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Abstract. Wide exploration of high-dimensional, multimodal design
spaces is required for uncovering alternative solutions in the conceptual
phase of design optimization tasks. We present a general framework for
balancing exploration and exploitation during the course of the optimiza-
tion that induces sequential exploitation of different optima in the search
space by selecting on a solution’s fitness and a dynamic criterion termed
interestingness. We use a fitness approximation model as a memory rep-
resenting the parts of the search space that have been visited before. It
guides the optimizer toward those areas that require additional sampling
to be correctly modeled, and are hence termed interesting. Next to ap-
plying the prediction error of the model as a measure of interestingness,
we consider the statistical variation in the predictions made by multiple
parallel models as an alternative approach to quantify interestingness.
On three artificial test functions we compare these setups running on a
canonical ES to the same ES extended with either archive-based novelty,
niching, or restarting, and to simply evaluating a Latin Hypercube set
of sample points.

Keywords: Multimodal optimization, interestingness, novelty, niching,
multiobjective selection, prediction error, variation in prediction

1 Introduction

Conventional design optimization of real-world problems aims for efficient adap-
tation of free system parameters to improve an existing system on given quality
criteria. Following such a procedure often results in only a marginal improvement
of a principally known solution. Methods for finding innovative and conceptually
new solutions therefore are of increasing interest, allowing development of com-
petitive products that are sufficiently distinct from rival products. Determining
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alternative solutions is generally part of the conceptual design phase where nor-
mally a search is performed on a simplified problem with a reduced parameter
space, thereby decreasing the level of solution detail to facilitate efficient traver-
sal of the design space. The simplified solutions found serve as a starting point
in a following optimization phase on the fully parametrized problem. Ideally the
initial search would however be performed on the actual problem as well since
potentially good products may get obscured through the parameter reduction.

Evolutionary Algorithms (EAs) are generally capable of exploration but rely
largely on random modifications, making the probability of identifying optimal
solutions relative to the problem dimensionality. Evolution Strategies (ESs), fea-
turing sophisticated adaptations guiding the sampling of new solutions, quickly
result in local searches around good solutions found in an initial exploration
phase, on a multimodal problem usually converging to a single, randomly picked
optimum. Relying solely on a quality function to select new solutions mainly
causes this rapid shift toward exploitation of a single optimum.

An effective way to overcome this problem is restarting the optimization pro-
cess from random initial positions in order to identify multiple optima [1]. This
has the chance however of repeatedly zooming in on the same optima while oth-
ers are never found, depending on the basins of attraction. In [3] an archive of
novel solutions is kept between restarts that contains solutions exceeding a nov-
elty threshold according to some difference measure [9]. The most novel solution
found (i.e., viewed from within the optimization process, not necessarily from a
designer’s point of view) is used to position the next restart in the least explored
region of the search space. Niching methods [17, 14] and derivates [18, 15] on the
other hand run on top of the optimizer and induce parallel local searches for a
predefined maximum number of optima, but as such are not very suitable for
highly multimodal landscapes [14]. Another method is Continuous Tabu Search
that is centered around lists of recently visited and promising solutions that
(temporarily) get excluded from the search [10], but is therefore dependent on
appropriate continuous neighborhood definitions. We propose an approach that
sequentially jumps from optimum to optimum by alternating between states of
exploration and exploitation. Next to the fitness function, an additional crite-
rion that is subject to change during optimization is used to guide the random
search.

Recent papers report on the use of such dynamic criteria based on a memory
of earlier seen solutions parallel to the static fitness function in a Pareto-based
multiobjective selection scheme. Mouret [13] uses an archive-based method, like
in [3] of solutions that were highly novel upon discovery [9] and calculates the
novelty of a solution as the average distance to the nearest solutions in this
archive and the current population. Graening et al. [5] use a fitness model (i.e.,
surrogate model of the objective space) to represent the current knowledge of
the search space and calculate a solution’s interestingness as the maximization
of the prediction error made by the fitness model as compared to the actual
fitness value of a solution. As the optimization proceeds the model improves in
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the area that is being sampled and the Pareto selection will gradually steer the
optimizer into an area where the prediction error remains larger.

The current study continues on the model-based approach by introducing
an alternative expression for interestingness, namely the variation in prediction
between multiple fitness submodels trained on the same data. Furthermore, a
straightforward approach for attaining global memory is tested. The behavior of
the different methods is analyzed on three artificial test functions. We include
archive-based novelty multiobjectivization [13], fixed radius and self-adaptive ra-
dius niching [17], and restarting with increased population size [1] as bench-
marks. All methods run on top of a simple, single-stepsize, comma ES, and use
the same evaluation budget. Furthermore, we compare to the basic approach of
evaluating a Latin Hypercube set [11] of sample points.

In the following section the suggested framework for balancing exploration
and exploitation comprising optimizer and interestingness measure is laid out,
after which the results of the experiments involving the artificial test functions
are presented in Section 3. In Section 4 we conclude with discussion and outlook.

2 Model-guided Framework for Dynamically Balancing
Exploration and Exploitation

We propose a model-guided optimization framework for the search of optimal,
conceptually different solutions in multimodel fitness functions. The usage of the
model differs from other model-based and model-assisted strategies [8, 7] in the
sense that the model does not replace the fitness function but is used to provide
an additional criterion to guide the search. Based on previous work [5], the
framework targets the efficient handling of the trade-off between explorative and
exploitative search. The aim is to identify many conceptually different solutions
by means of exploration, while providing an optimal configuration for each of
the identified concepts, referred to as exploitation. In an alternating pattern
the suggested algorithm zooms in on a single optimum until enough data has
become available to properly model that part of the fitness landscape, after which
it continues exploring for alternative optima.

Fig. 1 depicts the overall framework of the model-guided optimization pro-
cess, building upon a population-based optimization strategy such as an EA. The
main difference to traditional optimization is that the search process is addition-
ally guided by the interestingness of a solution, a dynamic additional criterion
that gets taken into account next to the static fitness, in a multiobjective se-
lection scheme. Applying interestingness comes with two major challenges, the
construction of an adequate memory of already generated solutions and the defi-
nition of the indicator that quantifies interestingness. A universal approximation
model predicting solutions’ fitness is adopted to form an abstract representation
of the solution space. A solution should be qualified as interesting if the solu-
tion vector is different from the already generated solutions, or if it resides in
a rugged, hard-to-model area of the fitness landscape. Both requirements are
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Fig. 1. Model-guided Framework for Dynamically Balancing Exploration
and Exploitation.

inherently accounted for in using an interestingness indicator that is based on
the prediction error of a fitness approximation model.

2.1 Framework Instantiation

The current study employs a (µ, 7µ)-ES with self-adaptation based on a single
stepsize per individual (µ : λ should at least be 1 : 7 [16]) as optimizer. The
model of the fitness landscape is built using feed-forward neural networks with
linear outputs and a single hidden layer of 10 sigmoidally activated nodes. The
weights of the networks are trained with the improved Rprop backpropagation
algorithm by Igel et al. [6] for a maximum of 1000 epochs. The networks are fully
connected, including direct connections from input to output nodes, and contain
a bias node. All connection weights are initialized in the interval [−0.1, 0.1]. The
fitness model should represent the current knowledge of the function landscape
best, hence there is no risk of overfitting and therefore no validation set is used
(i.e., all available solution data is used for the actual training).

Two model-based interestingness indicators are investigated (defined further
on), the prediction error (PE) of the fitness model directly and the variation
in prediction (ViP) of multiple approximation submodels, the latter implicitly
depending on the prediction errors of the different submodels. The question
remains whether the aimed for dynamics are best induced by either a memory
involving all generated solutions or only of the most recent ones. Therefore two
types of models are considered: a local fitness model that per iteration is re-
initialized and trained on the solution data from the previous γ iterations, and a
global memory consisting of all distinct previous local models, that is, every γ-th
model. We term the latter a “horizontal ensemble” of fitness models referring
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to the distinct training data used per model. In evaluating the interestingness
the distinct models as well as the new local model are taken into account, for
each evaluated solution adopting the model with the best prediction and lowest
variation in case of PE and ViP respectively.

Multiobjective selection based on Pareto dominance is used, as proposed in
[5] and [13], implemented using non-dominated sorting (and crowding distance
sorting) as featured in NSGA-II [4]. Note that we apply this sorting procedure
in combination with (µ, λ)-selection (i.e., the new parent population is selected
from the offspring only), as the aim is not to obtain and refine a Pareto front of
optimal solutions but to steer the optimizer away from “sufficiently” exploited
optima. An initial comparison between plus (i.e., taking parents into account as
well) and comma selection showed slower dynamics and the chance of relapsing
to standard ES convergence behavior using the first, identifying only one opti-
mum. A disadvantage of using Pareto-based multiobjective selection is that the
required degree of exploitation cannot be indicated. To what extent a certain
optimum is exploited before the optimizer shifts the focus to a different region of
the search space therefore depends on the shape of the fitness landscape and the
capabilities of the applied modeling technique, together with the characteristics
of the used interestingness measure.

Prediction Error. The interestingness of a real-valued solution vector x =
(x1, . . . , xn) with n indicating the problem’s dimensionality is calculated as the
absolute difference between the model’s fitness estimation f̃(x) and the actual
fitness value f(x) [5],

PE(x) =
∣∣∣f̃(x)− f(x)

∣∣∣ . (1)

Variation in Prediction. The interestingness is taken as the variation between
the predictions of multiple submodels that are trained on exactly the same data
(as the training data is equal, this could be termed a “vertical ensemble” of
submodels). In the current study multiple neural networks of the same archi-
tecture and type are trained. If sufficient data is available to correctly model a
certain solution the fitness estimations of the different submodels should largely
align. Otherwise, the predictions will be more diverse. Let f̃i(x) be the fitness
estimation by submodel i and numsubm be the number of different submodels,
then the variation in prediction is calculated using the interquartile range (IQR,
the difference between the third and first quartiles of the data) of the fitness
estimations,

ViP(x) = IQR(f̃1(x), . . . , f̃numsubm
(x)). (2)

The IQR is a robust statistic in the sense that it is not prone to outliers. If
most submodels “agree” but one is considerably different, this can have a great
impact when for instance the sample variance is used as measure of variation.
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3 Experiments

We run experiments on three artificial test functions, visualized in Fig. 2, that
are variants of the Gaussians test function [5], which we define as

G(x) = − max
i∈{1,...,20}

exp(− 1
2 (x− µi)

′Σ−1i (x− µi)), (3)

with x ∈ [−10, 10]n, µi ∼ U([−10, 10]n), Σi = diag((σ2
1 , . . . , σ

2
20)), and σi =

2
√
n. All variants feature 20 global optima regardless of the dimensionality, and

problem instances with dimension 2, 5, and 10 are considered. GaussiansEqual
uses the definition listed above, involving 20 kernels with equal standard de-
viations positioned randomly in the fitness landscape. GaussiansVary uses the
default standard deviation for the first kernel and decreases it for the remaining
i ∈ {2, . . . , 20} via σi = σi−1 · 0.8. GaussiansP lane places 20 kernels with equal
standard deviations σi = 1 on a two-dimensional plane in a circle with radius
10; in case n > 2 the remaining n − 2 object variables in the kernel means µi

are set equal to the same random vector U([−10, 10]n−2). This setup reflects the
real-world case in which certain parameters (here the first two) can take various
values while the remaining ones should be set precisely.

(a) GaussiansEqual (b) GaussiansVary (c) GaussiansPlane

Fig. 2. Test Functions in 2D.

For performance assessment of the different methods we use the Maximum
Peak Ratio (MPR) measure that reflects the quality and the quantity of the
approximated optima in the set of all generated solutions. MPR was originally
proposed in the context of niching and maximization problems with strictly
positive fitness range [12], therefore we define a slightly adjusted version:

1. Normalize the Gaussians variants to maximization problems, strictly pos-

itive, using fnorm(x) = f(x)−max
min−max with min = −1.0 − 1% · range, max =

0.0 + 1% · range, and range = 1.0;
2. Assign each generated solution to the closest optimum with respect to Eu-

clidean distance;
3. Per optimum, from the solutions assigned to it, use the fitness of the best

solution; if it is less than 80% [12] of the actual fitness of the optimum, use
0;
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4. Divide the sum of the selected fitness value per optimum by the sum of the
actual fitness values of the optima.

The maximum MPR score is therefore 1.0, indicating that all optima were closely
sampled.

The model-based methods PE and ViP are either guided by γ-local models
as in [5] or the proposed horizontal ensemble of γ-local models. ViP uses 10
submodels per γ-local model. We take γ = 5 and at the heart of the optimiza-
tion is a (5, 35)-ES applying single-stepsize self-adaptive mutation with learning
rate τ = 1√

2n
[2]. The initial parent individuals are sampled uniformly within

the initialization interval, and their initial stepsize σinit is set to 1
4 of the initial-

ization interval [17]. Each offspring is the product of 2 parents, using discrete
recombination for the object variables xi and intermediary recombination for
the stepsize [2].

(a) Local (b) Ensemble

Fig. 3. Modeling Setups Compared. Plots of the final fitness models obtained in a
single run of PE on GaussiansVary 2D, using the 5-local fitness model setup in (a) and
the ensemble of 5-local fitness models in (b). The dots represent the solution vectors
used to train the last generated 5-local fitness model, in both cases.

As first benchmark we include archive-based novelty multiobjectivization
[13], a similar Pareto setup that uses an archive-based novelty criterion to steer
the optimizer into sparsely sampled regions, aiming for a wide sampling of the
search space that becomes finer grained as the optimization continues. It runs on
the same ES as the model-based methods. The novelty of a solution is calculated
as the average distance to the nearest 15 solutions with respect to Euclidean dis-
tance, selected from an archive of novel solutions and the current population.
A solution is added to the archive if its novelty exceeds the novelty threshold,
which value is self-adapted during the optimization: if 1% of the fitness evalua-
tions was used and no new solutions were added, the threshold is decreased by
5%, and if more than 4 solutions were added in one generation, the threshold
is increased by 5%. Presumably the initial threshold value is to be set relative
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to the size of the initialization domain but this relation is not clear. After some
tuning it is set to 1.0, noting that due to its self-adaptation and the fact that
the novelty score depends strongly on the current population, the exact initial
value does not seem highly critical.

Two niching methods are included as benchmarks, fixed radius and self-
adaptive niche radius [17], running on top of an (20, 140)-ES, except for popu-
lation size equal to the (5, 35)-ES used for the Pareto setups1. Niching works by
parallelly converging to a pre-indicated number of q optima in the ES popula-
tion guided by niche radii, with a single niche being used to zoom in on each
optimum. In fixed radius niching the radius is calculated such that the entire
search space is evenly divided over the q desired niches, while in self-adaptive
radius niching the length of each radius is coupled to changes of the stepsize
and it decreases as is zoomed in on an optimum [17]. Although there is interplay
between the different niches (e.g., in case of plus selection the individuals can
move between niches), recombination is not used; offspring from a certain niche
is generated as mutated copies of the niche best individual. We use q = 20 and
all remaining settings are as prescribed in [17].

The last benchmark is the IPOP-ES 2, a scheme in which an underlying
(µ, 7µ)-ES is restarted upon convergence by resampling the population and re-
intializing stepsizes to σinit, while increasing the population size between restarts
as is aimed for more global search as the optimization proceeds [1]. The process is
started from a (2, 14)-ES, besides the population size equal to the ESs mentioned
above, and µ is increased by a factor of 2 at each restart. The ES is assumed to
be converged if the average stepsize of the parent population falls below 10−3

times the initialization interval, similar to the convergence criterion used in [3].
For reference we include a comparison with standard ES behavior and the

result of covering the search space with a Latin Hypercube (LH) set of sample
points [11]. We use LH sampling as this offers multiple sets with mostly similar
spread properties. For enforcing the population of the ES to remain within the
initialization interval, we employ constraint handling that sets the interestingness
or novelty score of an individual to a penalty value upon boundary violation;
for the standard ES, niching, and IPOP-ES the fitness is deteriorated by instead
adding a penalty value. For all tested methods we use a budget of 3500 function
evaluations, and all methods have been implemented using the Shark Machine
Learning Library v2.3.33.

3.1 Results

In examining the outcome of the experiments, we start by visually analyzing the
sampling behavior for GaussiansVary 2D based on a single run per method, plot-

1 Running niching on a canonical ES allows for a fair comparison, but note that
self-adaptive niching was proposed in combination with the cumulative adaptation
mechanism of the stepsize in the CMA-ES [17].

2 The IPOP-ES, derived from the IPOP-CMA-ES [1], is run on a canonical ES to
allow for comparison.

3 http://shark-project.sourceforge.net
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(a) ES (b) PE local (c) PE ensemble

(d) ViP local (e) ViP ensemble (f) Novelty

(g) Niching fixed (h) Niching self-adaptive (i) IPOP-ES

Fig. 4. Sampling Behavior on GaussiansVary 2D. Plots of all solutions generated
in the search space for a single run per method (dark: recent sol., bright: early sol.).

ted in Fig. 4. The gray tones of the sample points reveal the different dynamics:
The standard ES converges quickly to the optimum with the largest attrac-
tor basin, while the model-based methods visit optima in a sequential pattern.
Novelty multiobjectivization keeps sampling widely across the search space with
extra focus on optimal regions, while the niching methods manage to zoom in on
most of the optima in parallel. The IPOP-ES shows behavior similar to that of
the standard ES, although the search space is sampled more widely because of
the restart phases and iteratively increased population size. Of the model-based
methods the local variants can be seen revisiting the largest attractor, while ViP
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ensemble shows the clearest temporal separation between the visited optima. PE
ensemble however gets stuck as the ensemble model is able to approximate most
of the fitness landscape, nullifying the effect of the interestingness indicator as
the area directly around an optimum must have higher interestingness than the
optimum itself to be able to move away from it.

Fig. 5 plots the MPR scores over 30 runs per method. First of all the model-
based approaches do not manage to outperform niching, with self-adaptive radius
niching showing best performance across the test problems. Of the model-based
variants PE ensemble clearly has the worst scores, while ViP local performs
best. It benefits from the higher variation in its local model as compared to
the ensemble of models. Novelty multiobjectivization has largely comparable
results to those of ViP local, while the IPOP-ES shows slightly less performance.
Furthermore, uninformed sampling across the entire search space works in low
dimensions but as would be expected, evaluating an LH set in 10D is not useful.

4 Discussion

This paper presented a model-guided framework that alternates between states
of exploration and exploitation to find multiple optima in a multimodal land-
scape. The tested instantiation comprised a canonical ES with isotropic muta-
tion, feedforward neural networks, and Pareto-based multiobjective selection on
fitness and an interestingness indicator, applying either the model prediction
error (PE) or the variation in prediction (ViP) between submodels. A compar-
ison was made to archive-based novelty multiobjectivization, niching methods,
restarting with increased population, and evaluating a Latin Hypercube (LH)
set of sample points.

ViP local performed best of the proposed model-based approaches with re-
spect to the Maximum Peak Ratio; the novelty scheme showed comparable per-
formance to it while the restart setup performed slightly less. Self-adaptive nich-
ing however showed the best overall performance. On 10-dimensional problem
instances all tested methods performed weakly, while still better than LH.

While elegant in the sense of omitting weight parameters on the fitness and in-
terestingness values, the applied Pareto-based selection in the framework induces
a dispersing effect, slowing down the ES in zooming in on optima. Conversely, it
hinders the ES in escaping from sufficiently exploited optima, together with the
small stepsize resulting after an exploitation phase. An alternative would be dy-
namically combining fitness and interestingness into a single objective, although
this presumably suffers from the same problem while do requiring weighting.

Cuccu et al. [3] dismiss the dynamic aggregation in favor of restarting the
ES after convergence, using an archive of visited points to position it in the least
explored region of the search space. Instead, a global model could be trained
between restarts on all sampled points and searched for the least understood
region, e.g., applying ViP. Moreover, using restarts omits the need to perform
a clustering step to isolate optima, required when applying the framework to
black-box problems.
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(a) GaussiansEqual 2D
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(b) GaussiansVary 2D
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(c) GaussiansPlane 2D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ES

LH

PE

PE-e

ViP

ViP-e

Nov

Nich

Nich-s

IPOP

M
a

x
im

u
m

 P
e

a
k

 R
a

ti
o

(d) GaussiansEqual 5D
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(e) GaussiansVary 5D
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(f) GaussiansPlane 5D
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(g) GaussiansEqual 10D
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(h) GaussiansVary 10D
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Fig. 5. Results Overview. The results of 30 runs per method on each test function
instance are plotted, all runs involving 3500 function evaluations. The Maximum Peak
Ratio indicates the quality and the quantity of the approximated optima in the set of
all generated solutions per run and is to be maximized.
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