
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

NEST by example: an introduction to the neural
simulation tool NEST

Marc-Oliver Gewaltig, Abigail Morrison, Hans Plesser

2011

Preprint:

This is an accepted article published in Computational Systems Biology. The
final authenticated version is available online at: https://doi.org/[DOI not
available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

NEST by example: an introduction to the
neural simulation tool NEST

Marc-Oliver Gewaltig and Abigail Morrison and Hans Ekkehard Plesser

1 Introduction

NEST is a simulator for networks of point neurons, that is, neuron mod-
els that collapse the morphology (geometry) of dendrites, axons, and so-
mata into either a single compartment or a small number of compartments
(Gewaltig and Diesmann, 2007). This simplification is useful for questions
about the dynamics of large neuronal networks with complex connectiv-
ity. In this text, we give a practical introduction to neural simulations with
NEST. We describe how network models are defined and simulated, how
simulations can be run in parallel, using multiple cores or computer clus-
ters, and how parts of a model can be randomized.

The development of NEST started in 1994 under the name SYNOD to in-
vestigate the dynamics of a large cortex model, using integrate-and-fire neu-
rons (Diesmann et al, 1995). At that time the only available simulators were
NEURON (Hines and Carnevale, 1997) and GENESIS (Bower and Beeman,
1995), both focussing on morphologically detailed neuron models, often us-
ing data from microscopic reconstructions.

Since then, the simulator has been under constant development. In 2001,
the Neural Simulation Technology Initiative was founded to disseminate
our knowledge of neural simulation technology. The continuing research

Marc-Oliver Gewaltig
Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach/Main,
Germany e-mail: marc-oliver.gewaltig@honda-ri.de

Abigail Morrison
Functional Neural Circuits Group, Bernstein Center Freiburg, Hansastr. 9A, 79104
Freiburg, Germany e-mail: morrison@bcf.uni-freiburg.de

Hans Ekkehard Plesser
Dept of Mathematical Sciences and Technology, Norwegian University of Life Sciences,
PO Box 5003, 1432 Aas, Norway e-mail: hans.ekkehard.plesser@umb.no
RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan

1

of the member institutions into algorithms for the simulation of large spik-
ing networks has resulted in a number of influential publications. The al-
gorithms and techniques developed are not only implemented in the NEST
simulator, but have also found their way into other prominent simulation
projects, most notably the NEURON simulator (for the Blue Brain Project:
Migliore et al, 2006) and IBM’s C2 simulator (Ananthanarayanan et al, 2009).

Today, in 2010, there are several simulators for large spiking networks
to choose from (Brette et al, 2007), but NEST remains the best established
simulator with the the largest developer community.

A NEST simulation consists of three main components:

Nodes Nodes are all neurons, devices, and also sub-networks. Nodes
have a dynamic state that changes over time and that can be influenced
by incoming events.

Events Events are pieces of information of a particular type. The most
common event is the spike-event. Other event types are voltage events
and current events.

Connections Connections are communication channels between nodes.
Only if one node is connected to another node, can they exchange events.
Connections are weighted, directed, and specific to one event type. Di-
rected means that events can flow only in one direction. The node that
sends the event is called source and the node that receives the event is
called target. The weight determines how strongly an event will influence
the target node. A second parameter, the delay, determines how long an
event needs to travel from source to target.

In the next sections, we will illustrate how to use NEST, using examples
with increasing complexity. Each of the examples is self-contained. We sug-
gest that you try each example, by typing it into Python, line by line. Addi-
tionally, you can find all examples in your NEST distribution.

2 First steps

We begin by starting Python. For interactive sessions, we recommend the
IPython shell (Pérez and Granger, 2007). It is convenient, because you
can edit the command line and access previously typed commands us-
ing the up and down keys. However, all examples in this chapter work
equally well without IPython. For data analysis and visualization, we also
recommend the Python packages Matplotlib (Hunter, 2007) and NumPy
(Oliphant, 2006).

Our first simulation investigates the response of one integrate-and-fire
neuron to an alternating current and Poisson spike trains from an excitatory
and an inhibitory source. We record the membrane potential of the neuron
to observe how the stimuli influence the neuron (see Fig. 1).

Fig. 1 Membrane potential of a neuron in response to an alternating current as well as
random excitatory and inhibitory spike events. The membrane potential roughly follows
the injected sine current. The small deviations from the sine curve are caused by the exci-
tatory and inhibitory spikes that arrive at random times. Whenever the membrane poten-
tial reaches the firing threshold at -55 mV, the neuron spikes and the membrane potential
is reset to -70 mV. In this example this happens twice: once at around 110 ms and again at
about 600 ms.

In this model, we inject a sine current with a frequency of 2 Hz and an
amplitude of 100 pA into a neuron. At the same time, the neuron receives
random spiking input from two sources known as Poisson generators. One
Poisson generator represents a large population of excitatory neurons and
the other a population of inhibitory neurons. The rate for each Poisson gen-
erator is set as the product of the assumed number of neurons in a popula-
tion and their average firing rate.

The small network is simulated for 1000 milliseconds, after which the
time course of the membrane potential during this period is plotted (see
Fig. 1). For this, we use the pylab plotting routines of Python’s Matplotlib
package. The Python code for this small model is shown below.

1 import nest
2 import nest . v o l t a g e t r a c e
3 import pylab
4 neuron = nest . Create (’ i a f neuron ’)
5 s ine = nest . Create (’ a c ge n e r a t o r ’ , 1 ,
6 { ’ amplitude ’ : 1 0 0 . 0 ,
7 ’ frequency ’ : 2 . 0})
8 noise= nest . Create (’ po isson genera tor ’ , 2 ,
9 [{ ’ r a t e ’ : 70000 .0} ,

10 { ’ r a t e ’ : 2 0 0 0 0 . 0}])
11 vol tmeter = nest . Create (’ vol tmeter ’ , 1 ,
12 { ’ withgid ’ : True })
13 nest . Connect (s ine , neuron)
14 nest . Connect (voltmeter , neuron)
15 nest . ConvergentConnect (noise , neuron , [1 . 0 , −1.0] , 1 . 0)
16 nest . Simulate (1 0 0 0 . 0)

17 nest . v o l t a g e t r a c e . from device (vol tmeter)

We will now go through the simulation script and explain the individ-
ual steps. The first two lines import the modules nest and its sub-module
voltage trace. The nest module must be imported in every interactive session
and in every Python script in which you wish to use NEST. NEST is a C++
library that provides a simulation kernel, many neuron and synapse mod-
els, and the simulation language interpreter SLI. The library which links
the NEST simulation language interpreter to the Python interpreter is called
PyNEST (Eppler et al, 2009).

Importing nest as shown above puts all NEST commands in the namespace
nest. Consequently, all commands must be prefixed with the name of this
namespace.

In line 4, we use the command Create to produce one node of the type
iaf neuron. As you see in lines 5, 8, and 11, Create is used for all node types.
The first argument, ’iaf neuron’, is a string, denoting the type of node that you
want to create. The second parameter of Create is an integer representing the
number of nodes you want to create. Thus, whether you want one neuron
or 100,000, you only need one call to Create. nest.Models() provides a list of all
available node and connection models.

The third parameter is either a dictionary or a list of dictionaries, spec-
ifying the parameter settings for the created nodes. If only one dictionary
is given, the same parameters are used for all created nodes. If an array of
dictionaries is given, they are used in order and their number must match
the number of created nodes. This variant of Create is used in lines 5, 8, and
11 to set the parameters for the Poisson noise generator, the sine generator
(for the alternating current), and the voltmeter. All parameters of a model
that are not set explicitly are initialized with default values. You can display
them with nest.GetDefaults(model name). Note that only the first parameter of
Create is mandatory.

Create returns a list of integers, the global identifiers (or GID for short) of
each node created. The GIDs are assigned in the order in which nodes are
created. The first node is assigned GID 1, the second node GID 2, and so on.

In lines 13 to 15, the nodes are connected. First we connect the sine gen-
erator and the voltmeter to the neuron. The command Connect takes two or
more arguments. The first argument is a list of source nodes. The second ar-
gument is a list of target nodes. Connect iterates these two lists and connects
the corresponding pairs.

A node appears in the source position of Connect if it sends events to
the target node. In our example, the sine generator is in the source posi-
tion because it injects an alternating current into the neuron. The voltmeter
is in the source position, because it polls the membrane potential of the
neuron. Other devices may be in the target position, e.g., the spike detec-
tor which receives spike events from a neuron. If in doubt about the order,
consult the documentation of the respective nodes, using NEST’s help sys-

tem. For example, to read the documentation of the voltmeter you can type
nest.help(’voltmeter’).

Next, we use the command ConvergentConnect to connect the two Poisson
generators to the neuron. ConvergentConnect is used whenever a node is to be
connected to many sources at the same time. The third and fourth arguments
are the weights and delays, respectively. For both it is possible to supply
either an array with values for each connection, or a single value to be used
for all connections. For the weights, we supply an array, because we create
one excitatory connection with weight 1.0 and one inhibitory connection
with weight -1.0. For the delay, we supply only one value, consequently all
the connections have the same delay.

After line 15, the network is ready. The following line calls the NEST func-
tion Simulate which runs the network for 1000 milliseconds. The function re-
turns after the simulation is finished. Then, function voltage trace is called to
plot the membrane potential of the neuron. If you are running the script for
the first time, you may have to tell Python to display the figure by typing
pylab.show(). You should then see something similar to Fig. 1.

If you want to inspect how your network looks so far, you can print it
using the command PrintNetwork():

>>>nest . PrintNetwork ()
+−[0] root dim = [5]

|
+−[1] ia f neuron
+−[2] a c g e n e r a t o r
+ − [3] . . . [4] poisson generator
+−[5] vol tmeter

If you run the example a second time, NEST will leave the existing nodes
intact and will create a second instance for each node. To start a new NEST
session without leaving Python, you can call nest.ResetKernel(). This function
will erase the existing network so that you can start from scratch.

3 Example 1: A sparsely connected recurrent network

Next we discuss a model of activity dynamics in a local cortical network
proposed by Brunel (2000). We only describe those parts of the model which
are necessary to understand its NEST implementation. Please refer to the
original paper for further details.

The local cortical network consists of two neuron populations: a popu-
lation of NE excitatory neurons and a population of NI inhibitory neurons.
To mimic the cortical ratio of 80% excitation and 20% inhibition, we assume
that NE = 8000 and NI = 2000. Thus, our local network has a total of 10,000
neurons.

a b

0

10

20

30

40

50

N
e
u
ro

n
 I
D

Rasterplot from device: 10002

0 50 100 150 200 250 300
Time (ms)

0

39

79

119

ra
te

 (
H

z)

Fig. 2 Sketch of the network model proposed by Brunel (2000). a) The network con-
sists of three populations: NE excitatory neurons (circle labeled E), NI inhibitory neurons
(circle labeled I), and a population of identical, independent Poisson processes (PGs) rep-
resenting activity from outside the network. Arrows represent connections between the
network nodes. Triangular arrow-heads represent excitatory and round arrow-heads rep-
resent inhibitory connections. The numbers at the start and end of each arrow indicate the
multiplicity of the connection. See also table 1. b) Spiking activity of 50 neurons during
the first 300 ms of simulated time as a raster plot. Time is shown on the x-axis, neuron id
on the y-axis. Each dot corresponds to a spike of the respective neuron at the given time.
The histogram below the raster plot shows the population rate of the network.

For both the excitatory and the inhibitory population, we use the same
integrate-and-fire neuron model with current-based synapses. Incoming ex-
citatory and inhibitory spikes displace the membrane potential Vm by JE and
JI , respectively. If Vm reaches the threshold value Vth, the membrane poten-
tial is reset to Vreset, a spike is sent with delay D = 1.5 ms to all post-synaptic
neurons, and the neuron remains refractory for τrp = 2.0 ms.

The neurons are mutually connected with a probability of 10%. Specif-
ically, each neuron receives input from CE = 0.1 · NE excitatory and CI =
0.1 · NI inhibitory neurons (see Fig. 2a). The inhibitory synaptic weights JI
are chosen with respect to the excitatory synaptic weights JE such that

JI = −g · JE (1)

with g = 5.0 in this example.
In addition to the sparse recurrent inputs from within the local network,

each neuron receives excitatory input from a population of CE randomly
firing neurons, mimicking the input from the rest of cortex. The randomly
firing population is modeled as CE independent and identically distributed
Poisson processes with rate νext. Here, we set νext to twice the rate νth that
is needed to drive a neuron to threshold asymptotically. The details of the
model are summarized in tables 1 and 2.

Fig. 2b shows a raster-plot of 50 excitatory neurons during the first 300
ms of simulated time. Time is shown along the x-axis, neuron id along the
y-axis. At t = 0, all neurons are in the same state Vm = 0 and hence there is no
spiking activity. The external stimulus rapidly drives the membrane poten-
tials towards the threshold. Due to the random nature of the external stim-
ulus, not all the neurons reach the threshold at the same time. After a few
milliseconds, the neurons start to spike irregularly at roughly 40 spikes/s.
In the original paper, this network state is called the asynchronous irregular
state (Brunel, 2000).

3.1 NEST Implementation

We now show how this model is implemented in NEST. Along the way, we
explain the required steps and NEST commands in more detail so that you
can apply them to your own models.

The first three lines import NEST, a NEST module for raster-plots, and
the plotting package pylab. We then assign the various model parameters to
variables.

1 import nest
2 import nest . r a s t e r p l o t
3 import pylab
4 g = 5 . 0
5 e ta = 2 . 0
6 delay = 1 . 5
7 tau m = 2 0 . 0
8 V th = 2 0 . 0
9 N E = 8000

10 N I = 2000
11 N neurons = N E+N I
12 C E = N E/10
13 C I = N I/10
14 J E = 0 . 1
15 J I = −g∗ J E
16 nu ex = eta∗V th /(J E∗C E∗tau m)
17 p r a t e = 1000 .0∗ nu ex∗C E

In line 16, we compute the firing rate nu ex (νext) of a neuron in the external
population. We define nu ex as the product of a constant eta times the thresh-
old rate νth, i.e. the steady state firing rate which is needed to bring a neuron
to threshold. The value of the scaling constant eta is defined in line 5.

In line 17, we compute the population rate of the whole external popula-
tion. With CE neurons, the population rate is simply the product nu ex∗C E.

Table 1 Summary of the network model, proposed by Brunel (2000).

A Model Summary
Populations Three: excitatory, inhibitory, external input
Topology —
Connectivity Random convergent connections with probability P = 0.1 and

fixed in-degree of CE = PNE and CI = PNI .
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute

refractory time (voltage clamp)
Channel models —
Synapse model δ-current inputs (discontinuous voltage jumps)
Plasticity —
Input Independent fixed-rate Poisson spike trains to all neurons
Measurements Spike activity

B Populations
Name Elements Size
E Iaf neuron NE = 4NI

I Iaf neuron NI

Eext Poisson generator CE(NE + NI)

C Connectivity
Name Source Target Pattern
EE E E Random convergent CE → 1, weight J, delay D
IE E I Random convergent CE → 1, weight J, delay D
EI I E Random convergent CI → 1, weight −gJ, delay D
II I I Random convergent CI → 1, weight −gJ, delay D
Ext Eext E ∪ I Non-overlapping CE → 1, weight J, delay D

D Neuron and Synapse Model
Name Iaf neuron
Type Leaky integrate-and-fire, δ-current input

Subthreshold
dynamics

τmV̇m(t) = −Vm(t) + Rm I(t) if not refractory (t > t∗ + τrp)

Vm(t) = Vr while refractory (t∗ < t ≤ t∗ + τrp)

I(t) = τm
Rm

∑t̃ wδ(t − (t̃ + D))

Spiking
If Vm(t−) < Vθ ∧ Vm(t+) ≥ Vθ

1. set t∗ = t
2. emit spike with time-stamp t∗

E Input
Type Description
Poisson generators Fixed rate νext, CE generators per neuron, each generator

projects to one neuron

F Measurements
Spike activity as raster plots, rates and “global frequencies”, no details given

Table 2 Summary of the network parameters for the model, proposed by Brunel (2000).

G Network Parameters
Parameter Value
Number of excitatory neurons NE 8000
Number of inhibitory neurons NI 2000
Excitatory synapses per neuron CE 800
Inhibitory synapses per neuron CE 200

H Neuron Parameters
Parameter Value
Membrane time constant τm 20 ms
Refractory period τrp 2 ms
Firing threshold Vth 20 mV
Membrane capatitance Cm 1pF
Resting potential VE 0 mV
Reset potential Vreset 10 mV
Excitatory PSP amplitude JE 0.1 mV
Inhibitory PSP amplitude JI -0.5 mV
Synaptic delay D 1.5 ms
Background rate η 2.0

The factor 1000.0 in the product changes the units from spikes per ms to
spikes per second.

18 nest . SetKernelStatus ({ ’ p r i n t t i m e ’ : True })
19 nest . SetDefaults (’ i a f p s c d e l t a ’ ,
20 { ’C m ’ : 1 . 0 ,
21 ’ tau m ’ : tau m ,
22 ’ t r e f ’ : 2 . 0 ,
23 ’ E L ’ : 0 . 0 ,
24 ’ V th ’ : V th ,
25 ’ V r e s e t ’ : 1 0 . 0})

Next, we prepare the simulation kernel of NEST (line 18). The command
SetKernelStatus modifies parameters of the simulation kernel. The argument
is a Python dictionary with key:value pairs. Here, we set the NEST kernel to
print the progress of the simulation time during simulation.

In lines 19 to 25, we change the parameters of the neuron model we
want to use from the built-in values to the defaults for our investigation.
SetDefaults expects two parameters. The first is a string, naming the model
for which the default parameters should be changed. Our neuron model
for this simulation is the simplest integrate-and-fire model in NEST’s reper-
toire: ’ iaf psc delta ’. The second parameter is a dictionary with parameters
and their new values, entries separated by commas. All parameter values
are taken from Brunel’s paper (Brunel, 2000) and we insert them directly for
brevity. Only the membrane time constant tau m and the threshold poten-

tial V th are read from variables, because these values are needed in several
places.

26 nodes = nest . Create (’ i a f p s c d e l t a ’ , N neurons)
27 nodes E= nodes [: N E]
28 nodes I= nodes [N E :]
29 nest . CopyModel (’ static synapse hom wd ’ ,
30 ’ e x c i t a t o r y ’ ,
31 { ’ weight ’ : J E ,
32 ’ delay ’ : delay })
33 nest . RandomConvergentConnect (nodes E , nodes , C E ,
34 model= ’ e x c i t a t o r y ’)
35 nest . CopyModel (’ static synapse hom wd ’ ,
36 ’ i n h i b i t o r y ’ ,
37 { ’ weight ’ : J I ,
38 ’ delay ’ : delay })
39 nest . RandomConvergentConnect (nodes I , nodes , C I ,
40 model= ’ i n h i b i t o r y ’)

In line 26 we create the neurons. Create returns a list of the global IDs which
are consecutive numbers from 1 to n neurons. We split this range into excita-
tory and inhibitory neurons. In line 27 we select the first N E elements from
the list nodes and assign them to the variable nodes E. This list now holds the
GIDs of the excitatory neurons.

Similarly, in line 28 we assign the range from position N E to the end of
the list to the variable nodes I. This list now holds the GIDs of all inhibitory
neurons. The selection is carried out using standard Python list commands.
You may want to consult the Python documentation for more details.

The next two commands generate the connections to the excitatory neu-
rons. In line 29, we create a new connection type ’ excitatory ’ by copying
the built-in connection type ’static synapse hom wd’ while changing its default
values for weight and delay. The command CopyModel expects either two or
three arguments: the name of an existing model, the name of the new model,
and optionally a dictionary with the new default values of the new model.

The connection type ’static synapse hom wd’ uses the same values of weight
and delay for all synapses. This saves memory for networks in which these
values are identical for all connections. In Section 5 we use a different con-
nection model to implement randomized weights and delays.

Having created and parameterized an appropriate synapse model, we
draw the incoming excitatory connections for each neuron (line 33). The
function RandomConvergentConnect expects four arguments: a list of source
nodes, a list of target nodes, the number of connections to be drawn, and
finally the type of connection to be used. RandomConvergentConnect iter-
ates over the list of target nodes (nodes). For each target node it draws the
required number of sources (C E) from the list of source nodes (nodes E)

and connects these to the current target with the selected connection type
(excitatory).

In lines 35 to 40 we repeat the same steps for the inhibitory connections:
we create a new connection type and draw the incoming inhibitory connec-
tions for all neurons.

Next, we create and connect the external population and some devices to
measure the spiking activity in the network.

41 noise=nest . Create (’ po isson genera tor ’ , 1 ,{ ’ r a t e ’ : p r a t e })
42 nest . DivergentConnect (noise , nodes , model= ’ e x c i t a t o r y ’)
43 spikes=nest . Create (’ s p i k e d e t e c t o r ’ , 2 ,
44 [{ ’ l a b e l ’ : ’ brunel−py−ex ’ } ,
45 { ’ l a b e l ’ : ’ brunel−py−in ’ }])
46 spikes E=spikes [: 1]
47 s p i k e s I =spikes [1 :]
48 N rec = 50
49 nest . ConvergentConnect (nodes E [: N rec] , sp ikes E)
50 nest . ConvergentConnect (nodes I [: N rec] , s p i k e s I)

In line 41, we create a device known as a poisson generator, which produces a
spike train governed by a Poisson process at a given rate. We use the third
parameter of Create to initialize the rate of the Poisson process to the popu-
lation rate p rate which we previously computed in line 17.

If a Poisson generator is connected to n targets, it generates n independent
and identically distributed spike trains. Thus, we only need one generator
to model an entire population of randomly firing neurons.

In the next line (42), we use DivergentConnect to connect the Poisson gener-
ator to all nodes of the local network. Since these connections are excitatory,
we use the ’ excitatory ’ connection type.

We have now implemented the Brunel model and we could start to simu-
late it. However, we won’t see any results unless we record something from
the network. To observe how the neurons in the recurrent network respond
to the random spikes from the external population, we create two spike de-
tectors in line 43; one for the excitatory neurons and one for the inhibitory
neurons. By default, each detector writes its spikes into a file whose name is
automatically generated from the device type and its global id. We use the
third argument of Create to give each spike detector a ’ label ’, which will be
part of the name of the output file written by the detector. Since two devices
are created, we supply a list of dictionaries.

In line 46, we store the GID of the first spike detector in a one-element list
and assign it to the variable spikes E. In the next line, we do the same for the
second spike detector that is dedicated to the inhibitory population.

Our network consists of 10,000 neurons, all of which having the same ac-
tivity statistics due to the random connectivity. Thus, it suffices to record
from a representative sample of neurons, rather than from the entire net-
work. Here, we choose to record from 50 neurons and assign this number

to the variable N rec. We then connect the first 50 excitatory neurons to their
spike detector. Again, we use standard Python list operations to select N rec
neurons from the list of all excitatory nodes. Alternatively, we could select
50 neurons at random, but since the neuron order has no meaning in this
model, the two approaches would yield qualitatively the same results. Fi-
nally, we repeat this step for the inhibitory neurons.

Now everything is set up and we can run the simulation.

51 simtime =300
52 nest . Simulate (simtime)
53 events = nest . GetStatus (spikes , ’ n events ’)
54 r a t e e x = events [0] / simtime ∗1000.0/ N rec
55 print ” E x c i t a t o r y r a t e : %.2 f 1/s ” % r a t e e x
56 r a t e i n = events [1] / simtime ∗1000.0/ N rec
57 print ” I n h i b i t o r y r a t e : %.2 f 1/s ” % r a t e i n
58 nest . r a s t e r p l o t . from device (spikes E , h i s t =True)

In line 51, we select a simulation time of 300 milliseconds and assign it to
a variable. Next, we call the NEST command Simulate to run the simulation
for 300 ms. During simulation, the Poisson generators send spikes into the
network and cause the neurons to fire. The spike detectors receive spikes
from the neurons and write them to a file, or to memory.

When the function returns, the simulation time has progressed by 300 ms.
You can call Simulate as often as you like and with different arguments. NEST
will resume the simulation at the point where it was last stopped. Thus, you
can partition your simulation time into small epochs to regularly inspect the
progress of your model.

After the simulation is finished, we compute the firing rate of the excita-
tory neurons (line 54) and the inhibitory neurons (line 56). Finally, we call
the NEST function raster plot to produce the raster plot shown in Fig. 2b.
raster plot has two modes. raster plot . from device expects the global ID of a
spike detector. raster plot . from file expects the name of a data-file. This is use-
ful to plot data without repeating a simulation.

4 Parallel simulation

Large network models often require too much time or computer memory to
be conveniently simulated on a single computer. For example, if we increase
the number of neurons in the previous model to 100,000, there will be a to-
tal of 109 connections, which won’t fit into the memory of most computers.
Similarly, if we use plastic synapses (see Section 7) and run the model for
minutes or hours of simulated time, the execution times become uncomfort-
ably long.

To address this issue, NEST has two modes of parallelization: multi-
threading and distribution. Multi-threaded and distributed simulation can
be used in isolation or in combination (Plesser et al, 2007), and both modes
allow you to connect and run networks more quickly than in the serial case.

Multi-threading means that NEST uses all available processors or cores
of the computer. Today, most desktop computers and even laptops have
at least two processing cores. Thus, you can use NEST’s multi-threaded
mode to make your simulations execute more quickly whilst still maintain-
ing the convenience of interactive sessions. Since a given computer has a
fixed memory size, multi-threaded simulation can only reduce execution
times. It cannot solve the problem that large models exhaust the computer’s
memory.

Distribution means that NEST uses many computers in a network or com-
puter cluster. Since each computer contributes memory, distributed simula-
tion allows you to simulate models that are too large for a single computer.
However, in distributed mode it is not currently possible to use NEST inter-
actively.

In most cases writing a simulation script to be run in parallel is as easy as
writing one to be executed on a single processor. Only minimal changes are
required, as described below, and you can ignore the fact that the simulation
is actually executed by more than one core or computer. However, in some
cases your knowledge about the distributed nature of the simulation can
help you improve efficiency even further. For example, in the distributed
mode, all computers execute the same simulation script. We can improve
performance if the script running on a specific computer only tries to execute
commands relating to nodes that are represented on the same computer. An
example of this technique is shown below in Section 6.

To switch NEST into multi-threaded mode, you only have to add one line
to your simulation script:

nest . SetKernelStatus ({ ’ local num threads ’ : n})

Here, n is the number of threads you want to use. It is important that you
set the number of threads before you create any nodes. If you try to change
the number of threads after nodes were created, NEST will issue an error.

A good choice for the number of threads is the number of cores or pro-
cessors on your computer. If your processor supports hyperthreading, you
can select an even higher number of threads.

The distributed mode of NEST is particularly useful for large simulations
for which not only the processing speed, but also the memory of a single
computer are insufficient. The distributed mode of NEST uses the Message
Passing Interface (MPI, MPI Forum (2009)), a library that must be installed
on your computer network when you install NEST. For details, please refer
to NEST’s website at www.nest-initiative.org.

The distributed mode of NEST is also easy to use. All you need to do is
start NEST with the MPI command mpirun:

mpirun −np m python s c r i p t . py

where m is the number of MPI processes that should be started. One sensible
choice for m is the total number of cores available on the cluster. Another
reasonable choice is the number of physically distinct machines, utilizing
their cores through multithreading as described above. This can be useful
on clusters of multi-core computers.

In NEST, processes and threads are both mapped to virtual processes
(Plesser et al, 2007). If a simulation is started with m MPI processes and n
threads on each process, then there are m×n virtual processes. You can ob-
tain the number of virtual processes in a simulation with

nest . GetKernelStatus (’ t o t a l n u m v i r t u a l p r o c s ’)

The virtual process concept is reflected in the labeling of output files. For
example, the data files for the excitatory spikes produced by the network
discussed here follow the form brunel−py−ex−x−y.gdf, where x is the id of
the data recording node and y is the id of the virtual process.

5 Randomness in NEST

NEST has built-in random number sources that can be used for tasks such
as randomizing spike trains or network connectivity. In this section, we dis-
cuss some of the issues related to the use of random numbers in parallel
simulations. In Section 6, we illustrate how to randomize parameters in a
network.

Let us first consider the case that a simulation script does not explicitly
generate random numbers. In this case, NEST produces identical simulation
results for a given number of virtual processes, irrespective of how the vir-
tual processes are partitioned into threads and MPI processes. The only dif-
ference between the output of two simulations with different configurations
of threads and processes resulting in the same number of virtual processes
is the result of query commands such as GetStatus. These commands gather
data over threads on the local machine, but not over remote machines.

In the case that random numbers are explictly generated in the simula-
tion script, more care must be taken to produce results that are independent
of the parallel configuration. Consider, for example, a simulation where two
threads have to draw a random number from a single random number gen-
erator. Since only one thread can access the random number generator at a
time, the outcome of the simulation will depend on the access order.

Ideally, all random numbers in a simulation should come from a single
source. In a serial simulation this is trivial to implement, but in parallel sim-
ulations this would require shipping a large number of random numbers
from a central random number generator (RNG) to all processes. This is im-
practical. Therefore, NEST uses one independent random number genera-

tor on each virtual process. Not all random number generators can be used
in parallel simulations, because many cannot reliably produce uncorrelated
parallel streams. Fortunately, recent years have seen great progress in RNG
research and there is a range of random number generators that can be used
with great fidelity in parallel applications.

Based on this knowledge, each virtual process (VP) in NEST has its own
RNG. Numbers from these RNGs are used to

• choose random convergent connections
• create random spike trains (e.g. poisson generator) or random currents (e.g.

noise generator).

In order to randomize model parameters in a PyNEST script, it is conve-
nient to use the random number generators provided by NumPy. To ensure
consistent results for a given number of virtual processes, each virtual pro-
cess should use a separate Python RNG. Thus, in a simulation running on
Nvp virtual processes, there should be 2Nvp + 1 RNGs in total:

• the global NEST RNG;
• one RNG per VP in NEST;
• one RNG per VP in Python.

We need to provide separate seed values for each of these generators.
Modern random number generators work equally well for all seed val-
ues. We thus suggest the following approach to choosing seeds: For each
simulation run, choose a master seed msd and seed the RNGs with seeds
msd, msd + 1, . . . msd + 2Nvp. Any two master seeds must differ by at least
2Nvp + 1 to avoid correlations between simulations.

By default, NEST uses Knuth’s lagged Fibonacci RNG, which has the nice
property that each seed value provides a different sequence of some 270

random numbers (Knuth, 1998, Ch. 3.6). Python uses the Mersenne Twister
MT19937 generator (Matsumoto and Nishimura, 1998), which provides no
explicit guarantees, but given the enormous state space of this generator
it appears astronomically unlikely that neighboring integer seeds would
yield overlapping number sequences. For a recent overview of RNGs, see
L’Ecuyer and Simard (2007). For general introductions to random number
generation, see Gentle (2003), Knuth (1998, Ch. 3), or Plesser (2010).

6 Example 2: Randomizing neurons and synapses

Let us now consider how to randomize some neuron and synapse param-
eters in the sparsely connected network model introduced in Section 3. We
shall

• explicitly seed the random number generators;
• randomize the initial membrane potential of all neurons;

• randomize the weights of the recurrent excitatory connections.

We discuss here only those parts of the model script that differ from the
script discussed in Section 3.1; the complete script brunel2000−rand.py is part
of the NEST examples.

We begin by importing the NumPy package to get access to its random
generator functions:

import numpy

After line 1 of the original script (cf. p. 13), we insert code to seed the random
number generators:

r1 msd = 1000 # m as t e r s e e d
r2 msdrange1 = range (msd , msd+n vp)
r3 n vp = nest . GetKernelStatus (’ t o t a l n u m v i r t u a l p r o c s ’)
r4 pyrngs = [numpy . random . RandomState (s) for s in msdrange1]
r5 msdrange2 = range (msd+n vp +1 , msd+1+2∗n vp)
r6 nest . SetKernelStatus ({ ’ grng seed ’ : msd+n vp ,
r7 ’ rng seeds ’ : msdrange2})

We first define the master seed msd and then obtain the number of virtual
processes n vp. On line r4 we then create a list of n vp NumPy random num-
ber generators with seeds msd, msd+1, . . . msd+n vp−1. The next two lines
set new seeds for the built-in NEST RNGs: the global RNG is seeded with
msd+n vp, the per-virtual-process RNGs with msd+n vp+1, . . . , msd+2∗n vp.
Note that the seeds for the per-virtual-process RNGs must always be passed
as a list, even in a serial simulation.

After creating the neurons as before, we insert the following code after
line 28 to randomize the membrane potential of all neurons:

r8 node info = nest . GetStatus (nodes , [’ g l o b a l i d ’ , ’vp ’ , ’ l o c a l ’])
r9 l o c a l n o d e s = [(gid , vp) for gid , vp , i s l o c a l \

r10 in node info i f i s l o c a l]
r11 for gid , vp in l o c a l n o d e s :
r12 nest . SetStatus ([gid] , { ’V m ’ : pyrngs [vp] . uniform(−V th , V th)})

In this code, we meet the concept of local nodes for the first time (Plesser
et al, 2007). In serial and multi-threaded simulations, all nodes are local. In
an MPI-based simulation with m MPI processes, each MPI process repre-
sents and is responsible for updating (approximately) 1/m-th of all nodes—
these are the local nodes for each process. In line r8 we obtain an informa-
tion triplet for each node: the global id, the id of the virtual process updat-
ing the neuron and a boolean value indicating whether the node is local.
We then use a list comprehension to create a list of gid and vp tuples for
all local nodes. The for-loop then iterates over this list and draws for each
node a membrane potential value uniformly distributed in [−Vth,Vth), i.e.,
[−20mV,20mV). We draw the inital membrane potential for each node from

the NumPy RNG assigned to the virtual process vp responsible for updating
that node.

As the next step, we create excitatory recurrent connections with the same
connection rule as in the original script, but with randomized weights. To
this end, we replace the code on lines 29–33 of the original script with

r13 nest . CopyModel (’ s t a t i c s y n a p s e ’ , ’ e x c i t a t o r y ’)
r14 for t g t g i d , tg t vp in l o c a l n o d e s :
r15 weights = pyrngs [tg t vp] . uniform (0 . 5∗ J E , 1 .5∗ J E , C E)
r16 nest . RandomConvergentConnect (nodes E , [t g t g i d] , C E ,
r17 weight= l i s t (weights) ,
r18 delay=delay ,
r19 model= ’ e x c i t a t o r y ’)

The first difference to the original is that we base the excitatory synapse
model on the built-in static synapse model instead of static synapse hom wd, as
the latter requires equal weights (and delays) for all synapses. The second
difference to the original script is the way we connect the nodes.

For each local target, we draw an array of C E random weights (line r15)
uniformly distributed on [0.5 × JE,1.5 × JE). Using these weights and de-
lays, we then call RandomConvergentConnect to create connections from C E
randomly chosen nodes in nodes E. We need this loop over the set of local
targets, because in parallel simulations, connection information is managed
by the virtual process updating the target node (Morrison et al, 2005; Plesser
et al, 2007). Thus, weights, delays and possibly other connection parameters
can only be set by the MPI process to which the target node belongs. Draw-
ing the weights from the RNG for the virtual process updating the target
node ensures that we will set the same weights independent of how many
MPI processes underly a given number of virtual processes. Note that the
corresponding randomization of weights for random divergent connections
is more complicated; please see the online documentation on NEST’s web-
site for details.

Two remarks about the parameters on line r18: first, NEST functions
mostly only accept Python lists as arguments, not NumPy arrays. We thus
need to convert the array returned by uniform() into a list before passing.
Second, when passing weight to RandomConvergentConnect, we also have to
pass delay explicitly.

Before starting our simulation, we want to visualize the randomized ini-
tial membrane potentials and weights. To this end, we insert the following
code just before we start the simulation:

r20 pylab . f i g u r e ()
r21 V E = nest . GetStatus (nodes E [: N rec] , ’V m ’)
r22 pylab . h i s t (V E , bins =10)
r23 pylab . f i g u r e ()
r24 ex conns = nest . FindConnections (nodes E [: N rec] ,
r25 synapse type= ’ e x c i t a t o r y ’)

a b c

�20�15�10�5 0 5 10 15 20
Membrane potential V_m [mV]

0

1

2

3

4

5

6

7

8

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Synaptic weight [pA]

0

100

200

300

400

500

600

0

10

20

30

40

50

N
e
u
ro

n
 I
D

Rasterplot from device: 10002

0 50 100 150 200 250 300
Time (ms)

0

32

64

97

ra
te

 (
H

z)

Fig. 3 a) Distribution of membrane potentials Vm of 50 excitatory neurons after random
initialization. b) Distribution of weights of randomized weights of approximately 50,000
recurrent connections originating from 50 excitatory neurons. c) Spiking activity of 50
excitatory neurons during the first 300 ms of network simulation; compare with the cor-
responding diagram for the same network without randomization of initial membrane
potentials and weights in Fig. 2.

r26 w = nest . GetStatus (ex conns , ’ weight ’)
r27 pylab . h i s t (w, bins =100)

Line r21 retrieves the membrane potentials of all 50 recorded neurons. The
data is then displayed as a histogram with 10 bins, see Fig. 3. Line r24 finds
all connections that

• have one of the 50 recorded excitatory neurons as source;
• have any local node as target;
• and are of type excitatory.

In line r26, we then use GetStatus() to obtain the weights of these connections.
Running the script in a single MPI process, we record approximately 50,000
weights, which we display in a histogram with 100 bins as shown in Fig. 3.

Note that the code on lines r21–r26 will return complete results only when
run in a single MPI process. Otherwise, only data from local neurons or con-
nections with local targets will be obtained. It is currently not possible to
collect recorded data across MPI processes in NEST. In distributed simula-
tions, you should thus let recording devices write data to files and collect
the data after the simulation is complete.

The result of the simulation is displayed as before. Comparing the raster
plot from the simulation with randomized initial membrane potentials in
Fig. 3 with the same plot for the original network in Fig. 2 reveals that the
membrane potential randomization has prevented the synchronous onset of
activity in the network.

As a final point, we make a slight improvement to the rate computation
on lines 54–57 of the original script. Spike detectors count only spikes from
neurons on the local MPI process. Thus, the original computation is correct
only for a single MPI process. To obtain meaningful results when simulating
on several MPI processes, we count how many of the N rec recorded nodes
are local and use that number to compute the rates:

r28 N r e c l o c a l E = sum(nest . GetStatus (nodes E [: N rec] , ’ l o c a l ’))
r29 r a t e e x = events [0] / simtime ∗1000.0/ N r e c l o c a l E

Each MPI process then reports the rate of activity of its locally recorded
nodes.

7 Example 3: Plastic Networks

NEST provides synapse models with a variety of short-term and long-term
dynamics. To illustrate this, we extend the sparsely connected network in-
troduced in section 3 with randomized synaptic weights as described in sec-
tion 5 to incorporate spike-timing dependent plasticity (Bi and Poo, 1998) at
its recurrent excitatory-excitatory synapses.

p1 node E info = nest . GetStatus (nodes E , [’ l o c a l ’ , ’ g l o b a l i d ’ , ’vp ’])
p2 n o d e I i n f o = nest . GetStatus (nodes I , [’ l o c a l ’ , ’ g l o b a l i d ’ , ’vp ’])
p3 lo ca l E node s = [(gid , vp) for i s l o c a l , gid , vp
p4 in node E info i f i s l o c a l]
p5 l o c a l I n o d e s = [(gid , vp) for i s l o c a l , gid , vp
p6 in n o d e I i n f o i f i s l o c a l]
p7 for gid , vp in lo ca l E no des + l o c a l I n o d e s :
p8 nest . SetStatus ([gid] ,
p9 { ’V m ’ : pyrngs [vp] . uniform(−V th , 0 . 9 5∗ V th)})

As in the previous section, we first acquire information about the locality
of each node. Here, we gather this information separately for the excitatory
and inhibitory populations, as we will be making different types of connec-
tion to them. The initial membrane potentials are randomized as before. We
then generate a plastic synapse model for the excitatory-excitatory connec-
tions and a static synapse model for the excitatory-inhibitory connections:

p10 nest . CopyModel (’ stdp synapse hom ’ ,
p11 ’ e x c i t a t o r y−p l a s t i c ’ ,
p12 { ’ alpha ’ : STDP alpha ,
p13 ’Wmax’ : STDP Wmax})
p14 nest . CopyModel (’ s t a t i c s y n a p s e ’ , ’ e x c i t a t o r y−s t a t i c ’)

Here, we set the parameters alpha and Wmax of the synapse model but use
the default settings for all its other parameters. Finally, we use these synapse
models to create plastic and static excitatory connections with randomized
initial weights:

p15 for t g t g i d , tg t vp in loca l E no de s :
p16 weights = l i s t (pyrngs [tg t vp] . uniform (0 . 5∗ J E , 1 .5∗ J E , C E))
p17 nest . RandomConvergentConnect (nodes E , [t g t g i d] , C E ,
p18 weight = weights , delay = delay

0.04 0.06 0.08 0.10 0.12 0.14 0.16
Synaptic weight [pA]

0

100

200

300

400

500

600

Fig. 4 Distribution of synaptic weights in the plastic network simulation after 300 ms.

p19 model= ’ e x c i t a t o r y−p l a s t i c ’)
p20 for t g t g i d , tg t vp in l o c a l I n o d e s :
p21 weights = l i s t (pyrngs [tg t vp] . uniform (0 . 5∗ J E , 1 .5∗ J E , C E))
p22 nest . RandomConvergentConnect (nodes E , [t g t g i d] , C E ,
p23 weight = weights , delay = delay ,
p24 model= ’ e x c i t a t o r y−s t a t i c ’)

After a period of simulation, we can access the plastic synaptic weights for
analysis:

p1 w = nest . GetStatus (nes t . FindConnections (nodes E [: N rec] ,
p2 synapse type= ’ e x c i t a t o r y−p l a s t i c ’) ,
p3 ’ weight ’)

Plotting a histogram of the synaptic weights reveals that the initial uni-
form distribution has begun to soften (see Fig. 4). Simulation for a longer
period results in an approximately Gaussian distribution of weights.

8 Example 4: Classes and Automatization Techniques

So far, we have encouraged you to try our examples line-by line. This is
possible in interactive sessions, but if you want to run a simulation several
times, possibly with different parameters, it is more practical to write a script
that can be loaded from Python.

Python offers a number of mechanisms to structure and organize not only
your simulations, but also your simulation data. The first step is to re-write
a model as a class. In Python, and other object-oriented languages, a class is

a data structure which groups data and functions into a single entity. In our
case, data are the different parameters of a model and functions are what
you can do with a model. Classes allow you to solve various common prob-
lems in simulations:

Parameter sets Classes are data structures and so are ideally suited to
hold the parameter set for a model. Class inheritance allows you to mod-
ify one, few, or all parameters while maintaining the relation to the origi-
nal model.

Model variations Often, we want to change minor aspects of a model. For
example, in one version we have homogeneous connections and in an-
other we want randomized weights. Again, we can use class inheritance
to express both cases while maintaining the conceptual relation between
the models.

Data management Often, we run simulations with different parameters,
or other variations and forget to record which data file belonged to which
simulation. Python’s class mechanisms provide a simple solution.

We organize the model from Section 3 into a class, by realizing that each
simulation has five steps which can be factored into separate functions:

1. Define all independent parameters of the model. Independent parame-
ters are those that have concrete values which do not depend on any
other parameter. For example, in the Brunel model, the parameter g is
an independent parameter.

2. Compute all dependent parameters of the model. These are all parame-
ters or variables that have to be computed from other quantities (e.g. the
total number of neurons).

3. Create all nodes (neurons, devices, etc.)
4. Connect the nodes.
5. Simulate the model.

We translate these steps into a simple class layout that will fit most models:

c1 c l a s s Model (o b j e c t) :
c2 ””” Model d e s c r i p t i o n . ”””
c3 # D e f i n e a l l i n d e p e n d e n t v a r i a b l e s .
c4
c5 def i n i t (s e l f) :
c6 ””” I n i t i a l i z e t h e s i m u l a t i o n , s e t u p d a t a d i r e c t o r y ”””
c7 def c a l i b r a t e (s e l f) :
c8 ””” Compute a l l d e p e n d e n t v a r i a b l e s ”””
c9 def build (s e l f) :

c10 ””” C r e a t e a l l nodes ”””
c11 def connect (s e l f) :
c12 ””” Connect a l l nodes ”””
c13 def run (s e l f , simtime) :
c14 ””” Bui ld , c o n n e c t and s i m u l a t e t h e model ”””

In the following, we illustrate how to fit the model from Section 3 into this
scaffold. The complete and commented listing can be found in your NEST
distribution.

c1 c l a s s Brunel2000 (o b j e c t) :
c2 ”””
c3 I m p l e m e n t a t i o n o f t h e s p a r s e l y c o n n e c t e d random network ,
c4 d e s c r i b e d by Brune l (2 0 0 0) J . Comp . N e u r o s c i .
c5 P a r a m e t e r s a r e c h o s e n f o r t h e a s yn chronous i r r e g u l a r
c6 s t a t e (AI) .
c7 ”””
c8 g = 5 . 0
c9 e ta = 2 . 0

c10 delay = 1 . 5
c11 tau m = 2 0 . 0
c12 V th = 2 0 . 0
c13 N E = 8000
c14 N I = 2000
c15 J E = 0 . 1
c16 N rec = 50
c17 threads =2 # Number o f t h r e a d s f o r p a r a l l e l s i m u l a t i o n
c18 b u i l t =Fa l se # True , i f b u i l d () was c a l l e d
c19 connected=Fa lse # True , i f c o n n e c t () was c a l l e d
c20 # more d e f i n i t i o n s f o l l o w . . .

A Python class is defined by the keyword class followed by the class name,
Brunel2000 in this example. The parameter object indicates that our class is a
subclass of a general Python Object. After the colon, we can supply a docu-
mentation string, encased in triple quotes, which will be printed if we type
help(Brunel2000). After the documentation string, we define all independent
parameters of the model as well as some global variables for our simula-
tion. We also introduce two Boolean variables built and connected to ensure
that the functions build() and connect() are executed exactly once.

Next, we define the class functions. Each function has at least the param-
eter self , which is a reference to the current class object. It is used to access
the functions and variables of the object.

The first function we look at is also the first one that is called for every
class object. It has the somewhat cryptic name init () :

c21 def i n i t (s e l f) :
c22 ”””
c23 I n i t i a l i z e an o b j e c t o f t h i s c l a s s .
c24 ”””
c25 s e l f . name= s e l f . c l a s s . name
c26 s e l f . data path= s e l f . name+ ’/ ’
c27 nest . ResetKernel ()
c28 i f not os . path . e x i s t s (s e l f . data path) :

c29 os . makedirs (s e l f . data path)
c30 print ” Writing data to : ”+ s e l f . data path
c31 nest . SetKernelStatus ({ ’ data path ’ : s e l f . data path })

init () is automatically called by Python whenever a new object of a
class is created and before any other class function is called. We use it to
initialize the NEST simulation kernel and to set up a directory where the
simulation data will be stored.

The general idea is this: each simulation with a specific parameter set gets
its own Python class. We can then use the class name to define the name of
a data directory where all simulation data are stored.

In Python it is possible to read out the name of a class from an object.
This is done in line c25. Don’t worry about the many underscores, they tell
us that these names are provided by Python. In the next line, we assign the
class name plus a trailing slash to the new object variable data path. Note
how all class variables are prefixed with self .

Next we reset the NEST simulation kernel to remove any leftovers from
previous simulations.

The following two lines use functions from the Python library os which
provides functions related to the operating system. In line c28 we check
whether a directory with the same name as the class already exists. If not,
we create a new directory with this name. Finally, we set the data path prop-
erty of the simulation kernel. All recording devices use this location to store
their data. This does not mean that this directory is automatically used for
any other Python output functions. However, since we have stored the data
path in an object variable, we can use it whenever we want to write data to
file.

The other class functions are quite straightforward. Brunel2000.build() ac-
cumulates all commands that relate to creating nodes. The only addition is
a piece of code that checks whether the nodes were already created:

c32 def build (s e l f) :
c33 ”””
c34 C r e a t e a l l nodes , used in t h e model .
c35 ”””
c36 i f s e l f . b u i l t : return
c37 s e l f . c a l i b r a t e ()
c38 # rema in ing c o d e t o c r e a t e nodes
c39 s e l f . b u i l t =True

The last line in this function sets the variable self . built to True so that other
functions know that all nodes were created.

In function Brunel2000.connect() we first ensure that all nodes are created
before we attempt to draw any connection:

c40 def connect (s e l f) :
c41 ”””

c42 Connect a l l nodes in t h e model .
c43 ”””
c44 i f s e l f . connected : return
c45 i f not s e l f . b u i l t :
c46 s e l f . bui ld ()
c47 # rema in ing c o n n e c t i o n c o d e
c48 s e l f . connected=True

Again, the last line sets a variable, telling other functions that the connec-
tions were drawn successfully.

Brunel2000.built and Brunel2000.connected are state variables that help you to
make dependencies between functions explicit and to enforce an order in
which certain functions are called. The main function Brunel2000.run() uses
both state variables to build and connect the network:

c49 def run (s e l f , simtime = 3 0 0) :
c50 ”””
c51 S i m u l a t e t h e model f o r s imt ime m i l l i s e c o n d s and p r i n t t h e
c52 f i r i n g r a t e s o f t h e network dur ing t h i s p e r i o d .
c53 ”””
c54 i f not s e l f . connected :
c55 s e l f . connect ()
c56 nest . Simulate (simtime)
c57 # more code , e . g . t o compute and p r i n t r a t e s

In order to use the class, we have to load the file with the class definition
and then create an object of the class:

net=Brunel2000 ()
net . run (5 0 0)

Finally, we demonstrate how to use Python’s class inheritance to express
different parameter configurations and versions of a model. In the following
listing, we derive a new class that simulates a network where excitation and
inhibition are exactly balanced, i.e. g = 4:

c58 c l a s s Brunel balanced (Brunel2000) :
c59 ”””
c60 Exac t b a l a n c e o f e x c i t a t i o n and i n h i b i t i o n
c61 ”””
c62 g=4

Class Brunel balanced is defined with class Brunel2000 as parameter. This means
the new class inherits all parameters and functions from class Brunel2000.
Then, we redefine the value of the parameter g. When we create an object of
this class, it will create its new data directory.

We can use the same mechanism to implement alternative version of the
model. For example, instead of re-implementing the model with random-
ized connection weights, we can use inheritance to change just the way
nodes are connected:

c63 c l a s s Brunel randomized (Brunel2000) :
c64 ”””
c65 L i k e Brunel2000 , but with randomized c o n n e c t i o n w e i g h t s .
c66 ”””
c67 def connect (s e l f) :
c68 ”””
c69 Connect nodes with randomized w e i g h t s .
c70 ”””
c71 # Code f o r randomized c o n n e c t i o n s f o l l o w s

Thus, using inheritance, we can easily keep track of different parameter sets
and model versions and their associated simulation data. Moreover, since
we keep all alternative versions, we also have a simple versioning system
that only depends on Python features, rather than on third party tools or
libraries. The full implementation of the model using classes can be found
in the examples directory of your NEST distribution.

9 How to continue from here

In this chapter we have presented a step-by-step introduction to NEST, us-
ing concrete examples. The simulation scripts and more examples are part
of the examples included in the NEST distribution. Information about indi-
vidual PyNEST functions can be obtained with Python’s help() function. For
example:

>>>help (nes t . Connect)

Connect (pre , post , params=None , delay=None , model= ’ s t a t i c synapse ’)
Make one−to−one connect ions of type model between the nodes
in pre and the nodes in post . pre and post have to be l i s t s
of the same length . I f params i s given (as d i c t i o n a r y or
l i s t of d i c t i o n a r i e s) , they are used as parameters f o r the
connect ions . I f params i s given as a s i n g l e f l o a t or as
l i s t of f l o a t s , i t i s used as weight (s) , in which case delay
a l s o has to be given as f l o a t or as l i s t of f l o a t s .

To learn more about NEST’s node and synapse types, you can access
NEST’s help system, using the PyNEST command NEST’s online help still
uses a lot of SLI syntax, NEST’s native simulation language. However the
general information is also valid for PyNEST.

Help and advice can also be found on NEST’s user mailing list where
developers and users exchange their experience, problems and ideas. And
finally, we encourage you to visit the web site of the NEST Initiative at
www.nest-initiative.org.

Acknowledgements

AM partially funded by BMBF grant 01GQ0420 to BCCN Freiburg, Helm-
holtz Alliance on Systems Biology (Germany), Neurex, and the Junior Pro-
fessor Program of Baden-Württemberg. HEP partially supported by RCN
grant 178892/V30 eNeuro.

Version information

The examples in this chapter were tested with the following versions.
NEST: 1.9.8914, Python: 2.6.6, Matplotlib: 1.0.0, NumPy: 1.4.1.

References

Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out
of the bag: Cortical simulations with 109 neurons and 1013 synapses. In:
Supercomputing 09: Proceedings of the ACM/IEEE SC2009 Conference
on High Performance Networking and Computing, Portland, OR

Bi Gq, Poo Mm (1998) Synaptic modifications in cultured hippocampal neu-
rons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type. Journal Neurosci 18:10,464–10,472

Bower JM, Beeman D (1995) The Book of GENESIS: Exploring realistic neu-
ral models with the GEneral NEural SImulation System. TELOS, Springer-
Verlag-Verlag, New York

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower J,
Diesmann M, Morrison A, Goodman P, Harris F, Others (2007) Sim-
ulation of networks of spiking neurons: A review of tools and
strategies. Journal of computational neuroscience 23(3):349,398, URL
http://www.springerlink.com/index/C2J0350168Q03671.pdf

Brunel N (2000) Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. Journal Comput Neurosci 8(3):183–208

Diesmann M, Gewaltig MO, Aertsen A (1995) SYNOD: an environment for
neural systems simulations. Language interface and tutorial. Tech. Rep.
GC-AA-/95-3, Weizmann Institute of Science, The Grodetsky Center for
Research of Higher Brain Functions, Israel

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig M (2009) PyNEST: a
convenient interface to the NEST simulator. Front Neuroinform 2:12, DOI
doi:10.3389/neuro.11.012.2008

Gentle JE (2003) Random Number Generation and Monte Carlo Methods,
2nd edn. Springer Science+Business Media, New York

Gewaltig MO, Diesmann M (2007) NEST (Neural Simulation
Tool). In: Izhikevich E (ed) Scholarpedia Encyclopedia of Com-
putational Neuroscience, Eugene Izhikevich, p 11204, URL
http://www.scholarpedia.org/article/NEST (Neural Simulation Tool)

Hines ML, Carnevale NT (1997) The NEURON simulation environment.
Neural Comput 9:1179–1209

Hunter JD (2007) Matplotlib: A 2d graphics environment. Computing In Sci-
ence & Engineering 9(3):90–95

Knuth DE (1998) The Art of Computer Programming, vol 2, 3rd edn.
Addison-Wesley, Reading, MA

L’Ecuyer P, Simard R (2007) TestU01: A C library for empirical
testing of random number generators. ACM Transactions on
Mathematical Software 33:22, DOI 10.1145/1268776.1268777, URL
http://www.iro.umontreal.ca/ simardr/testu01/tu01.html, article 22, 40
pages

Matsumoto M, Nishimura T (1998) Mersenne twister: A 623-dimensonally
equidistributed uniform pseudorandom number generator. ACM Trans
Model Comput Simul 8:3–30

Migliore M, Cannia C, Lytton WW, Markram H, Hines M (2006) Parallel net-
work simulations with NEURON. Journal Comput Neurosci 21(2):119–
223

Morrison A, Mehring C, Geisel T, Aertsen A, Diesmann M (2005) Advancing
the boundaries of high connectivity network simulation with distributed
computing. Neural Comput 17:1776–1801

MPI Forum (2009) MPI: A message-passing interface standard. Tech. rep.,
University of Tennessee, Knoxville, TN, USA, URL http://www.mpi-
forum.org/docs/mpi-2.2/mpi22-report.pdf

Oliphant TE (2006) Guide to NumPy. Trelgol Publishing (Online), URL
http://www.tramy.us/numpybook.pdf

Pérez F, Granger BE (2007) Ipython: A system for interactive scien-
tific computing. Computing in Science and Engineering 9:21–29, DOI
http://doi.ieeecomputersociety.org/10.1109/MCSE.2007.53

Plesser HE (2010) Generating random numbers. In: Grün S, Rotter S (eds)
Analysis of Parallel Spike Trains, Springer Series in Computational Neu-
roscience, Springer, New York, chap 19, pp 399–411

Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig MO (2007) Ef-
ficient parallel simulation of large-scale neuronal networks on clusters
of multiprocessor computers. In: Kermarrec AM, Bougé L, Priol T (eds)
Euro-Par 2007: Parallel Processing, Springer-Verlag, Berlin, Lecture Notes
in Computer Science, vol 4641, pp 672–681, DOI 10.1007/978-3-540-74466-
5

