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Tracking Moving Vehicles Using an Advanced Grid-based Bayesian
Filter Approach

Andreas Alin, Martin V. Butz and Jannik Fritsch

Abstract— Neuroscientific research suggests that the human
brain encodes spatial information in a Bayesian-optimal way
by means of distributed, neural population codes. In this paper
we apply this concept to Advanced Driver Assistance Systems,
introducing a grid-based population code for tracking and
predicting the behavior of individual vehicles. The represen-
tation encodes a spatially distributed hidden Markov model of
current and future vehicle locations and velocities. Predictive
information and additional sensory information are integrated
over time by means of Bayesian filters. Performance of the
system is compared with a Kalman Filter in an overtaking
maneuver in a simulated environment. It is shown that the
grid-based approach excels Kalman-Filtering performance in
several situations, where the Gaussian distribution and linear
system assumptions of the Kalman filter are strongly vio-
lated. Moreover, the grid-based approach allows the flexible
incorporation of additional behavioral assumptions. When the
approach assumes that the tracked vehicle will stay in its lane,
the probability distribution can be even more favorably focused
and unexpected lane changes can be detected.

I. INTRODUCTION

To be able to warn about and avoid potentially dangerous
events, Advanced Driver Assistance Systems (ADAS) should
be able to both identify other objects in their surrounding
and predict their location over the next few seconds. To im-
prove and differentiate the prediction process, object-specific
movement and environmental constraints should be incorpo-
rated. Humans can accomplish such tasks rather well, even
though their knowledge about their surrounding is inevitably
filled with uncertainties. Thus, to be able to make adequate
decisions, our brain needs a way to handle uncertainties
effectively. Computational neuroscience and related research
areas suggest that the human brain integrates information in
a Bayesian optimal way, maintaining a probabilistic model
of the environment encoded in neural population codes [1].
In this paper, we investigate the advantages of population-
encoded representations, building a distributed representation
of anticipated object presence probabilities around a vehicle.

For realizing an ADAS with the mentioned capabilities,
four major challenges have to be addressed: 1) Objects need
to be detected and identified. 2) Object movements and
behaviors need to be tracked and predicted. 3) A strategy
for the own vehicle has to be found. And 4) the strategy
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has to be accomplished by either informing the driver or
by automatically avoiding dangerous situations, such as
collisions. This paper deals with the second challenge.

In real-world situations, detections are prone to error and
therefore detection data should be filtered by incorporating
predictive sources of information. To combine predictive and
sensory sources of information in an optimal way, Bayesian
Filters can be used. In the automotive domain, previously,
Bayesian Occupancy Filters (BOFs) were proposed [2], [3],
[4], which represent an occupancy grid that encodes probabil-
ities about grid location occupancies. In contrast to BOFs, the
Bayesian Histogram filter (BHF) models probabilities of the
presence of individual surrounding vehicles at each node in a
discrete grid, which surrounds the own vehicle. Our approach
extends the BHF. Probabilities are propagated across grid
nodes by means of a movement model, which reflects the
dynamics of the tracked vehicle. The resulting predicted
probability distribution for the next time step is fused with in-
coming sensory information. Due to the utilized population-
encoded representation, neither the movement model nor the
sensory model need to be Gaussian. Moreover, additional
environmental influences, such as road boundaries, can be
taken into account easily. Generally this can also be used to
predict possible future positions of multiple tracked vehicles
in a probabilistic way. In the long run, such a representation
can therefore be used to detect and avoid dangerous areas,
where a collision with other vehicles, pedestrians, or objects
is highly probable. Other approaches [5] also produce a
reachable set of vehicles, but we are using a less deterministic
environmental model as input.

We now first relate our work to previous approaches,
giving an overview over the general underlying Bayesian
mechanisms and then taking a closer look at the related
BOF system. Next, we detail our grid-based approach. For
evaluation purposes, we compare our system with the results
of a common Kalman-Bucy filter in a tracking task, where
we exemplarily focus on an overtaking scenario generated
by the car simulator TORCS. Finally, we summarize the
achievements and conclude the paper.

II. RELATED WORK

To track an object, different implementations of Bayesian
filters exist. We first describe the basic mathematical back-
ground and then introduce some implementations of the
Bayesian filter related to our approach.

In general, we may denote the state of a system by
variable x within a state space X . Variable u may denote the
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(control) system input and z the (sensory) system measure-
ment. Iterating over time, we may denote the state, input,
or measurement of a system at a certain point in time by
the subscript xt, ut, or zt, respectively. A Bayesian filter
iteratively applies a prediction and a sensory filtering step,
converting the probability distribution of the previous state
p(xt−1) into the posterior distribution p(xt|xt−1, ut, zt).
First, a given control command leads to a state prediction:

P (xt|z1:t−1, u1:t) =

∫
p(xt|ut, xt−1)· (1)

p(xt−1|z1:t−1, u1:t−1) dxt−1,

in which the conditional prediction function p(xt|ut, xt−1)
is multiplied with the posterior distribution at iteration t−1.
This equation may thus be understood as a probability trans-
fer dependent on control command ut, thus modeling the
predicted system dynamics. Next, the filtering step is applied
combining the incoming measurement with the predicted
distribution from (1):

p(xt|z1:t, u1:t) ∝ p(zt|xt) · p(xt|z1:t−1, u1:t), (2)

where p(zt|xt) denotes the measurement model, which de-
livers the probability over all possible measurements z,
observing a system with true state x by a (noisy) sensor.
The resulting posterior distribution is finally normalized to
1 over all states in X .

There are different implementations of the Bayesian Fil-
ter. For non-discrete state variables, all implementable al-
gorithms are approximate solutions of the above filtering
equations. The Kalman Filter is an exception to this, if it
is used on linear problems with Gaussian noise. In this case,
the integral in (1) can be solved by a closed form solution.
Often the Kalman filter is also used for non-linear and non-
Gaussian systems, but will – like the Extended Kalman filter
– produce only approximations of the real system behavior.
The more the Gaussian distribution assumption is violated in
the Kalman filter application, the more error prone are the
results produced by the filter. Due to this problem, particle
filters are widely used to deal with non-linear systems.
Particle filters, however, have the drawback that the choice of
the number of maintained particles may strongly influence
the resulting system behavior [6]. Moreover, the fusion of
several particle distributions can lead to disruptions. As an
alternative, we thus investigate the performance of grid-
based filtering approaches.

A. Bayesian Histogam Filter (BHF)

Bayesian Histogram Filters (BHFs) are approximating the
integral in (1) with a sum over a finite number of intervals
of the state space (3). These intervals are disjoint subsets of
the state space. A straightforward decomposition of an m-
dimensional continuous state space is an m-dimensional grid,
where each subset is a grid cell [6]. A finer granularity of the
cells improves accuracy, but at the same time it increases the
computational effort. BHFs focus the computational effort by
updating more important cells with higher probability.

Let x̂ denote a certain point within the grid cell at which
a BHF probes the probability density function. A piecewise
constant histogram may be created by dividing through the
cell size |xk,t|: p(xt) =

pk,t

|xk,t| . The prediction and filtering
processes may then be written as follows:
For all grid cells k do:

p(x̂k,t|z1:t−1, u1:t) =
∑

p(x̂k,t|ut, x̂k,t−1)· (3)

p(x̂k,t−1|z1:t−1, u1:t−1)

p(x̂k,t|z1:t, u1:t) = ηp(zt|x̂t) · p(x̂k,t|z1:t−1, u1:t) (4)

These kinds of filters are rarely used in the automotive
domain, but are common for personal localization systems
[7]. Our grid-based system is essentially a modified version
of a BHF.

B. Binary Bayesian Filter (BBF)
Binary Bayesian Filters (BBFs) have a state space with

binary state variables and usually very high dimensional
state vectors. If each dimension of the state space denotes a
position in a map and the two states encode occupied and free
locations, we call that filter an occupancy grid map. These
representations are widely used in the robotics domain for
solving the SLAM (simultaneous localization and mapping)
problem (cf. e.g. [8]). In [9] a hybrid approach for object
tracking in automobile scenes, which assigns to each object
a number of cells in an occupancy grid and utilizes a Kalman
filter for object-based tracking, is introduced.

C. The Bayesian Occupancy Filter (BOF)
On the basis of BBFs, the BOF [2], [4] was developed.

Each cell’s occupancy value is calculated by an individual
Bayesian network. These networks are connected by the pre-
diction model of the BOF, which assumes a constant object
velocity with a Gaussian error distribution, approximating
acceleration effects. Since the exact solution of a BOF cannot
be solved analytically and cannot be computed in real-time,
the solution is usually approximated in the implementation
by using only the most informative cells. In contrast to early
versions of the BOF, in the newer versions each cell has one
probability value and one velocity value [3].

BOFs cannot be used directly for object tracking since no
objects but only occupancy probabilities are known. This has
the advantage that measurements do not need to be assigned
to objects, if object are to be tracked in the application, but
the assignment of the occupied cells to objects has to be
done later. This was done in [3] by using a Kalman filter as
an object-state-based Bayesian filter for each object together
with a graph based clustering scheme. The clustering scheme
is comparing two nearby grid cells by the Euclidean distance
between the position, occupancy value, and velocity. Each
track is associated with the objects in a probabilistic way
by the common Joint Probabilistic Data Association (JPDA)
filter. While the BOF creates good results for detecting
occupied areas, it has problems in the object tracking task
with nearby detections in liaison with the JPDA algorithm.

The BOFUM (Bayesian Occupancy Grid Filter for Dy-
namic Environments Using Prior Map knowledge) [10] and
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BOFUG (Bayesian Occupancy Filtering using Groups) [11],
are improved versions of the BOF. While the BOFUM
introduces the idea that the movement of traffic participants
is highly influenced by the map knowledge, the BOFUG
detects the type of traffic participant, e.g. pedestrians versus
vehicles, by comparing the movement history with respec-
tive, orthogonal movement models: The movement model
for pedestrians is to cross a street in a right angle, while the
movement model for a vehicle is to drive along the street.

The difference of the BOF approaches to our approach is
the way how probabilities are handled. We use a BHF as the
underlying theory, which means that the probability in a grid
node represents the probability p(x) that an observed object
has a certain state x. Therefore, the sum over all possible
states (=grid nodes) has to be 1. The BOF, on the other
hand, is based on Binary Bayesian filters. The probability in
the grid nodes are representing the probability that the area
around that grid node is occupied by any kind of object. The
sum of the probabilities of all grid nodes can consequently
vary between 0 and the number of grid nodes n. While the
prediction step in BOFs can be handled likewise – differing
only in the way normalization takes place – a main difference
can be found in the filtering step. In the sensor model of
BOFs, hidden regions are explicitly modelled as unknown
areas, tending towards a probability of 0.5 in a grid node
without further measurements. Our approach, on the other
hand, provides probability estimates about the position of
a certain vehicle or object. Hidden areas would generally
remain free unless evidence becomes available that an object
may have moved into that area – such as a previously visible
object that disappears behind an occlusion.

III. GRID MODEL

We aim to modify the BHF, to receive an algorithm that is
fast enough for real-time computation but still yields an ac-
curate prediction density and filtering model for automobile
scenes. Therefor we use the kinematic model of vehicles
to improve the prediction step. As a further improvement,
we introduce a way to reduce the discretization error in
the prediction step of a tracking application. Finally, we
improve the prediction further by absorbing probability flow
that crosses lane markings - thus assuming that the vehicle
will stay in its lane.

A. System Overview

Our model is specified by its internal state X , which
specifies the probability density function and estimated local
velocity of an object or vehicle in a distributed grid of N
nodes ni. In the current work, the grid nodes are equidistantly
distributed from each other in a rectangular grid, but another
structure is also possible. Each node ni has certain properties
at a certain time t: its location in space (lx, ly)i,t = li,t,
its object presence probability pi,t, as well as the velocity
estimate of that object given its presence (vx, vy)i,t = vi,t.
The system state, encoded by the properties of the N
nodes, essentially specifies the internal Markov state of our
model, which is used for generating predictions and filtering

additional sensory information. Thus, our approach relies on
the Markov assumption, that is, P (Xt+1|X1:t, u1:t, z1:t) =
P (Xt+1|Xt).

Naturally, grid-based filters can only cover a limited spatial
area. Because of that, border effects can occur. To avoid such
effects, probabilities should be allowed to leave the grid at
its borders. We use three rows of absorbing border nodes at
the edges of the grid in our experiments, which showed to
yield a good trade off between accuracy and performance.

During tracking, the prediction step is realized by a move-
ment model function fmov , which models the distribution
of potential driving behaviors and dynamics. The resulting
probability received after the prediction step is then updated
with the sensor information by considering the sensor model,
which encodes the knowledge about the error distribution
of a certain kind of sensor. In particular, the sensor model
encodes the probability that an object is located at position x,
given a sensory reading of position y. Prediction and sensor-
based filtering is now detailed.

B. Prediction

In the prediction step, possible object movements between
time-step t and t+ 1 are calculated. To do so, we propagate
the probabilities of object presences to the neighboring
positions that lie in range of the local velocity estimate. For
convenience, let us define a probability flow from node j to
node i by:

flowi,j,t := pj,t · fmov(vj,t, li,t, lj,t), (5)

where fmov denotes the movement model function, which
is specified below. To limit the computational burden of
this operation, flow values are only calculated for movement
model probabilities above a threshold Θp – otherwise the
flow is set to zero. Now, we can predict the new probability
value of object presence for a node i in the next time step
t+ 1:

P (it+1|Xt) =
∑N

j=1 flowi,j,t (6)

Note that no flow is determined from border nodes, which
assures that border nodes absorb probabilities. These two
equations thus accomplish the prediction step of general
Bayesian filters specified in (1) and of BHFs in particular (3).
However, also the velocities are propagated, as specified now.
In theory, an exact BHF needs to model all possible velocities
in each grid node. To make this operation computationally
feasible, however, we collapse the velocity dimension to one
average velocity value vi,t in each grid node. The velocities
are propagated through the grid similar to the probability val-
ues. The resulting velocity in a node, however, is inferred by
the flow-averaged positional differences between the node’s
location and the respective flow origins. We average the
direction and distance components of the velocity separately
to preserve both pieces of information independently:

θ(v̂i)t+1 = ∠

(∑N
j=1(li,t−lj,t)·flowi,j,t∑N

j=1 flowi,j,t
, r

)
, (7)

|v̂i|t+1 =
∑N

j=1|li,t−lj,t|·flowi,j,t

∆t
∑N

j=1 flowi,j,t
, (8)

468



  

flow

Sensor model

Top-down Info

Filtering

Adapt
Street
Model

Street boundary
and lanes

y

Inhibitv

v

p  x k , t∣z1: t , u1: t

p  x k , t∣u t , x k , t−1

p  x k , t−1∣z1: t−1 , u1:t−1 p  x k , t∣z1: t−1 , u1 :t

p

v

Fig. 1. A schematic view of a complete iteration of the algorithm.

whereby r is a fixed reference vector and ∠(x,y) =

arccos 〈x,y〉
||x||·||y|| . The prediction step is finalized by the trivial

transformation of orientation θ(v̂i)t+1 and absolute velocity
|v̂i|t+1 to the Euclidean velocity vi,t+1. An overview over
the prediction step is shown in Fig. 1. We now proceed with
detailing the movement model applied in the prediction step,
its modification when additional environmental constrains are
included, and finally how the prediction step can be further
optimized.

1) Movement Model: To receive a good prediction, the
update function has to consider the kinematic constraints of
the modeled object. This is barely possible with a Kalman
Filter, since the update function has to be implemented
as Gaussian noise in the system state. In our grid-based
approach we use the bicycle model, also known as one-
track model, as the underlying model, which calculates the
reachable space of a car-like robot. We modify this model to
receive a probability distribution over the reachable terrain
by applying independent Gaussian noise to the velocity ||v||
and the direction ω(v) of a vehicle, which results in a
probabilistic movement model that is shaped like a crescent
moon (cf. Fig. 1). Note that we actually process the velocities
in the grid relative to the observing vehicle. To process
the movement model properly, these relative velocities are
converted into absolute velocities by considering the ego
motion of the observing vehicle.

Let us denote φ(x;µ, σ2) as the probability value derived
from the Gaussian distribution with expectation value µ and
standard deviation σ for value x. Let us further denote
σ2
ω as a parameter that characterizes the steering capability

and σ2
|v| as another parameter that characterizes the possible

velocity changes. Then, the movement model can be defined
as follows:

fmov(v, li, lj) :=

φ(ω(li − lj);ω(v), σ2
ω) · φ(||li − lj ||; ||v||, σ2

|v|) (9)

+φ(ω(li − lj) + π;ω(v), σ2
ω) · φ(−||li − lj ||; ||v||, σ2

|v|)

which multiplies the uncertainty due to possible speed
changes with those due to possible directional changes. The
second summand additionally models the probability for a
speed reversal, which becomes particularly relevant given

very low velocities v.
2) Model Environment Constraints: The grid representa-

tion allows the incorporation of expected driving behavior
into the prediction process. For example, a stop sign may
be incorporated by reducing the predicted velocity while
approaching it. In this work, we consider lane knowledge
assuming that a tracked vehicle will stay in its lane.

To achieve this, we change the prediction model by
introducing an absorption ratio a in (5) by reducing the
velocity in a flow from node j to node i by the factor
(1 − a · B(j, i)), where B(j, i) is a characteristic function,
which returns 1 if there is a lane border between nodes
i and j, and 0 otherwise. The higher the absorption ratio
a ∈ [0, 1] is set, the stronger a lane absorbs the probability
flow. Note that this is an approximate solution, which shows
good performance as evaluated below.

3) Discretization Error Reduction: Advantage and curse
in BHFs are the discretization of space, where a coarser
discretization has a lower computational demand but also
yields higher errors. The standard point mass algorithm [12]
can cause a rather high discretization error in the velocity
dimension, because it simply computes the velocity by the
distance between the origin node and target node. Since
the velocity in our grid-approach is discretized as well and
the update function depends on the velocity, an increasingly
higher error can be expected to be propagated in successive
predictions without filtering.

Although the filtering step counteracts this error, we used
an additional improvement of the probability mass and veloc-
ity estimations in each prediction step, linearly interpolating
probabilities and velocity values over the region covered by
a grid node. Each grid node essentially covers a rectangular
region of influence bordered by four corner nodes. Instead of
determining the probability flow with respect to the location
of the grid node itself, we interpolate over the four corner
nodes in (5) and substitute li,t in (7) and (8) with

lj∗i,t =

∑
k l

k
i,tfmov(vj,t, l

k
i,t, lj,t)∑

k fmov(vj,t, lki,t, lj,t)
, (10)

where lki,t denotes one of the four corner locations of node i,
and k ∈ {0, 1, 2, 3}. Note that the increase in computational
complexity is constant, because the values at the integration
corners can be re-used by the four neighboring grid nodes.

C. Filtering

The grid approach has a rather significant advantage, when
it comes to filtering. Generally, any type of sensor-based
noise model can be considered and distributed over the grid
– as long as the grid is fine-enough.

We model a radar sensor in our simulation (Fig. 2(a)) by
applying Gaussian noise to the polar coordinate with the ego-
vehicle as origin and noise in the distance. The noise in angle
is usually higher than the noise in distance. Furthermore, we
model a camera-based sensor by adding higher noise to the
distance axis and lower noise to direction-perpendicular axis
(Fig. 2(b)). The filtering step in the grid then is accomplished
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(a) The sensor model of a radar
system applies Gaussian noise to
the polar coordinate and the dis-
tance.

(b) The sensor model of a camera
with an implied false-positive mea-
surement.

Fig. 2. Tested Sensor Models

according to (4) and finally the resulting distribution over the
grid is normalized to one.

IV. EVALUATION

We evaluate our grid approach by modeling an overtaking
situation in a simulated automotive environment. In par-
ticular, we modified the open-source car racing simulator
TORCS [13] to simulate this scenario. We now first detail the
employed simulation environment, test scenarios, the filter
setups, and then present the achieved results.

A. TORCs Simulator

To receive test data of moving vehicles the freely available
open-source car racing simulator TORCs [13] was used.
We enhanced the simulator by determining simulated, local,
ego-centered state information. To receive a realistic sensor
feedback, noise was added to the real state information.
TORCS provides a rather realistic physics engine and a
modular driver design. This means that users can define their
own drivers using a defined interface.

We adapted the setup that was utilized in the recent
Simulated Car Racing Championships [14]. To the existing
sensor system, we added sensors to detect “virtual” lanes
and obstacles, which block the lane fully or partially. We use
the term “virtual”, because the lanes and obstacles are not
present in the simulation itself, but added to the sensory data
depending on the position of the own car (car A). By means
of the virtual sensors we essentially simulate a state-of-the-
art lane detection algorithm, producing a polygon-shaped
driving space.

B. Scenario and Setup

In our scenario, car A uses the grid to track the overtaking
behavior of car B. Car A accelerates to a constant speed of
80km/h on the right lane of a simulated road. The overtaking
car B starts next to A in the left lane and overtakes car A
while accelerating to 100km/h. It stays in that lane for 8
timesteps = 4.0 seconds, which corresponds to 100 meters.
Then, it switches the lane ahead of car A for 4 timesteps =
2.0 seconds, while reducing speed to 80km/h, and finally
continues in the right lane ahead of car A for another
further 8 timesteps until it enters a right curve. Fig. 3 shows
a screenshot of the scenario during the lane switch. The

overtaking trajectory of car B was intentionally controlled in
a rather abrupt fashion to evaluate to what extent the tested
filters can deal with different directional changes.

Fig. 3. A screenshot from the test scenario. The yellow car B is overtaking
the red vehicle A, heading for the curve. The active grid nodes are drawn
in perspective on the street.

We ran our evaluation with the following parameters.
Threshold Θp = 0.01. Distance between nodes: 0.5 m. Node
count in x direction: 60, Node count in y direction: 80. The
sensors were modeled to mimic actual ones. For the radar
sensor we assumed 0.218 rad as angular standard deviation.
Accuracy in distance is modeled with 2% of the distance. The
Kalman Filter receives an approximation of that radar sensor
model, since it is not possible to use polar coordinates in the
sensor model and Euclidean coordinates for the internal state
without transformations. However we use an adaptive sensor
model, rotating the Gaussian shape appropriately to fit the
radar sensor in the following way:

r11 = σ2
z cos(α)2 + σ2

w sin(α)2

r12 = r21 = (σ2
z − σ2

w) cos(α) sin(α)

r22 = σ2
z sin(α)2 + σ2

w cos(α)2,

where r11, r12 = r21 and r22 are the new elements of the
measurement noise covariance matrix. α is the angle between
the measurement and the ego-vehicle movement direction.
σw is the noise in the distance and σz is the tangens of
the noise in direction multiplied with the distance of the
measurement. Note that we ignore the resulting small error
in the mean of the distribution.

For the stereo camera model, we used a pixel width of
1.10 · 10−5 m, a base line of 0.3 m and a focal length of
0.012 m to calculate the resolution in the distance. Angular
standard deviation of the camera sensor is modeled with
0.0873 rad. We set the absorbtion ratio a to 19

20 and the
movement model parameters σω = 0.16 and σ|v| = 0.2.

At time-step zero, all filters start with the same a priori
distribution, which is a Gaussian around the real position.
The velocity is not known at the beginning and therefore set
to a Gaussian around zero.

C. Results

We compare the grid filer without and with additional lane
knowledge with a basic Kalman filter approach. The grid
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filter with lane knowledge essentially beliefs that vehicles
usually stay in their lanes. Using the lanes as additional
information to adapt the form of the update function has
advantages, when the observed vehicle follows its lane,
which should yield higher probability values for the tracked
car. However, it should yield lower values when the tracked
car switches lanes – possibly providing a measure of surprise,
which may indicate a potentially dangerous event.

The Kalman filter approach is used as the benchmark
comparison, which would yield the optimal solution for a
linear system with Gaussian noise. Since the problem is
non-linear, however, due to the non-linear trajectories during
overtaking and additionally due to the curve at the end of
the experiment, the grid approach should have considerable
advantages. The question is whether the amount of non-
linearity ameliorates the disadvantage due to the grid-based
discretizations.

For evaluation purposes, we ran 50 runs in which the
cars followed the exact same trajectories but in which the
noise added to the simulated sensors was independent but
identically distributed. For these runs with the respective
filtering approaches we report mean and standard deviations
of the expected location (center of mass) of car B as well
as of the probability mass covering the ground truth state of
car B.

Fig. 4 shows the results for the expected locations gen-
erated by each filter with radar noise data, plotting mean
and standard deviations of the expected locations in corridor
form. It can be seen that the mean of the Kalman filter
includes the ground truth well, but it also shows rather high
deviations. The grid approach without lane knowledge is
slightly delayed upon the lane change but yields a lower
deviation of its expectations. The grid approach with lane
knowledge yields even lower deviations of its expected
locations. Moreover, it shows a sort-of hesitation to trust the
sensory information upon the lane change, because it expects
the tracked vehicle to stay in its lane. This indicates that the
grid approach may be suitably used to detect unexpected
events.

Table I reports the average differences of the means from
the ground truths within the three sections of the simulated
maneuver: driving by, changing lane, and driving in front of
vehicle A. While the Kalman filter means stay rather close to
the ground truth, the standard deviations of the means suggest
that the grid filters noise more effectively and maintains
a more focused distribution. Moreover, in the case of the
grid with lane knowledge, the large difference during the
lane change indicates its low likelihood due the stay-in lane
assumption. For the camera sensor settings, the results are
generally comparable (Table I, bottom).

Fig. 5 confirms that the grid approach with lane knowledge
can be utilized to detect surprising events. In this case, we
plot the probability mass that surrounds the ground truth
location of the tracked vehicle for Kalman filter (integrating
over the same area that is covered by a grid node) and grid
approach settings. The lane change commences at timestep 9,
at which point the grid approach with lane knowledge shows
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TABLE I
AVERAGE EUCLIDEAN DISTANCES dist BETWEEN REAL POSITION x̂

AND ESTIMATED POSITION x AND AVERAGE STANDARD DEVIATIONS σ

OF THE EXPECTED POSITIONS DURING THE DIFFERENT STAGES OF THE

OVERTAKING MANEUVER

Stage Driving by Changing Lane In front
Radar Data dist σ dist σ dist σ
Grid (without lane) 0.49 1.51 1.81 2.08 0.62 2.24
Grid (with lane) 0.61 1.15 3.19 2.00 0.90 1.62
Kalman 0.60 2.83 0.84 4.57 0.72 4.50
Camera Data dist σ dist σ dist σ
Grid (without lane) 0.18 0.86 0.72 1.36 0.33 1.59
Grid (with lane) 0.16 0.89 1.19 1.23 0.32 1.39
Kalman 0.22 0.83 1.06 1.37 0.66 1.60

a drop in the covered probability mass, which continues for
three timesteps – essentially until the grid “accepted” that
the tracked car did change its lane after all. On the other
hand, while the car does stay in its lane (early and late
in the run) the grid approach with lane knowledge yields
consistently higher probability values with lower deviations
in comparison to the Kalman filter. The grid without lane
knowledge yields means that are comparable to the Kalman
filter but with lower standard deviations – thus yielding
a more robust probability value. Table II confirms these
observations, clearly pointing out the superiority of the grid
with lane knowledge in all three segments – considering
the higher distance during the unexpected lane change as
a feature. The probability mass strongly decreases during
the lane change and may thus be appropriately exploited to
detect unexpected events.

In the camera sensor case (Table II, bottom), this effect
cannot be observed as clearly because the high accuracy
of the camera sensor in close proximity nearly overrules
the lane-constraint. By adapting the influence of the lane
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marking a, this could be compensated. Since the angular
accuracy in the camera sensor is much more accurate than
in the radar model, the lane markings do not influence
the results in the second and third stage of the overtaking
situation as much, where the larger sensor noise is contained
in the distance, but low uncertainty is maintained in the
lateral direction.
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Fig. 5. The probability P (x), and standard deviation, for the likelihood of
the true state x during the overtaking situation with radar sensor information.

TABLE II
THE AVERAGE PROBABILITY p(x̂) AT THE REAL POSITION x̂ IN THE

DIFFERENT STAGES OF THE OVERTAKING MANEUVER.

Stage Driving by Changing Lane In front
Radar Data
Grid (without lane) 0.0374 0.0168 0.0140
Grid (with lane) 0.0406 0.0121 0.0191
Kalman 0.0235 0.0163 0.0121
Camera Data
Grid (without lane) 0.0744 0.0246 0.0151
Grid (with lane) 0.0775 0.0225 0.0159
Kalman 0.0331 0.0174 0.0104

V. CONCLUSIONS

This study has shown equal or better performance of
our grid-based filter approach while tracking one vehicle
over time in comparison with the standard Kalman filter
approach. Due to the possibility to process any type of
noise distribution, non-linear distributions can be handled
more effectively with the grid-based approach. Also, multiple
sources of sensory information, potentially with different
noise characteristics, may be easily incorporated. Particularly
highly non-Gaussian distributed sensors can be handled and
integrated more effectively in comparison to a Kalman filter
approach. Also, it is easily possible to merge the posterior
distributions of a multi-modal grid approach, which may
consist of separate grids for each sensor type (e.g. camera and
radar sensors). Bayesian theory suggests that the combination
of information gathered by different kinds of sensors will
provide more precise information about the actual state of
the system.

Moreover, we have shown that additional knowledge can
be incorporated effectively and naturally, such as the as-
sumption that cars do not change lanes usually. Of course,

also an expected lane change could be modelled or also
other knowledge, such as the behavior while approaching
a stop-sign or a turning behavior when the turn-signal of
the tracked car is activated. While similar constraints may
be included in the Kalman filter approach, the Gaussian
assumption would be immediately violated. In the grid-based
approach, any type of constraint can be generally included.
Besides the integration and combination of further sources of
information, however, the grid approach also showed strong
potential for identifying unexpected and thus potentially
threatening events, which needs to be further evaluated.

The actual full power of the grid-based approach is ex-
pected to unfold when multiple objects – including pedestri-
ans and obstacles – will be tracked and will interact within
the grid representation. Repulsions and other interactions
are then expected to occur and are being modelled at the
moment.
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