 
for the refined measure ECV are depicted in Fig. 14 and Fig. 15. 

         ECV = SCV · VCV             (4) 

 
Figure 14.  Quality ECV of control volumes CVCP1,CP2 for POI7.5.  

Whereas the difference between ECV and SCV for POI7.5 is 
only minor, the region for meaningful control volumes for 
POI1.0 has changed. The position of CP2 still has only a minor 
influence on the quality of the CVCP1,CP2 but the impact of the 
position of CP1 has increased and should be chosen in a range 
between 0.1 and 4.0 slightly depending on CP2. 

 
Figure 15.  Quality ECV of control volumes CVCP1,CP2 for POI1.0. 

Briefly summarizing, in this section a measure ECV for the 
evolvability of control volumes has been derived. On the basis 
of ECV it is possible to compare various control point set-ups 
and pick a CVCP1,CP2 which provides a good starting point for a 
following design optimization. In the next section, the effect of 
different control point settings are described in a test scenario. 

IV. EXPERIMENTAL RESULTS FOR DESIGN OPTIMIZATIONS 
USING EVOLVABLE FFD CONTROL VOLUMES 

In this section, experiments are explained which have been 
carried out to analyze the effects of different control volume 
set-ups if coupled to an evolutionary design optimization 
scenario. In this study, the design optimization scenario is 
based on a shape matching optimization which relies on a one-
dimensional FFD system as introduced in section III. The 
initial or base ‘design’ is represented by a randomly chosen 
point of interest within the control volume extensions, thus 
0 ≤ POIx ≤ 15.0. The target or optimal ’design’ is represented 
by a randomly chosen single point TPx within the extensions of 
the control volume, thus 0 ≤ TPx ≤ 15.0. An example set-up is 
shown in Fig. 16. 

 

 
 

 

 
 

Figure 16.  One dimensional FFD CV in shape matching optimization,  
POIx and TPx are chosen randomly. 

For a statistical analysis, 1000 optimization runs have been 
carried out. Each optimization falls into two steps. First, in the 
preprocessing step two control volumes have been generated 
which consist of four control points. Since CP0 and CP3 are 
kept fix, CP1 and CP2 are chosen randomly for each control 
volume. Afterwards, the proposed measure ECV is calculated 
for both control volumes as described in section III using the 
randomly chosen POIx. According to ECV both control volumes 
are sorted into two groups. The control volume with a higher 
ECV is assigned to group (a) whereas the one with a lower ECV 
is assigned to group (b). For the target matching optimization, 
for each experiment the initial control point positions of CP1 
and CP2 according to (a) or (b) are encoded as parameters into 

 CP0=0.0, CP1
*=0.0, CP2

*=0.0, POI1.0
*=0.0044          CP3=15.0 

 CP0=0.0, POI1.0
*=2.8044        CP1

*=15.0, CP2
*=15.0, CP3=15.0 

    CP0=0.0, CP1       POIx                CP2            TPx    CP3=15.0 

    CP0=0.0          CP1
*       POIx

*
                    CP2

*    TPx    CP3=15.0 



the genotype. During the optimization run, both positions are 
varied by the mutation operator of the evolutionary algorithm 
and utilized to deform the position of POIx. Hence, the new 
positions of CP1

* and CP2
* are used to compute the updated 

position of POIx
*. The design performance f for each design 

proposal is afterwards computed by the Euclidean distance 
between POIx

* and TPx serving as basis for the selection 
operator and is calculated by 

   2)*(f XX TPPOI −= .                        (5) 

The optimization is stopped, i.e. the target point is found, 
when the distance f is below 0.001. If the target point has not 
been found within 500 generations the optimization has been 
terminated and the best fitness recorded. This limit is 
introduced because test experiments have shown that if the 
target point TPx is not matched with a distance of 0.001 within 
500 generations the optimizations converged to an optimum 
which is larger than 0.001. For these runs, it is not possible to 
find the target point because the FFD setup does not allow a 
shift of the initial POIx on TPx because both control points CP1 
and CP2 are moved by the optimizer either to 0.0 or 15.0 which 
are the maximum valid modifications. 

For the optimization a standard (1,10)-evolutionary strategy 
has been implemented [10, 11]. To analyze the effects of the 
step size adaptation two experimental series have been carried 
out. In experimental series 1, the mutation operator modifies 
the parameters using a normal distribution but keeping the 
mutation step size fixed during the optimization run. In 
contrast, in experimental series 2 additionally the mutation step 
size is modified using a log-normal distribution. The initial step 
size is set to 0.03 for all experiments. For better readability the 
target matching optimizations (TMO) are labeled as follows: 

Exp1(a):  ’Exp 1, high ECV’, 1st boxplot  
TMO based on CVs with a higher ECV w/o step size adaptation   

Exp1(b):  ’Exp 1, low ECV’ , 2nd boxplot 
TMO based on CVs with a lower ECV w/o step size adaptation   

Exp2(a):  ’Exp 2, high ECV’ , 3rd boxplot 
TMO based on CVs with a higher ECV with step size adaptation 

Exp2(b):  ’Exp 2, low ECV’ , 4th boxplot 
TMO based on CVs with a lower ECV with step size adaptation   

The overall results are depicted in Fig. 17, Fig. 18 and 
Fig. 19. In Exp1(a) 54.7 % of all optimizations found the target 
design (median=81 generations), in Exp1(b) the number drops 
to 46.2 % (median=499 generations). The integration of the 
step size adaptation increases the number of matched designs in 
Exp2(a) to 84.1 % (median=68 generations) and in Exp2(b) to 
79.3 % (median=99.5 generations). Both medians of series (a) 
are significantly (T-test: 5% significance level) better 
compared to series (b). The fitness value, i.e. the final distance 
between target design and optimal design, is low for all 
experiments (median of Exp1(a), Exp2(a) and Exp2(b)≈1e-3, 
median of Exp1(b)=7e-2). Nevertheless, in Fig. 18 and Fig. 19 
it is visible that in both experiments the runs (a) outperform 
optimization runs (b) with respect to 75th percentile and the 
most extreme data points (without outliers). 

 
Figure 17.  Convergence of target matching optimization. 

  
Figure 18.  Final distance between optimal and target design. 

 
Figure 19.  Final distance between optimal and target design (log scale). 

For further analysis, a subset of all experiments has been 
considered consisting of all experiments which did not 
converge to the target point within 500 generations using (a) 
and (b). Since it is not possible for these set-ups to find the 
target point for geometric reasons, it is worth to compare the 
minimum distances they have achieved. In Exp1, 40 % did not 
match the target point whereas in Exp2 only 5.4 % failed for 
both control volumes. The results are depicted in Fig. 20. 

 
Figure 20.  Fitness of non-matched solutions. 



The four boxplots shown in Fig. 20 consider the best fitness 
of each experiment. As it is clearly visible, the fitness values of 
the optimal designs are much smaller for the runs using control 
volumes with a higher ECV. For Exp1(a) they are significantly 
smaller compared to Exp1(b) (T-test: 5% significance level). It 
should be noted that the step size adaptation has a strong 
positive effect for optimization convergence. 

To evaluate the optimization speed, subsets of the 
experiments are taken consisting of all optimizations which 
matched the target point using (a) and (b). In Exp1, 40.9 % 
found the target point, in Exp2 the number increases to 68.6 %. 
Based on the generation numbers which reflect the point of 
time when the target has been found the boxplots depicted in 
Fig. 21 are calculated. The medians of Exp1(a) and Exp1(b) 
equal 28 and 30 respectively. In Exp2 the median is 25 for both 
variants, nevertheless the 75th percentile of Exp2(a) is lower 
(129) compared to Exp2(b) (173). 

 
Figure 21.  Convergence of matched solutions. 

In summary, the experiments underline the efficiency of 
control volumes with a high evolvability ECV. Optimizations 
based on these control volumes are faster (Fig. 17 and partly 
Fig. 21) and provide a better fitness (Fig. 20). An integration of 
the mutation step size adaptation improves the evolutionary 
optimizations strongly, nevertheless conserving the positive 
effects of evolvable control volumes. As a side remark, it is 
worth noting that the step size adaptation partly reduces the 
disadvantages of non-favorable control volumes, visible in the 
reduced gap of matched target designs. The difference 
decreased from 54.7-46.2=8.5 % to 84.1-79.3=4.8 %.  

V. CONCLUSION 
Evolutionary design optimizations rely on an efficient 

interplay between representation, optimization algorithm and 
evaluation method. In contrast to representations which allow 
the direct modification of shapes, deformation methods alter 
designs by the variation of an initially defined control volume 
which encloses the base design. Usually, the construction of the 
control volume is a manual process carried out by a human user 
who decides on number and distribution of control points. 

In the present paper, a method is proposed which automates 
this process by suggesting the application of an optimization 
algorithm to find the control point positions automatically. As a 
prerequisite for this optimization a measure is defined which 
allows a comparison of different control volume layouts. The 
measure ECV proposed in this paper relies on the concept of 

evolvability which refers to a system capacity for generating 
successful design proposals within a reasonable time span. As 
it has been shown in literature, evolvability is likewise 
influenced by system robustness and design variability. Both 
criteria have been transferred to FFD systems. A combination 
of both, structural robustness SCV and design variability VCV, 
leads to a measure for evolvability ECV which quantifies the 
quality of control volumes.  

As a consequence, the proposed measure ECV allows an 
optimization algorithm to find promising initial distributions of 
control points. In a practical framework, the user identifies one 
or several points of interest on the design, e.g. according to 
visible shape features or the results of data mining algorithms, 
and specifies the maximum extensions of the control volume as 
well as the number of control points for each spatial dimension. 
After executing the optimization the optimal control point 
positions are automatically calculated and suggested to the user 
as starting control volume for a follow-up design optimization.  

For evolutionary design optimization experiments it has 
been shown that ECV-tuned control volumes provide a higher 
convergence probability and achieve a better fitness value 
within a shorter time span. An inclusion of the adaptation of the 
mutation step size increases the performance while still 
preserving the advantages of evolvable control volume layouts. 
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