
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

A Language for Formal Design of Embedded
Intelligence Research Systems

Benjamin Dittes, Christian Goerick

2011

Preprint:

This is an accepted article published in Robotics and Autonomous Systems.
The final authenticated version is available online at: https://doi.org/[DOI not
available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


A Language for Formal Design of
Embedded Intelligence Research Systems

Benjamin Dittesa,∗, Christian Goericka

aHonda Research Institute Europe GmbH, Carl-Legien-Str. 30, 67073 Offenbach, Germany.

Abstract

The construction of complex artifacts of artificial intelligence requires large-scale system integration and collaboration.
System architectures are a central issue to enable this process. To develop these, hypotheses must be formulated,
validated and evolved. We therefore present Systematica 2d, a formalism suitable for both flexible description of
hierarchical architecture concepts as well as functional design of the resulting system integration process. We motivate
the approach and relate it to other formal descriptions by means of a new formalization measure. It consists of a
set of criteria to evaluate how well a formalism supports the expression, construction and reuse of intelligent systems.
Systematica 2d is compared with existing formalization languages under this measure and shown to have at least
their level of expression. In addition, the system properties of incremental composition, partial testability and global
deadlock-free operation are formally defined and proven in the formalism.
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1. Introduction

In the strive to create complex artifacts with artificial
intelligence (which together we will call “embedded intelli-
gence” or EI) an interplay of a great number of disciplines
is required. Although the actual organization of subsys-
tems in any implemented system may vary, these can be
roughly categorized into designing or learning of function-
alities for

I information acquisition from the world,

II internal information processing,

III generating actions in the world,

IV integration of subsystems to create a desired overall
system behavior.

Popular domains include robotics, driver assistance or
autonomous driving as well as virtual agents. In addition
to countless efforts in specific areas of I, II and III, cogni-
tive architectures as a means to integrate several subsys-
tems to an intelligent artifact (EI) are receiving steadily
increasing attention, see [1] for a survey. However, these
system integration processes suffer from three handicaps:

• A multitude of notations, making them difficult to
relate to one another,
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• a decomposition which is typically not tailored to the
needs of interacting scientists and, arising from that,

• a resulting system which makes reuse of larger build-
ing blocks difficult.

In this contribution we will address these issues by two
means: First, a detailed analysis of the specific challenges
and requirements of EI system design and construction
will lead to a set of criteria for evaluating the suitability
of formal notations for EI systems. The application of
these criteria to a set of existing formalisms will yield spe-
cific shortcomings to be overcome and will serve as a basis
for comparison. Second, we will present and discuss our
proposal for a new system design formalism, called Sys-
tematica 2d, suitable for both system description and
comparison as well as for system design and construction.

Since the comparison of system formalisms is a cen-
tral part of this contribution, the related work presented
in section 2 will only cover the wider area of EI system
notations and taxonomies for such notations. A detailed
analysis of the relation of this contribution to specific ex-
isting approaches from software engineering, software in-
frastructure and functional modeling will follow in later
sections. The evaluation criteria are introduced in sec-
tion 3, following a discussion of the relation of EI system
integration to software engineering practices (e. g. UML[2])
and to software infrastructures (e. g. CAST[3], XCF[4],
YARP[5], etc.). In section 4 several existing formalisms
are then evaluated along those criteria: the commonly
used ad-hoc ‘boxes and arrows’, 3-Tier[6], CogAff[7] and
Systematica[8]. A conclusion at the end of section 4
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summarizes the lessons learnt from defining and applying
the measure criteria to existing formalisms.

In the second half of this contribution, we start by in-
troducing the proposed new formalism, Systematica 2d,
in section 5. Central elements of the language are units, re-
lating to individual scientist’s contributions to the whole
system, and their dependencies and communication pat-
terns; based on the formal description of these elements, a
set of system properties can be defined and proven, most
notably incremental construction and global deadlock-free
operation. Section 6 then focuses on comparing the new
formalism to the evaluated existing ones in two ways: first
by ‘translating’ designs from 3-Tier, CogAff and System-
atica to Systematica 2d and second by applying the
defined measure criteria to our new formalism. Finally, the
discussion in section 7 will cover the mapping from Sys2d
design to software infrastructure, the specific structural
bias imposed by Systematica 2d on the example of sev-
eral standard design patterns and the descriptive abilities
of Systematica 2d in terms of distinguishing integration
approaches.

2. Related Work

Two areas of related work are relevant to this contri-
bution: taxonomies or measures of formal notations and
specific notations for intelligent artifacts.

Attempts at formulating measures, classification frame-
works or taxonomies of formal notations are sparse, qual-
itative and, for the most part, too generic to be of value
when judging the benefit of a formalism for EI systems.
One prominent example is the work of Medvidovic et al.[9]
giving a qualitative comparison of software architecture
description languages (ADLs). In this work, they pro-
vide a fixed set of description elements which an ADL
needs to have: Components, Connectors and Architec-
ture Configurations. Based on a detailed discussion of
each of these three elements, the authors evaluate sev-
eral languages used to describe software architectures, e. g.
Rapide[10], C2, LILEANNA and ACME[11], and deter-
mine which of them can be considered an ADL. One of
the conclusions we can strongly agree on is that the defin-
ing property of an ADL is the ability to describe full sys-
tem configurations (i. e. the pattern in which components
and connectors are combined to form a system), in addi-
tion to the system elements alone. However, although the
work claims to allow comparing ADLs, it does not pro-
vide a measure to judge which kinds of constraints on the
description of a system are suitable for which domain.

For intelligent systems, we see two comparisons of in-
tegration approaches and formalisms: Vernon et al.[1] give
a survey of recent development in cognitive architectures
by analyzing a wide range of approaches and sorting them
into three ‘paradigms’ of cognition (Cognitivist, Emergent
and Hybrid). A different approach is pursued by Goer-
ick et al.[8], where a new framework for modeling hierar-
chical architectures (‘Systematica’, an evolution of the

subsumption architecture[12]) is used to express existing
cognitive architectures in the same language and compare
them on this basis. Both are able to compare existing ar-
chitectures to one another but they do not evaluate how
the elements of the specific description languages affect
their cognitive qualities.

Formal notations for intelligent systems today come
from three areas. First, there are mathematical formaliza-
tions of system component interaction[13, 14, 15]. These
allow a formal analysis and proof of interaction properties
of components, but there is no evidence that the attached
description languages are able to express established cogni-
tive architectures such as 3-Tier[6] or CogAff[16]. Second,
architecture description languages are a popular tool in
the software engineering domain to describe large software
systems, for instance Rapide[10] and ACME[11], but prob-
ably the most generic being xADL[17]. These languages
contain all relevant elements for describing an architecture
but since, to the best of our knowledge, no application of
such an ADL to the EI domain has been attempted, it
is unclear what bias they can provide for guiding an EI
system design in a favorable direction (see discussion of
structural bias in section 3.2). It is reasonable to assume
that the formalism introduced in our contribution can be
expressed using, for instance, xADL, but this is beyond
the scope of this work.

Finally, there are specific notations used in intelligent
systems[12, 7, 18, 19, 20, 21, 22] or reviews[6] and plans[23]
of such. Among these notations, we see two groups: on the
one hand there are systems described in a formalism used
only once in the paper describing the system, usually (but
not always) closely related to the software infrastructure
on which the implementation is based —we will refer to
these notations collectively as ‘Boxes and Arrows’. On
the other hand there are systems described in indepen-
dently introduced notations, we will focus our compari-
son on 3-Tier[6], used in [20], CogAff[16], used in [7], and
Systematica[8], used in [19]. We will perform a more
detailed analysis of these four notations, ‘Boxes and Ar-
rows’, 3-Tier, CogAff and Systematica—the focus being
the comparison of the notations, not of the systems built
with them —when we evaluate them in section 4.

To conclude, we can say that there is a great variety
in the notations used to describe systems and a very small
number of attempts to measure and compare these. In
the following, we will therefore start by introducing such a
measure while discussing the relation of EI systems, soft-
ware engineering and software infrastructures. This mea-
sure will then be used to evaluate a set of notations and
compare them to the new formalism introduced in this
contribution.

3. A Measure for System Design Formalisms

As a first step to improve formalization of EI systems
we will argue for a set of criteria such design languages
should fulfill. In order to arrive at those criteria, the
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first question is: What is important for intelligent sys-
tem integration? We believe the central element is what
we will call the ‘Hypothesis Test Cycle’. There is, as yet,
no clear and established structure or system architecture
concept to build intelligent systems. The natural scien-
tific approach to arrive at such a structure is the creation,
validation and evolution of hypotheses about it, which to-
gether make up this cycle.

Thus, the main motivation behind the search for good
formalisms, and therefore the search for criteria to measure
them, is to speed up this hypothesis test cycle behind ev-
ery integration process. Three considerations then shaped
these criteria specifically: the difference between intelli-
gent system integration and software engineering, the im-
portance of structural bias and the relation between a for-
mal system design and the software infrastructure used for
implementation.

3.1. Why EI System Integration Is Not Software Engineer-
ing

What makes EI system integration special? It is, to
a large part, software development —and yet to arrive at
criteria to judge formalisms specifically for scientific work
on research systems we must understand their specific re-
quirements. The basic questions of analysis, design, im-
plementation, deployment and life cycle management of
large software systems are not new but answering them
in a scientific context, especially w.r.t. large-scale system
integration is rarely attempted. Even the hypothesis test
cycle resembles, whether intentionally or not, typical soft-
ware development life cycle methodologies[24] like the spi-
ral model or extreme programming —but in our experi-
ence, more often than not the actual choice of method is
among the agile models.

We believe there are three fundamentally different con-
straints which apply to scientific software integration as
opposed to industrial software engineering. First, the com-
ponents of the system to be integrated are rarely finalized
when integration starts —neither their theoretical basis
nor their implementation. Second, with every scientist be-
ing the expert in his or her specific area, and thus for his
or her specific part of the system, it is an impossible task
for a system designer to plan the integrated system, com-
posed of many state-of-the-art components from many ex-
perts, down to the last class or member variable —a level
of flexibility which only the specific experts can fill is in-
evitable. Finally, the process of integration is not separate
from each scientist’s work on his contribution to the sys-
tem but intertwined both ways: lessons learnt developing
components can influence system design and lessons learnt
from running components in the full system can provide
new constraints for component development.

These differences lead us to the conclusion that the per-
fect formalism cannot be the most exact one. Languages
like UML[2] are suitable for analysis and design of large
software systems, built by dedicated developers based on
established principles. Research system integration, on the

Degree of Structural Bias

Less More

UML SYSTEMATICA 2D

SYSTEMATICA 3-TIERCOGAFF(BOXES AND ARROWS)

XCF
CAST

ROS
YARP

Figure 1: Rough ordering of formalization approaches according to
the amount of structural bias.

other hand, requires a focus on expressing system hypoth-
esis and component interconnectivity, but at a level that
leaves the necessary room for scientific work (similar ar-
guments are presented in [25]).

3.2. The Importance of Structural Bias

If any formalism must allow room for the individual
scientist’s work, a valid question to ask is what the point of
specific formalisms for EI system integration is altogether.
In fact, the description of systems and system hypotheses
as arbitrary graphs (an approach we will evaluate under
the name ‘Boxes and Arrows’ later) is widely used exactly
because it does not limit the range of expression —thus
allowing the preferred level of specificity.

However, in giving up the guidance of a specific for-
malism, all other benefits such a formalism might provide
vanish with it. This is mainly important during the imple-
mentation phase of a system, but also during design and
refactoring a formalism can help to consider details which
will be important later.

We call this influence of the formalism on the system
integration process ‘Structural Bias’. Fig. 1 shows a sort-
ing of the formalisms analyzed more closely in this work
according to their degree of structural bias. UML is clearly
the most detailed, but also the formalism with the least
constraints on the way concepts must be expressed. ‘Boxes
and Arrows’ are similar, with the degree of bias depend-
ing on the specific application. Three related formalisms,
CogAff, Systematica and 3-Tier will be analyzed in sec-
tions 4 according to the criteria defined in the following;
the new formalism Systematica 2d introduced in this
contribution will be evaluated in section 6.2.

3.3. Relation of System Design to Software Infrastructure

With the declared aim of providing support for the full
hypothesis test cycle —including implementation and re-
use —the importance of a software infrastructure to run
the designed systems cannot be ignored. The question
then is how well established infrastructures are suited for
system design already, or at least how the design of a sys-
tem and the infrastructure chosen for its implementation
are related.

To this end we will review the types of system targeted,
the level of description and the structural bias imposed by
six such established infrastructures:
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CAST. The CoSy Architecture Schema Toolkit aims at
“construction and exploration of information-processing
architectures for intelligent systems”[3]. Central mecha-
nism of description is a decomposition of the whole system
into sub-architectures running in separate processes, each
with a working memory and a set of managed and unman-
aged components. Interaction between sub-architectures
is done by reading each other’s working memories and
through a central goal manager.

Beyond the decision about sub-architecture granularity
and separation of components into managed and unman-
aged, the structural bias is quite low; to understand com-
munication patterns, component interdependencies or the
relation between representations a separate system design
language would be beneficial.

XCF. The XML enabled Communication Framework[18,
4] aims at providing a simple and standardized approach
to distributed processing and memory structures of cogni-
tive systems. Central mechanisms of description are the
separation of processing into asynchronously running com-
ponents, an Active Memory XML server and the commu-
nication between those entities using standardized XML
messages. Interaction between processing components is
done through the active memory by queries and subscrip-
tions to events, potentially coordinated by a central Active
Memory Petri-Net Engine.

Except for this very last point (the petri-net) there is
a strong similarity of decomposition and description (if
not of implementation specifics) between XCF and CAST:
within a CAST sub-architecture, the communication pat-
tern of components and working memory is comparable to
that between XCF components and the active memory.
Above that CAST adds distribution into multiple sub-
architectures and a management of goals and XCF adds a
more elaborate internal dynamic of the active memory up
to a central coordination using petri-nets. However, the
structural bias imposed by XCF is not stronger than that
of CAST and also here communication patterns and inter-
dependencies (between components) would benefit from a
separate design language.

Middleware. A group of very software-oriented infrastruc-
tures is spanned by ThinkingCap II[26], YARP[5], ROS[27]
and OpenRTM[28]. They all share the basic decompo-
sition of a system into concurrently running processing
components and support their configuration, communica-
tion and monitoring. All except ThinkingCap support the
addition and removal of components at run-time, main
differences are in the chosen programming languages and
the specific communication protocol (direct or by subscrip-
tion) and communication method (XML-RPC or custom).

What all of them have in common is that structural
bias introduced by the infrastructure is (intentionally) very
low. For instance, while an architecture description file
(ADF) in ThinkingCap II at least contains a description

of the entire system to be run, ROS is only able to de-
termine the specific communication pattern between com-
ponents by run-time analysis. We therefore conclude that
especially for this set of infrastructures, an additional de-
sign language determining the relation of components and
their communication and dependencies is essential.

Conclusion. It is not our intention to deny that a soft-
ware infrastructure is essential for moving from a system
design to an implemented system. However, the evaluation
of structural bias imposed by the analyzed infrastructures
has shown that this is not the level where a discussion
about design and formal design languages is adequate. It
is the goal of most infrastructures to provide the tools for
implementing a very large spectrum of possible applica-
tions. Guiding this process by enforcing consideration of
component dependencies and subsystem separation during
the design process (as the measure criteria in the following
will make explicit) is the task of a formal design language.

One criterion for such a language (but one of many)
must be that it can be mapped to (at least) one software
infrastructure, e. g. the example in [26] for ThinkingCap
II is based on a 3-Tier design. We will therefore consider
the relation between the evaluated formalisms and soft-
ware infrastructures (where published) when applying the
measure in this section. In addition, section 7.1 will dis-
cuss the mapping of the Systematica 2d formal design
language introduced in this paper to a set of software in-
frastructures.

3.4. Criteria for System Integration Formalisms

Few attempts at establishing a formalism measure have
been made (e. g. [9, 1]) for an obvious reason: it will be
qualitative and argumentative at best, asking the right
questions about a formalism, but without the means to
judge their fulfillment quantitatively. We will therefore
use it with caution and revisit the lessons we can learn
from judging a formalism with this measure when we do
so in section 4.

That being said, we will now formulate criteria relating
to the two main considerations: criteria A1-A4 specify the
required minimum power of expression for the system hy-
pothesis; criteria B1-B5 specify additional structural bias
for an efficient hypothesis test cycle, especially regarding
implementation.

3.4.1. Flexible Description

A1: A formalism should not limit the
range of architecture hypotheses that can
be expressed —the structural bias should di-
rect the way how hypotheses are expressed (see
following criteria), but it should not limit which
hypotheses are possible.
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3.4.2. Meaningful Description

A2: A formalism should not hide infor-
mation necessary for understanding an
architecture hypothesis but try to find
an appropriate level of granularity —to
support the full hypothesis test cycle, a design
must be simple enough to transfer the main
idea on the one hand side and detailed enough
to aid construction of the system on the other
hand side.

3.4.3. Standardized Description

A3: A formalism should use a standard-
ized, unambiguous and intuitive notation
to ease discussion and publication —important
both for publication of the architecture and for
communication with the scientists working on
the system.

3.4.4. Description of Interfaces

A4: A formalism should allow specifica-
tion of the interfaces of system elements
(units) whenever they affect at least two
collaborating scientists —following the ar-
guments in section 3.1, the main purpose of
the design can only be to describe what is be-
tween individual scientist’s fields of work, most
notably their interfaces.

3.4.5. Decomposition to Individuals

B1: A formalism should allow decompo-
sition of the architecture to units for in-
dividual scientists —when it comes to im-
plementation, a good formalism will allow in-
dividual scientists to work on their units indi-
vidually until they reach a state that can be
integrated; a granularity which is too rough
will endanger this separation (this relates to
granularity, see A2).

3.4.6. Description of Dependencies

B2: A formalism should allow specifying
the dependencies between collaborating
scientists and identify strong or loosely
coupled interaction —along the same lines
as B1, each individual working on a unit should
be at least aware of the units required for his
or her work.

3.4.7. Translation to Infrastructure

B3: The decomposed units of a forma-
lism should translate into decomposed
units of the software infrastructure cho-
sen for implementation —important for both

implementation and reuse: during implemen-
tation, the translation allows a quick under-
standing and navigation of the system, dur-
ing reuse it is always easier to salvage self-
contained units than to split them.

3.4.8. Exploitation of Infrastructure

B4: The dependencies and interfaces spe-
cified by the formalism should be com-
patible with the chosen software infra-
structure to allow partial testing and gra-
ceful degradation, if available —if a design
can decompose to individuals (B1) and express
their dependencies (B2), it is a direct extension
to ask for partial execution of subsets of units
in order to allow scientists to test their work
in a reduced system or to allow the system to
stay functional when some units fail.

3.4.9. Subsystem Separation

B5: A formalism should allow separat-
ing an existing system into subsystems
and reusing or extending its subsystems
by means of the decomposition in the
implementation (B3) and the formal de-
scription of dependencies (B2) —reuse of
single units is good, exploiting decomposition
and dependencies to allow reuse of larger build-
ing blocks is better.

4. Evaluation of Existing Formalisms

We will now proceed to validate the formulated forma-
lism measure, as well as discuss the range and merit of
its application, on the example of four existing techniques
for formalizing EI systems: ‘Boxes and Arrows’ (as an ex-
ample for the typical ad-hoc approach, used in countless
publications), 3-Tier (as a popular example of technical
embedded system modeling, see [6, 20]), CogAff (as an
example of a biologically motivated design, see [7]) and
Systematica (as a formal language for analysis of hier-
archical architectures, see [8]). We chose these candidates
because we believe they cover a wide range of techniques
of how systems are described; we will focus only on this
quality of description, not on the specific systems built
with them.

As mentioned in section 3.4, the application of each of
the defined criteria is qualitative. To allow comparability,
we will apply them based on the following questions:

• Does the formalism explicitly require the information
to satisfy the criterion?

• Does the formalism ask relevant questions towards
satisfying the criterion?

• Does the formalism imply a bias for system architec-
tures towards or against the criterion?
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Figure 2: The EGO architecture as an example for the “Boxes and
Arrows” formalization approach. Taken from [29].

4.1. The “Boxes and Arrows” Formalism

A very common approach to system design is the ad-
hoc style of drawing boxes and arrows on paper, white
board or any other structure-free medium. The first, and
valid, question about any more structured system forma-
lism is therefore: “Why is it better than arbitrary boxes
and arrows?” Using the formalism criteria introduced in
section 3.4 we can formulate the strong and weak points
of this kind of ad-hoc formalization (see Fig. 2 for an ex-
ample).

Our evaluation of the Boxes and Arrows formalism
thus looks as follows:

A1 (+) The range of expression with arbitrary boxes and
arrows is limitless; this is the main advantage of this
approach.

A2 (+) The level of description may vary, but the flex-
ibility of the approach allows description at an ap-
propriate level of detail.

A3 (?) Together with a precise description of the mean-
ing of the used shapes, the hypothesis can be dis-
cussed or published. Additional effort may also en-
sure intuitive presentation and remove ambiguities,
but the formalism does not provide tools to ensure
this.

A4,B (–) Generally speaking, the formalism does not en-
force specifying details like dependencies, interfaces
or granularity —it does not even force the designer
to consider them. Due to the flexibility, a predefined
way to translate design units to the infrastructure
cannot be ensured.

All these assessments are done for the general case of
boxes. Although they are each argumentative, all together
give a view of the merits (high flexibility) and drawbacks
(limited focus on construction) of the given formalism.

Figure 3: Schematic view of the 3-Tier architecture skeleton as pro-
posed by [6].

Naturally, most other, more detailed formalisms also use
specific boxes as the central means of expression —but, by
characterizing them more closely, ensure consideration of
more criteria.

4.2. 3-Tier Architectures

The class of 3-Tier architectures, as presented by Gat[6]
and used more recently e. g. in [20], is mainly used for robot
control where reactive and deliberative systems work to-
gether (see Fig. 3).

Our evaluation of the 3-Tier formalism thus looks as
follows:

A1,2 (–) The decomposition is fixed to the three main lay-
ers for controller, sequencer and deliberator; a differ-
ent composition or finer description is not intended.

A3 (+) Since the original publication, the 3-Tier ap-
proach has been used and the description can there-
fore be seen as standardized.

A4 (?) The language does not directly formalize the
data transmitted between layers, but the nature of
all communications is implied by the concept.

B1 (–) The rough, three-part decomposition cannot ex-
press the separation of individual scientist’s work
packages.

B2 (+) Based on the original concept, a tight coupling
from bottom to top and a loose coupling from top to
bottom are implied.

B3,4 (+) 3-Tier is traditionally used for robotic applica-
tions, therefore there are many examples of imple-
mentations.

B5 (?) Although the design units can be translated to
infrastructure units, their rough granularity makes

6



Robotics and Autonomous Systems

Figure 4: Example of an agent design in the CogAff framework[7].

it unlikely that they can be reused without modifi-
cation in a subsequent implementation.

4.3. CogAff

The CogAff architecture schema presented by Sloman
et al.[16] is a framework for embedding and relating inte-
grated functionalities. Since the schema itself is not mainly
a means of specifying systems we look at an application
based on CogAff[7] to evaluate the power of this formalism,
see Fig. 4.

Our evaluation of the CogAff formalism thus looks as
follows:

A1,2 (+) The two-dimensional arrangement of units along
the axes Sense-Process-Act (horizontal) and Reactive-
Deliberative-Meta (vertical) allows a flexible arrange-
ment of integrated functionalities with arbitrary de-
tail. The formalism is restricted to the CogAff do-
main, but this is not a major restriction for intelli-
gent artifacts.

A3 (?) Apart from their positioning, the description of
units and connections is not precisely specified, nei-
ther in the CogAff proposal[16] nor in the sample
application[7].

A4 (–) A specification of interfaces is not included.

B1,2 (+) Fine decomposition, focusing on single scientists
is possible, dependencies are not specified but can be
implied from the positioning.

B3,4 (+) Although no specific infrastructure is mentioned
in [7], a mapping of the units and connections to
a standard middleware like YARP or ROS seems
straightforward.

External World

Exteroception

Proprioception

X M

Actuators

D1, B1
M1, P1

R1;2,3: Representation

S1(X)

Combine & Resolve

D2, B2
M2, P2

R2;3: Representation

S2(X)

T2,1: Top-down information

D3, B3 
M3, P3

R3: Representation

S3(X)

T3,2: Top-down information T3,1: Top-down information

...

Figure 5: Schematic view of the Systematica formalism. Taken
from [8].

B5 (?) Design units translate to implementation units,
missing interfaces and implied dependencies make
reuse of subsystems unpredictable.

4.4. Systematica

The Systematica formalism introduced by Goerick[8]
aims at providing a uniform description language for hi-
erarchical system architectures. It takes the idea of incre-
mental system layers (as also found in Subsumption[12])
and adds bottom-up representation and top-down modu-
lation channels, see Fig. 5.

Our evaluation of the SYSTEMATICA formalism thus
looks as follows:

A1,2 (?) The formalism decomposes systems into units,
but each of these units is required to present a full
sensor-motor loop. This rough and one-dimensional
description allows the expression of arbitrary sys-
tems, but not in arbitrary detail.

A3 (+) The formalism itself is mathematically formal-
ized.

A4 (+) Interfaces are specified by representation and
top-down output, input ports are implied.

B1 (–) The constraint of full sensor-motor loops is often
too rough for a decomposition to individual scien-
tists.

B2 (+) Coupling and dependencies are specified by the
top-down and bottom-up channels.

B3,4 (+) A translation to the ToolBOS[30] infrastructure
is presented in [19] and allows partial execution along
the bottom-up / top-down dependencies[31].

B5 (?) Design units translate to implementation units,
rough decomposition makes reuse without modifica-
tion difficult.
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4.5. Conclusion

The evaluation of the four discussed formalisms reveals
different benefits and drawbacks. What strikes out is that
most approaches are not designed to allow an easy im-
plementation of the described EI system, mainly for one
of three reasons: rough description granularity (3-Tier /
Systematica), missing description of interfaces and de-
pendencies (CogAff) or lack of standardization (Boxes and
Arrows). On the other hand, as discussed in section 3.3,
software infrastructures are not able to capture or design
the functional aspects of these systems, like communica-
tion patterns, incremental representations, etc. Finally,
established approaches from software engineering to rem-
edy these issues, such as UML or xADL, require a high
level of precision and predefinition in all elements of the
design, which is not suitable for the dynamic process of
system integration in EI research (see section 3.1).

We believe that the formulated criteria allow to judge
how well a given design language finds a compromise be-
tween these three poles: by asking for a flexible and mean-
ingful description (functional design) in parallel to the abil-
ity to map to and exploit software infrastructure as well
as define interfaces, dependencies and decomposition to
individuals (research flexibility).

5. SYSTEMATICA 2D

So far we have formulated and applied a set of criteria
for system integration formalisms. Although we hope that
the introduced measure is applicable and useful beyond
this work, this is not essential: we can already pinpoint
the merits and drawbacks of the evaluated existing for-
malisms: Boxes and arrows are very flexible, but neither
implementation-oriented nor standardized, 3-Tier is very
focused on implementation but too rough to describe colla-
boration, CogAff allows a flexible and implementable orga-
nization of units but without interfaces or behavior space
description which in turn is supported by Systematica,
which is again too rough and enforces a one-dimensional
organization. In order to evolve a new way of writing sys-
tems we want to combine the flexibility of boxes and arrows
with the implementation- and collaboration-orientation of
CogAff and Systematica.

The result is the development and formalization of ‘Sys-
tematica 2d’ (short: ‘Sys2d’). It describes systems on
two levels: the functional and the descriptive. In set nota-
tion, a system S = (U,A) is defined in Sys2d by a set of
functional units U , including interfaces, connections and
dependencies, and a set of sub-architectures A, including
the description of their context, semantics and sensory &
behavior spaces. Fig. 6 shows an example design, all rele-
vant elements will be detailed in the following.

5.1. Functional System Design

On the functional level, a Sys2d system is composed
of N > 2 processing units un ∈ U, n = 1..N . There is

always one unit u1 is responsible for emitting sensor events
from exteroception Se and proprioception Sp as the full
sensor space S = Se×Sp. A second predefined unit u2 is
responsible for receiving and executing motor commands
from the motor space M .

5.1.1. Formal Notation

Every unit un = {(Dn, In, On, Pulln, Pushn)},
n = 1..N is described by the following features (see
Fig. 6):

• it has an internal dynamics Dn running indepen-
dently and asynchronously from all other units;

• it has an interface defined by a set of input ports In,
where each element is defined by its name, type and
input role, thus In ⊂ {(name, type, role)} and a
set of output ports On, where each element is defined
by its name and type, thus On ⊂ {(name, type)};

• it specifies the properties of each input port by as-
signing one of three ‘roles’, which we will call Driv-
ing, DrivingOptional or Modulatory —these roles
define dependencies between units as will be detailed
in section 5.1.2;

• it may pull data from another units output port o′

to one of its input ports i, specified by a set of pull
operations Pulln ⊂ {(usource, o

′, i)};

• it may push data from one of its output ports o to
another units input port i′, specified by a set of push
operations Pushn ⊂ {(utarget, i

′, o)}.

A description of a system as a set of units (with ar-
bitrary granularity), communicating over arbitrary con-
nections is intuitively very flexible but does not enforce
consideration of unit dependencies, sub-system reusability
or infrastructure exploitation. Dependencies, and thereby
structural bias, are expressed by two means: connections
can be formulated symmetrically as pull or push and each
input port has a specific role. We will discuss these lan-
guage elements in the following before deriving system
properties and constraints, like incremental construction
and global deadlock-free operation, in section 5.4.

5.1.2. Input Roles & Dependencies

Two formal elements allow formulating dependencies:
push/pull connections and input roles. These two mecha-
nisms are independent and can therefore be used to specify
dependencies along two independent dimensions: the dif-
ference between push/pull defines the ‘build order’ dimen-
sion, the roles of input ports define the ‘processing flow’
dimension.

Build Order: If unit un pulls data from or pushes
data to unit um then un has to be built after unit um —
in other words: only the newer unit needs to know about
the connections it makes to older or preexisting units (al-
though the older units must provide the ports to accept
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Subarchitecture 1

Basic loop with sensor space S1 and behavior space B1

Subarchitecture 2

Added loop with sensor space S2 and behavior space B2
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Figure 6: Visualization of a Systematica 2d description. The system is composed of units which are arranged along the two axis according
to processing flow and build order. Black ports are outputs, light gray ports are Modulatory inputs, white ports with solid line are Driving
inputs and white ports with dashed lines are DrivingOptional inputs.

these connections). Since every connection between ports
can be symmetrically formulated as either a push or a pull,
this sorting by build order is completely in the hands of
the designer.

Processing Flow The concept of sorting units by
their role or function in the processing chain is old: from
the Sense-Plan-Act models, over the Controller-Sequencer-
Deliberator sorting in 3-Tier to the Bottom-Up and Top-
Down channels in Systematica—not to mention the fre-
quent usage of these terms in neurological studies.

In the Sys2d functional model, we chose to model this
quality locally, by specifying the ‘role’ of input ports as
one of the following three (see Fig. 7):

• Driving inputs are mandatory and indicate input
data from units prior to the recipient along the pro-
cessing flow —this is typically used for sensor pre-
processing results, representations, etc.

• DrivingOptional inputs are similar to Driving but
optional, i. e. the recipient can function without re-
ceiving data on such ports —this is typically used for
inputs to data fusion units, motor commands, etc.

• Modulatory inputs are optional and indicate input
data from units further along the processing flow —
this is typically used for modulation of parameters
or operation modes

One combination is intentionally missing: mandatory in-
puts from modules further along the processing flow (i. e.
mandatory modulation). This is perhaps the strongest
structural bias enforced by Systematica 2d; the main
motivation is measure criterion B5: if units can form manda-
tory connections to modulation sources, a decomposition
into independent subsystems is impossible. This constraint
does not prohibit processing loops in a system but only
requires some links in a processing loop to be declared
as loosely coupled, i. e. DrivingOptional or Modulatory.

Input Roles

Mandatory

Optional

Driving Modulatory

Driving

DrivingOptional Modulatory

(Input Data, Representations, …) (Parameters, Operation modes, …)

(Loose Coupling)

(Strong Coupling)

Figure 7: Input roles in Systematica 2d. Two criteria are in-
terleaved: driving / modulatory inputs (sometimes referred to as
bottom-up / top-down) and mandatory / optional inputs. Three of
these combinations are supported by the designated roles, the combi-
nation ‘mandatory and modulatory’ is excluded by design. See text
for details.
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Specific examples of the impact of this constraint will be
discussed in section 7.2.

Sorting along the processing flow is now straightfor-
ward. If unit un receives (by push or pull) data to a Driv-
ing or DrivingOptional input from unit um then unit un

is further along the processing flow than unit um. Con-
versely, if unit un receives data to a Modulatory input
from unit um then unit um is further along the process-
ing flow than unit un.

5.2. Functional vs. Technical Aspects

Both dimensions, build order and processing flow, could
be interpreted as purely technical categorizations to im-
prove implementation. However, from a technical point of
view, there is no important difference between Driving-
Optional and Modulatory inputs (both are optional or
‘loosely coupled’). Even the build order would be super-
fluous since relations like ‘build A before B’ can be derived
directly from the dependencies defined by input roles.

Our motivation for distinguishing push/pull connec-
tions and DrivingOptional/Modulatory inputs is therefore
much more motivated by the goal of establishing a func-
tional relation between units in addition to the goal of
using functional design elements purely for a technical
implementation. The separation of DrivingOptional and
Modulatory inputs follows the distinction between sensor-
near to sensor-far data flow and vice versa, thus defining
a dimension from sensor to internal representation to ac-
tuator (‘processing flow’). The separation of push and
pull connections allows sub-system separation in a much
stronger way than by the unit dependencies alone, namely
into incremental construction blocks (definition follows in
section 5.4) similar to the phylogenetic evolution of the
control structure of a biological organism. A discussion of
the relation between functional behavior of a system and
the positioning of units in these two dimensions will be
done in section 7.3.

5.3. Descriptive System Design

In addition to the set of units, a definition of sensor
and behavior spaces is important for understanding and
comparing system hypotheses.

We follow the understanding and motivation presented
in [8]: The sensor space of a unit or set of units describes
which subset of sensors (proprioceptive or exteroceptive)
is accessible, the behavior space describes which range of
behaviors can be controlled (either by direct motor com-
mands or by modulation of other units). This allows un-
derstanding which sub-systems have access to specific (e. g.
visual) sensors and which sub-systems are able to trigger
specific externally visible behaviors.

Since this is an independent level of description whose
granularity may not coincide with that of the units, Sys-
tematica 2d allows description of sensor and behavior
spaces in what we will call ‘sub-architectures’, composed of
one or more units. In this way, the definition of descriptive

elements does not impose constraints on the granularity of
the functional decomposition.

In a Sys2d design S = {U,A}, a sub-architecture
ak ∈ A is a tuple ak = (name, Uk, Sk, Bk) with Uk ⊂
U and ∀(k, l) : Uk ∩ Ul = ∅ (a unit may not belong to
more than one sub-architecture), where Sk describes the
sensor space used by ak and Bk describes the behavior
spaces emitted by ak (see Fig. 6 for a complete Sys2d
design).

5.4. Functional Constraints

Several system properties can be ensured by formulat-
ing constraints on the functional side of a Sys2d design
(the set U):

1. Sortability along the build order (vertical) and pro-
cessing flow (horizontal) dimensions,

2. Ability for incremental construction,

3. Completeness of a subgraph in terms of necessary
units to run the subgraph,

4. Global deadlock-free operation.

Sortability requires that the sorting relations be free
of loops in both dimensions: there should be no loops
based on push/pull connections as well as no loops based
on connections to driving or modulatory inputs. Two ex-
amples of the kinds of design this affects can be found in
the discussion (see section 7.2).

Definition 5.1 (Sorting Relations). A unit un ∈ U
will be called ‘left of’ um ∈ U (un <h um) iff there
is a push or pull from an output of un to a Driving or
DrivingOptional input of um or there is a push or pull
from an output of um to a Modulatory input of un. A unit
un ∈ U will be called ‘below’ um ∈ U (un <v um) iff
there is a push p ∈ Pushm connecting an output of um to
an input of un or there is a pull p′ ∈ Pullm connecting an
input of um to an output of un. To detect loops in these
relations, we compute the transitive hulls <+

v and <+
v .

The transitive hull of a relation < is the smallest relation
<+ which contains all elements of < and is transitive,
i. e. if a <+ b and b <+ c then also a <+ c; it can
be computed by starting with <+=< and incrementally
finding triples (a, b, c) and adding (a, c) to <+.

Proposition 5.1 (Sortability). A system S = (U,A)

is sortable iff the relations <+
h and <+

v are antisym-
metric, i. e. if there is no pair (a, b) with a <+ b and
b <+ a.

Proof. Since the sorting relations are defined indepen-
dently, sorting in horizontal and vertical direction can also
be done independently and equivalently with <+ repre-
senting <+

h and <+
v . The weakest form of sorting, i. e.

the ability to assign order numbers on ∈ N to all units
un ∈ U so that the order obeys the sorting relation
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(un <+ um ⇒ on < om), is provided by partially
ordered sets[32], which are defined over relations which
are transitive and antisymmetric. Since <+ is transi-
tive and antisymmetric it can be used as ordering rela-
tion in the partially ordered set (U,<+), thus making
the set U sortable (along the horizontal and vertical axes
independently). �

Several newer works define partially ordered sets on ≤ in-
stead of < relations and require them to be reflexive. The
sorting relations introduced here do not define ‘equality’
between units, thus the <-sign was used; this also means
that there is no necessity for the relations <+

h and <+
v

to be reflexive as it is not an essential precondition for
sortability of a partially ordered set[32].

Incremental construction, as the second property
to be evaluated, requires that mandatory, i. e. Driving, in-
puts are connected and come from preexisting, i. e. older,
units.

Definition 5.2 (Incremental Construction). A system
S = (U,A) is said to allow incremental construction
iff it is sortable and for every unit un, for every Driving
input port (i, t,Driving) ∈ In there is a pull connection
(um, o, i) ∈ Pulln providing data to that port.

Proposition 5.2 (Complete Subgraph). Given a sys-
tem S = (U,A) which allows incremental construction, a
subgraph Uk ⊂ U is executable if all mandatory inputs of
all units un ∈ Uk receive data from within the subgraph.
Thus, the subgraph Uk is executable if it contains the full
transitive subgraph under <v of each contained units:

∀(un ∈ Uk, um ∈ U) : um <+
v un ⇒ um ∈ Uk

Proof. Incremental construction requires all Driving in-
put ports to receive data by pull connections. A pull con-
nection between two units implies that the two units are
related with <v. By transitive completion from <v to
<+

v , each unit is related to all units required to provide
all Driving and therefore all mandatory inputs. �

Proposition 5.3 (Global deadlock-free operation).
Every system S = (U,A) which is composed of local deadlock-
free units and is sortable is global deadlock-free.

Proof. In any system of locally deadlock-free, asynchro-
nously running units, global deadlocks can occur only by
subsets of units waiting on each other because of loops of
mandatory inputs. Mandatory input is only permitted us-
ing Driving inputs, therefore all connections (both push
and pull) to a mandatory input from sending unit un to
receiving unit um imply un <h um. Since the system is
to be sortable, the transitive hull <+

h of <h is required
to be antisymmetric, i. e. there is no pair (un, um) with

un <+
h um and um <+

h un. Therefore, the system can-
not contain loops of mandatory inputs. �

Definition 5.3 (Valid Sys2d Design). A Sys2d system
S = (U,A) is said to be valid iff it is sortable and allows
incremental construction.

The term ‘valid Sys2d design’ thus combines all formu-
lated constraints (enforcing the highest level of structural
bias possible with Systematica 2d) and all derived ben-
efits (incremental construction, sub-system decomposition
and global deadlock-free operation). All future discussions
concerning the impact of structural bias and the benefits
of Systematica 2d in general will concentrate on ‘valid’
Sys2d designs.

5.5. Visual Representation

To allow faster understanding and communication, a
visual representation of the Sys2d description, so far de-
scribed in set notation, is clearly preferable. We restrict
this representation to sortable Sys2d systems to allow the
distributions of units along the horizontal and vertical axis
to be exploited visually. Fig. 6 shows a graph of such a
system. Units are shown as large boxes with their input
and output ports arranged on the top and bottom sides.
Sub-architectures are shown as containers around sets of
units, adding a name and descriptive properties. Ports are
colored as follows:

• Driving inputs are white with black, solid bound-
ary,

• DrivingOptional inputs are white with black, dashed
boundary,

• Modulatory inputs are light gray and

• Outputs are black with white text.

Ports are sorted and assigned to unit top or bottom side
so that crossing connections are minimized, but this has
no conceptual meaning. Since the depicted systems are
sortable, every connection is initiated by the higher unit
along the Y axis: connections from a low output to a high
input are ‘pulled’ by the higher unit, connections from a
high output to a low input are ‘pushed’ by the higher unit.
Thus, the visual representation can cover all properties of
sortable Sys2d systems. Based on this visual represen-
tation, a visual editing software was created, please see
Appendix.

6. Evaluation

After the definition of the Systematica 2d system
design and description language, the most pressing ques-
tions are what we can do with it and why it is better than
the existing formalisms evaluated in section 4. We will
not present a full system instance designed with Sys2d in
order to keep this publication self-contained, please refer
to [33] for a detailed description of a large-scale EI sys-
tem built based on a Sys2d design. Rather, to answer the
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Figure 8: Sys2d visualization of the 3-Tier example from Fig. 3.

first question, we will present ‘translations’ of the evalu-
ated formalisms 3-Tier, CogAff and Systematica to the
new language. Based on these examples and the functional
constraints formulated in section 5.4 we will then evaluate
Systematica 2d with the measure criteria presented in
section 3.

6.1. Translation of existing formalisms

Figures 8, 9 and 10 show visualizations of Sys2d de-
signs for the 3-Tier, CogAff and Systematica examples,
respectively. All three systems are sortable and allow
incremental construction; this is not a property of the
“translation” but shows that these qualities are important
in other notations as well. The visualization can therefore
be done along the lines described in section 5.5.

In the process of translating from the original forma-
lism to Systematica 2d several pieces of information had
to be added to arrive at a complete system description.

For the 3-Tier case, this is the question of triggered
or deliberative planning —a question which is in general
undecided in system theory but which still requires a de-
cision for every specific system instance. Fig. 8 shows the
case of triggered planning.

For the CogAff example, the interfaces had to be de-
fined in more detail, which was done based on explanations
given in [7]; dependencies and input roles were chosen to
fit the two-dimensional arrangement already inherent in
CogAff.

Finally, for the Systematica example, input ports
had to be defined where the original formalism only speci-
fies representations and top-down outputs; because of the
one-dimensional nature of Systematica the units are ar-
ranged diagonally.

The examples not only show that Systematica 2d is
able to express the evaluated formalisms adequately but
that it helps to ask questions necessary to complete their
notation.
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Belief Manager
Belief State
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Goals

S

Reactions
S M

Actuators
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Sensors
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Figure 9: Sys2d visualization of the CogAff example from Fig. 4.
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Figure 10: Sys2d visualization of a Systematica example similar to
Fig. 5.

6.2. Evaluation of Systematica 2d in the Measure

Our evaluation of the Systematica 2d formalism thus
looks as follows:

A1 (?) The formalism decomposes systems into units
with inputs, outputs and connections. The proposed
functional constraints reduce this flexibility slightly,
which is a constructive bias for most EI systems but
might limit the expressiveness in other domains (see
discussion in section 7.2).

A2 (+) The formalism allows a fine granularity in the
description and it is therefore up to the designer to
choose which level of detail is needed —although it
needs to respect criterion B1 (Decomposition to indi-
viduals). Beyond the functional units, a description
of sub-architecture properties is also possible.
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Systematica 2d XCF YARP ROS

Units Processes Processes Processes

Connections
(push+pull)

Active Memory
(XML-RPC)

YARP ports
ROS
(XML-RPC)

Driving
Subscription
+ sync.

yarp-connect
+ sync.

Subscription
+ sync.

DrivingOptional
Modulatory

Query Observer Subscription

Table 1: Mapping of Sys2d functional description elements to exist-
ing software infrastructures.

A3 (+) The formalism itself is mathematically formal-
ized.

A4 (+) Interfaces are explicitly described by input and
output ports.

B1 (+) The granularity can be matched to a per-scientist
decomposition (see A2).

B2 (+) Coupling and dependencies are specified by in-
put roles and push/pull connections.

B3 (+) The formalism can be translated to any infra-
structure which supports communicating units and
the three used input roles (see [31]) —which is possi-
ble in practically every infrastructure, from service-
oriented systems over agents and black-board sys-
tems to data-flow and OOP-based engines.

B4 (+) The functional properties of incremental con-
struction and complete subsystems defined in sec-
tion 5.4 aim directly at utilizing infrastructure prop-
erties of partial testing and graceful degradation.

B5 (?) The fine decomposition makes reusing single
units possible without change (at least when observ-
ing B1). In addition, systems fulfilling the incremen-
tal construction constraint are very easy to decom-
pose into reusable subsystems. However, a reuse of
sub-architectures as ‘composite’ units in future sys-
tems is planned but currently not formalized.

7. Discussion

7.1. Mapping Sys2d Designs to Software Infrastructure

Following the discussion about the design power of soft-
ware infrastructures in section 3.3, the last step in clos-
ing the hypothesis test cycle using Systematica 2d is to
provide a mapping of the functional elements of a Sys2d
design to mechanisms present in specific established soft-
ware infrastructures. Such a mapping is necessary since
even though Sys2d uses terms like ‘interfaces’, ‘asynchro-
nously’ running units or ‘build order’, these are not defined
with a particular software engineering concept in mind but
in order to provide a formal system description, including
the constraints and proofs presented in section 5.4.

Table 1 shows an overview of the proposed mapping
of the technical design elements found in the functional

description of Sys2d designs to XCF, YARP and ROS.
These technical elements are units, connections (without
the push/pull distinction) and input roles (without the
DrivingOptional/Modulatory distinction). Thus the in-
frastructure has to support asynchronously running pro-
cesses/threads/components/etc., at least one way to ex-
change data between them and the ability for tight and
loose coupling.

Common to all mappings is that units are to be imple-
mented as separate processes, using the mechanisms pro-
vided by the infrastructure to interact. In XCF, this inter-
action goes thought the Active Memory in order to benefit
from the easy addition and removal of processes, as well
as from the memory dynamic for modulation signals (e. g.
removing a parameter set if it is not regularly updated).
In YARP, processes communicate directly (using YARP
ports) in an observer pattern, whether a connection is a
push or a pull implies which of the processes performs the
registration. In ROS, processes also use the communica-
tion mechanism provided by the infrastructure which relies
completely on subscriptions.

Extra care is necessary for implementing tight and loose
coupling since all three infrastructures use subscriptions
by default. For Driving inputs, a synchronization to ob-
served / subscribed channels may be necessary, for Dri-
vingOptional and Modulatory inputs it must be ensured
that received data is not outdated (i. e. that the sending
unit / process is still alive). An algorithm to achieve this
loose coupling can be found in [31].

In summary, we believe that mapping Sys2d designs to
these (and other) software infrastructures is unproblematic
since unit decomposition, interfaces and connections in the
design serve not only the functional description but always
keep the future implementation in mind.

7.2. Discussion of Structural Bias in Systematica 2d

After presenting the formalism itself and the benefits
we believe it entails for research system integration, we
will now discuss the specific impact of the implied struc-
tural bias and the constraints this imposes for system de-
sign. From an ADL point of view, one could say that the
Sys2d language provides pre-defined component (units)
and connector types (input roles) and uses those to en-
force constraints on the explicit architecture configuration
chosen by the designer. In this section we will analyze
the kinds of configurations favored by these constraints by
looking at two technical communication patterns (Client-
Server and Publisher-Subscriber) and one popular artifi-
cial intelligence design pattern, “Lateral Support”. On
these examples we will show which kinds of design are fa-
vored by Sys2d, mainly by restrictions on input roles and
sortability, and why we believe this to be an advantage.

7.2.1. Server-Client

The typical way of connecting server and clients is
by every client pushing requests to the server and the
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a) Client-Server Model (Tight Coupling) b) Client-Server Model (Loose Coupling)

Server
Requests Responses

Client 1
ResponseRequest

Client 2
ResponseRequest

Server
Requests

Responses

c) Publisher-Subscriber Model

Subscriber 2
Messages

Subscriber 1
Messages

(Loose Coupling by default)

Client 1
RequestResponse

Client 2
RequestResponse

Publisher

Messages

Figure 11: Common interaction scenarios to illustrate and motivate
the structural bias of Systematica 2d. a) Tight coupled Server-
Client layout, where clients push requests and the server pushes
responses —this creates a build-order unsortability (a dependency
loop) which makes incremental construction impossible. b) Alter-
native, Sys2d-compatible loose coupled Server-Client layout where
clients push requests to the server but pull results back once the
server provides them. c) Publisher-Subscriber layout, subscription is
modeled by pull connections, thus ensuring separability and sorta-
bility.

server pushing responses back to each client —the result-
ing Sys2d design is depicted in Fig. 11a. We see several
drawbacks in this design: First, the two-way push makes
it unclear which unit could run without the other: both
units depend on each other, which makes independent de-
velopment or testing difficult (see measure criteria B1 and
B4 in section 3.4). Second, the use of Driving inputs for
both requests and responses (assuming server and client
wait for these inputs, which is the typical case) implies
synchronization of both partners to each other, thus un-
dermining the idea of asynchronous processing and impair-
ing the ability for subsystem decomposition (criterion B5).
Both objections are reflected in the Sys2d constraints: the
graph shown in Fig. 11a is sortable neither in horizontal
nor in vertical direction.

Fig. 11b shows an alternative interpretation of a Server-
Client layout which is compatible with the Sys2d con-
straints. The server is modeled as the base unit, receiving
request via an optional, modulatory input and publish-
ing —but not pushing —the results. Clients thus push
their requests to this modulatory server input and pull
back results from the server. This allows the server to run
asynchronously, be tested independently and be separated
and reused.

We would like to point out that both designs, the non-
compatible and the compatible, have processing loops be-
tween server and clients. The structural bias in System-
atica 2d does not prohibit loops but merely ensures that
they are not tightly coupled: in every processing loop there
must be at least one connection with loose coupling —this
usually requires only a few design adjustments and allows
the described benefits.

Processing 2

Processing 1

Actuators
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Modulation 1
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Modulation 1Modulation 2

(A)

Decision 2
Representation 2Modulation 1
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Representation 1 Modulation 2
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Modulation 2
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Modulation 1
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Actuators
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Optional decision making about modulation signals

Processing Layer
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Figure 12: (A) Straightforward modeling of the lateral support pat-
tern: the mutual modulation produces a processing flow unsortabil-
ity. (B) Model of lateral support from a Systematica 2d point of
view. To ensure separability, processing and decision, or support gen-
eration, are separated. We see this as a general principle: in order
to reduce interconnectivity and improve robustness against failing
units, processing units are separate from decision units providing
modulation signals.

7.2.2. Publisher-Subscriber

A Sys2d interpretation of this layout can be seen in
Fig. 11c: The publisher asynchronously generates mes-
sages which are pulled from the clients to their driving in-
puts. In this interpretation, the actual ‘subscription’ pro-
cess is implied in the setup of the pull connection. With
this design, the same properties of asynchronous opera-
tion, independent testability and separability as described
for the Server-Client layout also apply here.

7.2.3. Lateral Support

It is a popular technique to use (intermediate) results
of one processing flow, e. g. confidence ranges, to improve
processing of a parallel processing flow —this is commonly
referred to as lateral support. In a straightforward model-
ing of two units (see Fig. 12A), mutual modulation leads
to a similar problem as discussed for the ‘typical’ Server-
Client layout in section 7.2.1, just that the sortability vi-
olation is in the ‘processing flow’ dimension.

We therefore propose an alternative layout, as shown
in Fig. 12B: it is based on the concept that the logic for
performing each processing flow and the logic for apply-
ing intermediate results as modulation to another process-
ing should be separate. In the proposed design, this sec-
ond piece of logic is called ‘Decision’ unit. Using such a
processing/decision separation recovers several important
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Figure 13: Schematic comparison of system-wide integration ap-
proaches. Left: (Pre-)Processing steps are incrementally added until
the internal representation supports making complex decisions (rea-
soning, planning, . . . ), thus a motor command is produced by the
top-most component; Right: Simple behavior generation is built first
and then enriched / modulated by more complex preprocessing, deci-
sion making and behavior generation, motor commands are produced
during all phases of development.

properties: First, the graph is sortable again by avoiding
the two-way modulation; by extension it also allows incre-
mental construction. Second, the separation into a basic
processing layer and an added decision layer helps with
partial testing and ensures that processing can go on if
the decision layer fails (graceful degradation). Finally, in
case a processing module is to be used in a different con-
text where this form of lateral support is not possible, it
can be used without the decision module specific for this
purpose (subsystem separation).

7.3. Comparison of Integration Approaches

In addition to the modeling of specific systems, we be-
lieve Systematica 2d can also be used to relate integra-
tion approaches, not primarily by their set notation but by
the visual representation of the horizontally and vertically
arranged units of these sets. It is in the nature of this
sorting to show a correlation between build order (verti-
cal) and processing flow from sensor to actor (horizontal).
Two schematics of possible arrangements are visualized in
Fig. 13, we will call the left ‘Incremental Processing’ and
the right ‘Incremental Behavior’.

The ‘Incremental Processing’ approach starts with sen-
sory (e. g. visual) preprocessing, adds cue fusion or post-
processing, proceeds to scene analysis and reasoning, and
finally derives motor commands from planning. Thus,
units are arranged along the secondary diagonal, from
lower left to upper right and into the top left corner. EI
systems based on this approach will require a sophisti-
cated sensory processing for the artifact to do anything
at all (the danger being that the integration process gets
stuck here), but once that is achieved opens the door to
powerful reasoning and planning.

The ‘Incremental Behavior’ approach starts with very
rough (typically multi modal) sensory processing to en-
able a quick selection of basic behaviors (e. g. approach /
retreat) which can already allow behavior learning. More
sophisticated preprocessing and sensor fusion is added on

top of that, necessitated by more complex tasks and behav-
iors, resulting in symbolic storage and reasoning when this
is actually required for a task. Thus, units are arranged
along the primary diagonal, from upper left to lower right
and in the lower left corner. EI systems based on this ap-
proach will start with behavior generation and learning as
the first step (the danger being that the system gets stuck
in toy scenarios), but give all further processing layers a
behaviorally grounded frame of reference.

It is not our aim to judge in this long dispute, but to
show that differences in the integration approach result in
very apparent differences in the two-dimensional arrange-
ment of Systematica 2d system descriptions.

8. Conclusion

The development, implementation and evolution of ar-
chitectural structures is essential for the progress of in-
telligent systems. Formalisms which make comparison to
other systems hard, do not consider collaboration suffi-
ciently and in effect lead to long development phases and
non-reusable systems are counterproductive for this pur-
pose. We have therefore formulated Systematica 2d, a
formalism to support this hypothesis test cycle through all
three phases: starting with a description of the hypothe-
sis, including functional and descriptive elements, over the
crucial support during system integration, based on func-
tional constrains of the design, to the subsystem separation
allowed by explicit modeling of dependencies. A measure
was introduced to evaluate Systematica 2d and identify
improvements over existing formalisms.

We have shown that the new formalism is able to ex-
press the evaluated existing formalisms and enriches them
by explicit interfaces, finer granularity or two-dimensional
ordering of units. In addition to the measure, this ability
of translation provides another way to relate system inte-
gration concepts to one another. The functional design,
including the provable properties of incremental construc-
tion and global deadlock-free operation, combined with
the ability to map to a variety of software infrastructures,
makes constructing systems faster. The descriptive design
additionally allows analysis of sensor and behavior spaces
and relation to other system hypotheses.

Future work will focus on further enriching and apply-
ing the new formalism. Planned extensions are the ad-
dition of temporal dependencies or latencies as well as a
formal description of test-cases for the behavior of units.
To allow handling higher numbers of units, a formulation
of sub-architectures into ‘composite units’ will be investi-
gated. However, the main effort of future work with this
formalisms will be on translating existing and developing
new intelligent system hypotheses as well as categorizing
integration approaches in more detail in order to identify
the most promising next steps.

15



Robotics and Autonomous Systems

Appendix: Visual Editing Software

Based on the visual representation described in sec-
tion 5.5, a software tool was developed to create, view
and edit Sys2d designs. Using the simple shapes of units,
ports and sub-architectures, it is possible to quickly com-
bine systems while automatically enforcing the sortability
constraint and utilizing it to support the positioning of
units. Basis for the tool is an XML format represent-
ing the set-notation of Sys2d models, enriched with tags
carrying visual data. The tool is platform-independent,
allows interactive editing and is able to verify the con-
straints of valid Sys2d designs. Graphs can be exported
as PNG or SVG for visual or vector-based post processing,
respectively.

To get a copy of the tool, please send a short mail to
benjamin.dittes@honda-ri.de.

References

[1] D. Vernon, G. Metta, G. Sandini, A survey of artificial cogni-
tive systems: Implications for the autonomous development of
mental capabilities in computational agents, IEEE Transactions
on Evolutionary Computation 11 (2) (2007) 151–180.

[2] OMG, Unified modeling language (uml) superstructure specifi-
cation, [Online] (Feb 2009).
URL http://www.omg.org/spec/UML/2.2/

[3] N. Hawes, J. Wyatt, Engineering intelligent information-
processing systems with cast, Adv. Eng. Inform. 24 (1) (2010)
27–39.

[4] J. Fritsch, S. Wrede, An integration framework for develop-
ing interactive robots, Software Engineering for Experimental
Robotics (2007) 291–305.

[5] G. Metta, P. Fitzpatrick, L. Natale, Yarp: Yet another robot
platform, International Journal on Advanced Robotics Systems
3 (1) (2006) 43–48.

[6] E. Gat, et al., On three-layer architectures, Artificial Intelli-
gence and Mobile Robots.

[7] N. Hawes, Architectures by design: The iterative development
of an integrated intelligent agent, in: Proceedings of AI-2009,
The Twenty-ninth SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence, 2009.

[8] C. Goerick, Towards an understanding of hierarchical architec-
tures, Transactions on Autonomous Mental Development, Spe-
cial Issues on Cognitve Architectures to appear.

[9] N. Medvidovic, R. Taylor, A framework for classifying and com-
paring architecture description languages, Software Engineering
- ESEC/FSE’97 (1997) 60–76.

[10] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
W. Mann, Specification and analysis of system architecture us-
ing rapide, IEEE Transactions on Software Engineering 21 (4)
(1995) 336–354.

[11] D. Garlan, R. Monroe, D. Wile, Acme: An architectural inter-
connection language, Tech. rep., Technical Report, CMU-CS-
95-219, Carnegie Mellon University (1995).

[12] R. Brooks, A robust layered control system for a mobile robot,
IEEE journal of robotics and automation 2 (1) (1986) 14–23.

[13] M. Scheutz, J. Kramer, Radic: a generic component for the
integration of existing reactive and deliberative layers, in: 5th
Intl. joint conf. on Autonomous agents and multiagent systems,
ACM New York, NY, USA, 2006, pp. 488–490.
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