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Abstract— Many real-world applications in robotics have to
deal with imprecisions and noise when using only a single
information source for computation. Therefore making use
of additional cues or sensors is often the method of choice.
One examples considered in this paper is depth estimation
where multiple visual and auditory cues can be combined to
increase precision and robustness of the final estimates. Rather
than using a weighted average of the individual estimates we
use a reward-based learning scheme to adapt to the given
relations amongst the cues. This approach has been shown
before to mimic the development of near-optimal cue integration
in infants and benefits from using few assumptions about
the distribution of inputs. We demonstrate that this approach
can substantially improve performance in two different depth
estimation systems, one auditory and one visual.

I. INTRODUCTION

The combination of different cues to improve the per-
formance in tasks like segmentation [1], [2], object iden-
tification [3], or object tracking [4] is a common method
in robotics. Merging different cues with complementary or
partially redundant characteristics has a good potential to
improve both precision and robustness (for example reduce
mean and maximum estimation error). The optimal integra-
tion is theoretically well defined and straightforward in a
Bayesian framework. However, for real world applications,
performing this computation is usually intractable. A com-
monly used approximation is a weighted sum of the maxi-
mum likelihood estimates of the different cues [5]. Such an
approach is computationally efficient but is only guaranteed
to be close to the optimal solution for the idealized case
of cues with uncorrelated Gaussian noise and knowledge of
error variances and potential biases. Unfortunately for many
practical applications these conditions are not necessarily
met. Additionally fixed weights can lead to problems when
the environment changes. An adaptive approach has been
presented in [4], where an optimal weighting of different
cues in an object tracking task is learned online.

In this work we present a different approach that uses a
general reward-based learning scheme for training a neural
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network to combine depth estimations from multiple cues.
The approach was developed to model the development of
optimal cue integration in infants [6], [7] without making
assumptions about the characteristics of the cues. We test
this approach in two different robotics tasks. The first is
auditory depth estimation using stereo recordings from a
humanoid robot, the second one is a visual depth estimation
task in a stereo camera setup with vergence. Such depth
estimation is a basic prerequisite for important behaviors like
navigation, grasping or verbal interaction. In both sensory
domains this task is challenging if only standard sensors (i.e.
two microphones or two cameras) are available.

Both systems have been described in previous papers
[8], [9] and will only be explained briefly here. The cue
integration method was outlined in detail in [6], [7].

For both applications learning is done offline in a standard
training session using only part of the recorded sensory
data. The reward signal used to adapt the neural network
is based on the accuracy of its response to an input. Since
we have labeled data, this accuracy simply depends on the
difference between estimated and true depth, but in general
could relate to a behavioral outcome, e.g. the success of a
grasping movement. The weight are updated using a gradient
descent method. After training, performing cue integration
can be done with minimal computational effort.

For both sensory domains our results show a substantial
reduction in mean and maximum depth estimation error com-
pared with those of the best individual cue. This was possible
although the quality of individual cues varied heavily across
the input space, they were strongly correlated and showed
significant biases. For these reasons the new method was
able to also outperforme standard weighted cue averaging.

II. AUDIO DEPTH ESTIMATION

Estimating the depth of a sound source is notoriously
difficult, especially when only one or two microphones are
available. If no triangulation is possible (either by moving
the robot or by using several pairs of microphones) no
direct, unambiguous cue to depth is available. In a previ-
ously described system [8] we therefore used a combination
of many different depth cues (outlined below) that were
computed and averaged over a complete sound segment.
In this framework sounds are considered as (proto) objects
with a set of attached audio features. Each of these audio
features i is mapped to a depth estimation Di

audio(z), where
Di
audio(z) is the evidence for one of 9 different depths (z)



based on the current values of cue i . The mapping from
audio cues to depth evidences is learned in a calibration
session using more than 600 sounds for each distance. Due
to technical constraints, we only tested the distances z ∈
[0.5m, 1m, 1.5m, 2m, 2.5m, 3m, 4m, 5m, 6m].

Approximate Bayesian cue integration [5] was used to
combine the estimations from different cues. This is formu-
lated as:

zallaudio =
∑
i

wi · ziaudio , (1)

where zallaudio is the estimated distance using all audio cues
and ziaudio the maximum likelihood distance estimatie of
audio cue i. The weight w is expressed as:

wi =
1/σ2

i∑
j

1/σ2
j

, (2)

where σi is the mean localization error of feature i and
j iterates over all depth cues. Errors are computed as the
difference (in meters) between the true position and the
maximum-likelihood depth.

A. Localization cues

In the following we provide a short explanation of dif-
ferent localization cues. A detailed description is not in the
focus of this article. Rather we want to stress the different
performance characteristics of the different cues (see Fig.
3), and note that errors are in general not Gaussian and
unbiased. Furthermore we expect substantial correlations
between different cues. The system uses the following depth
estimation cues (see also Fig. 1):

1) Mean envelope amplitude: This cue represent the mean
amplitude (related to mean energy of the sound) with roughly
a 1/z relation over distance z. Since the measured signal am-
plitude also depends on the production amplitude (which is
unknown), this cue depends on the distribution of production
amplitude values in training and test datasets. Despite of this
we got good results for very close and far distances.

2) Spectral envelope: This cue measures the mean am-
plitude (energy) of the sound in different frequency bands.
It is known that higher frequency bands are more strongly
attenuated with distance than lower frequency bands. This
cue is very weak over the depth range tested in our set-up.

3) Binaural cues (IID and ITD): Interaural Intensity Dif-
ference (IID) and Interaural Time Difference (ITD) are two
standard cues for horizontal sound localization, showing a
strong dependency on the azimuth angle of the sound relative
to the robot’s head. They also exhibit a weak dependency on
the sound’s elevation (see [10]) and also the sound source’s
depth. These cues are quite useful especially for shorter
depths, but decrease in performance when e.g. the robot is
moving [8].

Fig. 1. Basic flowchart of the audio cue processing system.

4) Binaural spectral difference cues: Similar to IID and
ITD this cue is based on differences in the signal recorded
in two different microphones. However, while IID and ITD
operate at single frequency channels, binaural spectral cues
look at the distribution of binaural differences over a range
of frequencies. This cue shows a similar performance as the
above mentioned binaural cues.

5) Audio Gabors: Here we compute histograms of filter
responses. These filters are 2D Gabor filters known from
image processing, applied on the spectral envelope of the
audio signal. Our assumption was that with changing depth
filter response histograms might vary. However, on the tested
range of depths, results were not very promising. We in-
cluded this cue into our test to evaluate if the cue integration
can also deal with low-performance cues.

B. Comparison to Related Work

Most approaches for audio depth estimation in robots are
based on either motion triangulation [11], [12] or larger
microphone arrays [13]. The first approach requires a motion
of the robot while the sound source stays active. Using
larger microphone arrays limits the robot mobility and will
probably only be effective when the source is relatively
close to the array. Animals in turn seem to employ a totally
different approach using only two ears and without relying
on any ego-motion (see e.g. [14], [15]).

C. Experimental setup

The sounds to be localized were recorded in our robot lab,
a room of dimension ( 12 x 11 x 2.8 m) with a substantial
amount of echo (T60 = 810 ms). A loudspeaker set at
different depths from the robot head generated in total 68
different sounds (speech, environmental sounds, music). We
also rotated the head to 19 different pan positions. The
database therefore consists of 19*68 = 1292 recorded sounds
for each of the 9 distances. The recording set-up is sketched
in Fig. 2.



Fig. 2. Outline of the experimental sessions to record sound data. Note
that the two sets were recorded at slightly different positions of robot and
speakers. Training and test data consists of half of the data from set 1 and
set 2, each.

Cue mean error rel. error off-target conf. near/far
Random 2.0 1.22 89% 9.5%
Amplitude 1.33 0.56 74% 2.8%
Spectral 1.71 0.98 78% 9.8%
IID 0.46 0.15 28% 1.5%
ITD 0.86 0.41 50% 2.3%
Gabor 1.82 0.78 85% 12.1%
Spec. Diff. 0.52 0.32 27% 1.6%
Combined 0.51 0.25 44% 0.34%

TABLE I
AUDIO DEPTH ESTIMATION PERFORMANCE . COMBINED RESULTS ARE

COMPUTED AS DESCRIBED IN EQN. 1. FOR THE COMBINED CUES THE

OFF-TARGET VALUE WAS COMPUTED BY BINNING THE ESTIMATED

DISTANCE TO THE MEASUREMENT DISTANCES.

D. Baseline results

Results for the first four cues on a slightly different data set
have been presented in detail in [8]. Here we just summarize
the main results of individual cues (see Tab. I). The table
shows the mean localization error in meters, the relative error
(mean error devided by distance), the probability of a mis-
localization, and the probability of a severe mislocalization,
defined as instances where the estimated distance was more
than 4 m away from the true depth. Also for the first time
we report on the results for the Binaural Spectral Difference
cue and the Audio Gabor filter response histograms.

Figure 3 shows the estimation errors of the single cues for
objects at different depths. The accuracy of most of the cues
decreases with depth, only the spectral difference cue keeps
it performance at all depths.

III. VISUAL DEPTH ESTIMATION

In [9], a series of visual depth estimation experiments
have been undertaken comparing three different cues (stereo
disparity, vergence and familiar size). The goal of this study
was to determine how accurately depth can be estimated,
which cue is more accurate in what depth region, what are the
main error sources and how can the estimation be improved

Fig. 3. Mean estimation error of all auditory cues for different depths
averaged over all sounds.

by combination of the cues. Based on the statistical data
obtained from the experiments, approximate Bayesian cue
integration, explained in Eq. 1 and Eq. 2, is used to combine
estimations from different cues.

A. Localization cues

The following cues are used for visual depth estimation:
1) Vergence: A visual system capable of changing its

camera parameters can achieve stereo fixation on an object
by positioning the intersection point of the line of sight of
the two cameras on the surface of the object. The distance
to the fixation point can be derived from the triangulation
using a pinhole camera model (Fig. 4) as:

z =
b

2 · tan(Θv
2 )

, (3)

where Θv is the vergence angle and b is the baseline (Fig. 4).
The vergence angle is computed from left and right camera
angles as Θv = Θleft + Θright. We use symmetric vergence
(|Θleft| = |Θright| = Θ).

2) Stereo Disparity: In a visual system using vergence,
points belonging to objects that are residing out of the stereo
fixation point project to different locations on the left and
right camera images. This difference is referred to as stereo
disparity. In active vision systems disparity information is
relative to the fixation point (i.e. points belonging to an object
under fixation have disparities of zero or very close to zero).
In order to obtain absolute disparity information (i.e. the
distance from the baseline to the stereo fixated object) an
active rectification process [16] is used. As shown in Fig.
4 this process epipolarly rectifies images from an active
stereo camera configuration (cameras with solid lines) to
virtual image planes of a parallel stereo camera configuration
(cameras with red dotted lines). After applying rectification,
depth from disparity can be computed as:

z =
bf

d
+ r + f, (4)

where d is the horizontal disparity (defined as d = xV L −
xV R, xV L and xV R being the projections of the object on the



Fig. 4. Analytical model of the active vision system and depth estimation
methods. Depth z is defined by the distance from the baseline to the object.
FL and FR denote focal points, CL and CR denote center of rotations of
the left and right cameras respectively. The static parameters of our system
are as follows: r = 18.75 mm, f = 5.4 mm, b = 65 mm.

virtual left and right image planes), f is the focal length of
the cameras and r is the distance from the center of rotation
of the cameras to the image planes (Fig. 4).

The OpenCV version 2.0 [17] block matching algorithm
is used for disparity computation. This algorithm provides a
dense disparity map of given left and right camera image
pairs without any post-processing applied. The disparity
search range is set to 32 pixels (-16 to +15). A simple
color based segmentation process is used to distinguish
the disparities corresponding to the object in the disparity
maps and the average of these disparities is taken for depth
estimation in each frame.

3) Familiar Size: If the real size of an object is known,
the depth of the object can be estimated from the size of
its projection on the camera images. Using a pinhole camera
model (Fig. 4) the depth can be derived as:

z =
(fW
w

+ r + f
)
cos(Θ), (5)

where Θ is the camera angle and cos(Θ) ≈ 1 due to the
small baseline. The physical size W for all objects used in
the experiments is measured beforehand, the retinal size w is
computed using a simple color based segmentation process
(the same used for the stereo disparity method). The width
of the objects is used for estimation since it showed better
overall accuracy compared to the height. More advanced
methods (e.g. [18]) could be used to improve the precision
of estimations.

B. Related Work

A limited comparison between vergence and photogram-
metry methods was done in [19]. In [20] and [21] reviews
on different stereo disparity computation methods were pre-
sented. However these were restricted to a static-parallel
stereo camera setup. We examine three depth estimation

Fig. 5. Mean estimation errors of the methods. Plot shows the running
average over 8 data points.

methods (stereo disparity, vergence and familiar size) with
an active vision setup in an extensive test setting.

C. Experimental Setup

An experimental stereo vision head with 4 DoF (2 DoF
for head and 1 DoF for each camera) and a baseline of 65
mm is used as a platform for the examined depth estimation
methods. All experiments are performed using images with a
resolution of 400x300 pixels, which is the standard resolution
for most of our vision applications [22]. A linear unit that
moves a small object platform on a linear axis is utilized to
rapidly and autonomously generate data for depth estimation
algorithms and acquire ground-truth depth information. The
object platform is moved via a stepper motor within an error
of 0.1%. 11 objects were selected from the HRI150 database
[23]. One of the objects is used for calibration purposes.

D. Baseline results

Mean estimation errors1 of individual methods are shown
in Fig. 5. The error is defined as the absolute value of the
difference between the estimated depth and actual depth. Tab.
II shows mean estimation errors of individual cues and their
combinations by weighted averaging in three ranges. Overall
comparison of results shows that combinations of methods
via Bayesian Cue Integration did not produce the best results
in all ranges. The reason for this might be that the weighted
averaging requires unbiased and uncorrelated signals to be
guaranteed to be close to the optimal solution and these
requirements might not be met.

IV. REWARD-BASED LEARNING OF CUE
INTEGRATION

As we can see from the previous sections, using weighted
averaging to combine estimates of multiple cues does not
necessarily improve performance that much. This is due to
the fact that the requirements for this approximation to be
valid are not met, mostly the independence assumption for
the cue’s noise, and also due to different values of the optimal

1The mean estimation error is averaged over all 10 objects.



TABLE II
MEAN (AND STANDARD DEVIATION) OF ESTIMATION ERRORS (IN MM)

FOR ALL OBJECTS AT DIFFERENT RANGES.

Methods Near Middle Far
Vergence 16.52 (6.65) 44.46 (13.18) 131.31 (46.99)
FS 44.64 (6.11) 86.09 (23.81) 175.38 (33.27)
SD 27.15 (13.91) 53.02 (21.13) 141.14 (32.47)
Combinations via approximate Bayesian cue integration
Vergence+FS 17.63 (9.60) 36.64 (14.55) 123.62 (109.52)
SD+FS 26.69 (19.60) 46.11 (29.03) 134.63 (82.24)
Vergence+SD 19.26 (12.85) 43.83 (16.60) 120.73 (78.03)
Vergence+FS+SD 19.56 (13.68) 37.52 (19.47) 121.16 (77.92)

weights for different input regions. Therefore we decided to
use a method that learns how to best combine the given cues
from data.

This method was developed to try to explain psychophys-
ical findings showing that human infants often combine
multiple cues sub-optimally or not at all [24], [25]. In
contrast, experiments could show that adult performance in
many multi-cue tasks is close to predictions from the optimal
Bayesian model. More details on this and references can
be found in previous publications [6], [7]. The principle
behind the approach is learning a mapping from an input of
multiple cue estimates to reward predictions of the possible
responses of the robot. We use the reward as a loose signal
for the quality of our final estimate inspired by reinforcement
learning theory [26]. In our case an action is equivalent to
a specific depth estimate and is chosen based on the reward
predictions. The error between the prediction and the true
received reward is used to train the model.

In [7] we could show that this model is indeed able to
perform as good as a full, numerically simulated, Bayesian
observer, which uses explicit knowledge of all prior and
likelihood distributions as well as the reward function. Ad-
ditionally these results could be extended to cases where
inputs could originate from a single or multiple objects in
the scene, a problem known as causal inference [27]. In
this paper we show the applicability of the framework to
real world data from two different robotic setups. While for
artificially generated data one can provide idealized input
parameters (e.g. using Gaussian distributions, independent
noise) to allow for straightforward integration, real data does
often not fulfill those assumptions. For that reason it is
usually not feasible to compute the optimal Bayesian solution
numerically or analytically. Also common fast approxima-
tions like weighted averaging were only shown to be accurate
given those idealized assumptions [5]. Since our method does
not require any knowledge about the input, it is possible to
outperform such approximations given complex data. Here
we test this prediction for the two datasets described in the
previous sections: visual and auditory depth perception.

A. The model

We use a three-layer neural network to approximate the
mapping function. The input layer encodes the estimates of
the different depth cues into a concatenation of vectors (one
for each cue) of neurons i with binary activity xi. An entry

in each one of these vectors represents a range of depth
positions, so each vector has only one active neuron at depth
estimated by the corresponding cue. The input neurons are
all-to-all connected with weights vi,j to j neurons in the
hidden layer.

A sigmoidal transfer function on the sum of the weighted
inputs gives the outputs yj of the hidden neurons:

yj =
1

1 + e
−
∑
i

vi,jxi
(6)

The hidden neurons are fully connected to output neurons
k with weights wj,k. Each output unit represents an
action, and its activation zk is the reward expected when
performing this action. All weights are drawn from uniform
distributions, V between −0.1 and 0.1, W between −1 and
1.

Based on these outputs we choose one action k̂ by using
the softmax function on all reward predictions:

P (k̂ = k|X) =
ezk/τ∑
k

ezk/τ
. (7)

We start with a high temperature parameter τ = τ0 = 10, so
that the learner chooses his actions only weakly influenced
by the initial reward expectations. τ then decreases expo-

nentially with learning time (with τ(t) = τ
ντ−t
ντ

0 ), passing
1 after a given number of steps ντ . At smaller values of τ
the selection favors more and more the action with highest
expected reward, thus exploiting the environment.

After performing the selected action k̂, the learner receives
the true reward r(k̂). We use a reward function that is
maximal if k̂ equals the true object position kt, decaying
quadratically with increasing distance within a surrounding
area (with radius ρ) and zero otherwise.

r(k̂|X) = max(0, (ρ+ 1− |k̂ − kt|)2) (8)

We use gradient descent on the weights of the network to
minimize the error between predicted and received reward.
After each training step the new weights are:

vnew
i,j = vold

i,j + ∆vi,j (9)

wnew
j,k̂

= wold
j,k̂

+ ∆wj,k̂, (10)

with

∆vi,j = −ε(rk̂ − zk̂)(−wj,k̂)yj(1− yj)
∑
i

vi,jxi, (11)

∆wj,k̂ = −ε(rk̂ − zk̂)(−yj) (12)

for all i and j. Note that we can only update the output
weights connected to the winning output unit k̂, since its
action is the only one for which we get a true reward. ε is an
exponentially decreasing learning rate: ε(t) = 10log(ε0)− t

νε ,
with ε0 = 0.05.

The computation of a single combined estimate requires
only a single propagation through the network, which means



Fig. 6. Audio distance estimation: The plots show from left to right the
percentage of errors, the mean estimation error in meters and the fraction
of near/far confusions.

two matrix multiplications and calculating the sigmoidal
function of the hidden neurons. This is fast and can therefore
be considered a useful approximation of optimal Bayesian
inference.

V. RESULTS

A. Audio domain

One training sample consists of the depth estimate of each
of the six cues for the given auditory signal encoded into a
binary vector of length 6x9 (#cues x #depth). We set ρ = 3
and νε = ντ = 10, 000 and use half of the stimuli for
training, the other half for testing. Figure 6 shows the results
on the test sounds after 10,000 training steps compared to
the performance of the best cue (IID) as well as of the
model averaging approach (Combined) discussed in section
II. The plots show from left to right the percentage of correct
estimations, the mean estimation error in meters and the
fraction of near/far confusions (errors of more than 4 m).

For all measures the model is better than the best single
cue and better/equal the weighted average of all cues. One
reason for that can be seen when looking at the spatial change
of the mean error for each single cue (see Fig 3). Some cues
are for example very accurate at short depth but performance
decreases with increasing depth. From that one can easily
predict that a single set of weights can not lead to an optimal
integration at all depths. The neural network instead can
easily learn to integrate the cues differently depending on
the input pattern and thus performs almost equally well at
all distances (Fig. 7).

B. Visual domain

For the visual depth estimation task we use a very similar
setup, but the depth estimates of the single cues are con-
tinuous so that each neuron will now be active for inputs
within a certain range. The same is true for the output units,
the integrated estimate can only be as accurate as allowed
by the binning size. It is worth mentioning that the coding
range of the input and output neurons does not have to be the
same, but for simplicity we set both to 10mm for all results
shown here. We chose ρ = 15 and νε = ντ = 50, 000 and

Fig. 7. Mean error for different depths of the weighted averaging (yellow)
and the reward-based learning approach (black) for the auditory task in
comparison with the best single cue (green).

Fig. 8. Mean error for different depths of the reward-based learning
approach, the Bayesian average and the best single cue (vergence) for the
visual task. Mean values of 10 repetitions of each leave-one-out training
trial. Plot shows the running average over 8 data points.

randomly selected five of the objects for training, the rest for
testing.

As can be seen from Fig. 5 and Table II the three cues
change in quality relative to each other, similar to the cues in
the auditory task. It has been explained that estimation errors
from individual methods can be reduced by improving the
accuracy of the visual system however, trends will stay the
same [9]. Therefore, it will not affect the cue integration
process. The error after weighted averaging of multiple cues
still has a strong tendency to increase with distance (Fig.
8 yellow curve). This is an evidence for the hypothesis
that the cues show a depth dependent bias. Finally we can
also expect correlations in the noise distribution of different
cues, since for example both stereo disparity and familiar
size use the same segmentation method. Figure 8 plots the
performance of the neural network after 100,000 training
steps as a function of depth. Again we get an error smaller
or equal to both best cue estimate and weighted averaging,
with a much lower increase with depth.

This can also be seen if we separately compute the errors
for near, middle and far distance to compare it with the
results shown in Table II. We find mean values of 16.6, 34.6,
and 60.5 respectively.



VI. SUMMARY AND OUTLOOK

Different cues can be used to achieve auditory and visual
depth estimation which are important aspects of scene per-
ception in robotics applications. By collecting real world data
for these tasks together with the corresponding responses
of all these cues we were able to compare performance of
single cue estimators with that after integration of multiple
information sources. The common approach for such an
integration is using methods from the Bayesian framework,
usually combining cues by a reliability-weighted average [5].
Unfortunately this approximation is only shown to be optimal
for specific environmental statistics. These requirements are
often not met in real world applications, as can be exem-
plarily shown by the two datasets presented in this work.
Therefore we proposed an alternative method which learns to
combine multiple cue estimates mediated by a reward signal.
We could show that this approach outperforms both the best
single cue and the weighted average cue combination in both
tasks. Additionally the input space dependent fluctuations in
both these methods could be significantly reduced.

The reward signal we used in this paper is computed based
on the true depth, which is known from the way the data
was generated. For the method to be generally applicable,
it would be beneficial to use reward signals that do not
require hand-labeled stimuli. The quality of an action though
could be measured in many different ways. One example
for the depth estimation tasks would be the success of a
grasping movement based on these estimations. If such an
online reward signal is available, the model could adapt the
optimal cue integration even during the operation of the robot
assuming that tasks are executed frequently. In [7] we also
demonstrated that the re-adaptation to new cue reliabilities
can be done very quickly.

Training the model takes many iterations, but after comple-
tion each estimation can be computed very efficiently. Input
cues are in no way limited to the ones presented here but
could even act in different coordinate systems. As we could
show in a previous paper [7] the model can also learn to only
integrate stimuli that have a common cause but not those that
come from different objects. This is particularly interesting in
natural environments were there are usually multiple events
happening in parallel.
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