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Abstract— Domestic tasks such as grasping or navigation
for robotic systems can be supported by vision. However, the
environment provides a vast amount of visual information and
concentrating on the information related to the task being
undertaken is an important job. Active vision is an approach
that provides such a filtering mechanism by using camera
movements to bring relevant information into the focus of
attention. However timing of gaze shifts (i.e. when to look
where) is crucial for cognitive tasks to proceed simultaneously
(multitasking). We developed a framework that learns task
dependent management of gaze control. We adopted a systems
approach where individual visual processes were formalised as
modules such as a colour saliency module or object recognition
module. Modules may generate motor commands for gaze
shifts to acquire visual information relevant to their operation.
The system learns how to use its modules (i.e. when to give
motor control access to which module) for a task in a reward-
based concept. The framework was used in a reaching-while-
interacting scenario using the humanoid iCub in a simulation
environment.

I. INTRODUCTION

The information our environment presents to us is simply
too vast to deal with in its entirety. In the visual domain,
humans employ eye movements in order to seek and acquire
task-relevant information. Yarbus led the study of visual
exploration by recording eye movements of observers ex-
amining natural scenes showing that eye movement patterns
were heavily influenced by the task that is being undertaken
[21]. Recent findings were compiled by Land et al. who
observed fixation patterns of humans in tasks like reading,
tea making, driving, or playing ball games [13]. One of their
conclusions was that the human vision system has to resort to
time-sharing for multitasking where multiple stimuli have to
be monitored concurrently. This is achieved via sequential
gaze shifts on the stimuli that are relevant to tasks being
undertaken at the moment.

An approach in which a visual system is able to adjust
its visual parameters to aid task oriented behaviour is called
active vision [1]. Such an approach may also benefit artificial
systems that use vision as the primary sensory instrument.
However, an application of the active vision approach to
modular large scale systems may impose the ”when to look
where” problem. Usually such systems employ different
cognitive processes (i.e. modules) running in parallel. In such
systems modules may produce conflicting motor commands
for gaze-shifts. If a system has to fulfill multiple tasks at the
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same time, decisions on when and where to employ gaze-
shifts made during the execution of tasks may be crucial.
For example, for a robot that has to navigate and localise
specific objects at the same time, an obstacle detection
module may require visual information from the nearest
object while an object search module may intend to fixate
on an arbitrary object further away. The conflict can be
resolved by prioritising modules, however, it is often difficult
to form an optimum hierarchy among modules in real world
scenarios since the importance of modules may differ from
task to task.

(a) (b)

Fig. 1. The iCub humanoid robot and the iCub Simulator.

We propose a solution where the utilisation of gaze control
among different modules of a large-scale system is optimised
with a reward-based learning mechanism. Several examples
of such large-scale interacting audio-visual systems were pre-
viously presented [2], [5], [8], [9]. These systems combine a
number of modules performing different cognitive operations
such as object recognition, object tracking or audio-visual
saliency-based attention control. Combining these modules
to construct a system requires an integration and arbitration
system that selects which of these modules is given control
of the gaze direction at any point in time.

To demonstrate the utility of the framework a similar
system was constructed and two scenarios with different level
of complexity were applied to the system using the iCub
humanoid in a simulation environment (Fig. 1) [3], [17].
In the first scenario, the task for the robot was to locate,
reach and touch an object that is continually moving on
a table. In the second scenario an interaction partner was
introduced. The main task was still to locate and reach the
moving object but the system had to be sociable towards the
interaction partner at the same time. We will show that using
our framework the system is able to learn optimum strategies
for both scenarios.



II. RELATED WORK

The problem being addressed is an optimisation issue in
the most general sense. Allocating access to gaze control
among several independent agents in a certain time scale
has to be optimised in order to provide the system with
maximum benefit. A straightforward approach to solve this
problem is pre-programming involving definition of every
state-action pair. While this may be applicable to simple
systems, it becomes intractable as the system grows more
complex. Prioritisation or subsumption is another method
where different modules are given different priorities and the
one with the highest priority among the active components
has access to the motor resources [6]. This approach may
work for more complex systems which pre-programming
cannot extend to, however, it may not be applicable for
dynamic environments and multiple tasks where the priorities
are not fixed or conflicting. Moreover, setting priorities
for modules implies manual programming as in the pre-
programming case.

Wolpert introduced the Probability Collectives (PC) frame-
work that addresses the problem of optimisation of systems
composed of multiple independent agents [20]. The agents
can modify their policy in order to maximise their utility
function (or minimise the cost function). The process reaches
an equilibrium when the agents can no longer improve their
rewards by changing actions. The core insight of PC theory
is to concentrate on how the agents update the probability
distributions across their possible actions. A global system
utility can be defined for guiding this optimisation process.
Several applications of this framework have been presented
[19], [4]. We propose to achieve a similar process via a
learning based method.

Regarding specific applications in the vision domain, Itti et
al. proposed a saliency based gaze control scheme that solves
the problem of where to launch gaze-shift by simply selecting
the most conspicuous location as gaze target [11]. However,
this approach does not address the problem of when to
launch a gaze-shift. Additionally, this scheme models only
the bottom up attention system. Although later advancements
for this framework have been done in order to encompass top
down modulation, it is disputable that such models can really
represent human like gazing behaviour in complex tasks [13].

A reinforcement learning based method was introduced by
Sprague et al. where policies for selecting actions generated
by different microbehaviours were learnt [15]. A microbe-
haviour is defined as a complete sensory-motor routine
incorporating information acquisition from the environment
and acting on it to achieve specific goals. Learnt policies
were used to arbitrate the gaze control among different
microbehaviours by estimating the cost of uncertainty over
the microbehaviours. While they present an elegant way of
solving the problem of gaze arbitration, decisions on which
microbehaviours were relevant for which tasks were done
based on a pre-programmed scheme. In our framework the
selection of task-relevant modules emerge in the course of
learning autonomously.

Reward-based methods have previously been used for cue
integration applications [18]. Our framework may also be
employed to similar applications where temporal character-
istics of the cues have an impact on the integration process.
For example, in a previous work we investigated different
visual depth estimation methods for humanoid applications
within interaction range [12]. These methods vary not only
in their performance but also in their requested execution
time. For an application where different methods have to
be combined for better estimations, it may be beneficial to
use the reward-based framework to learn when it pays off
to execute additional, time consuming methods for distance
estimation.

III. CONCEPT

A selection mechanism was implemented to arbitrate the
motor commands for gaze-shifts received from the modules.
We developed a gaze control scheme where a weight is
assigned to each module defining the basic dynamics of
the gaze control (Fig. 2). A reward mechanism generates
reinforcement signals for the weights with respect to the
outcomes of attempts to fulfil the task.

Fig. 2. The proposed gaze control mechanism. Every module is attached to
a weight and the module of which motor command is selected for execution
inhibits the output of other modules (inhibitory links are shown as dashed
lines).

A. Gaze Control

A weight wj was assigned to each module that determines
the strength of the module in a competition of access to the
motor control among others. The winner module inhibits the
output of the other modules for a specific time determined
by a decay rate parameter τj . We use 2D Gaussian (called
activation maps) to encode the motor command generated by
a module. Horizontal and vertical dimensions of an activation
map correspond to motor command space relative to current
posture of cameras in pan and tilt directions respectively. The
peak position in the map is the location of the gaze command.
The whole gaze control process can be formalised as:

S =

M∑
j=1

wjnjSj , (1)



where S is the resulting activation map, Sj is the activation
map from module j (computations of individual activation
maps are explained further in the paper), wj is the weight
assigned to module j and nj is the inhibition value for
module j and computed as:

nj =

{
1 if j = k,

e−τkc otherwise;
(2)

where k is the index of the currently active module, τk is the
decay rate of module k (decay rates were set to a constant
value) and c denotes the current time of an internal clock
that measures the total selection period of a module. When
a module is first selected to gain the motor control access
the clock is set to zero. This is when the inhibition of non-
selected modules is at its peak. Elapsed time (i.e. increasing
value of c) diminishes the strength of this inhibition (Eq. 2),
resulting in an increase of the probability of other modules
being selected (Eq. 1). When the strength of the inhibition
drops below a threshold einh a new selection is made (this
could be the reselection of the previously selected module)
and the clock is set to zero again. The motor command
to be executed is sampled randomly from a distribution
over the motor space acquired from the total activation
map S. The Boltzmann distribution that provides a decent
exploration/exploitation balance for action selection was used
for the computation of the distribution [16]:

p(θP = p, θT = t) =
eS(p,t)/Z∑
eS(θP ,θT )/Z

, (3)

where (θP , θT ) denote the pan and tilt dimensions of the
activation map, (p, t) denote the pan and tilt values respec-
tively and Z is a positive parameter called temperature.
Low temperatures cause a greater difference in selection
probability for actions that differ in their value estimates,
while the actions become more equi-probable for higher
temperatures.

The proposed gaze control mechanism is similar to the
Winner-Take-All approach that is extensively used in neural
networks [14]. Also, Eq. 1 resembles the simple saliency
based gaze control approach where activations from several
bottom-up saliency mechanisms are summed up (explained
further in this section). In our approach such a bottom-
up saliency mechanism may emerge by setting all module
weights to one or a pre-defined model which can be used in
periods where the system has no task to fulfil.

B. Learning

The time window between the start and end of a task
realisation process is called an epoch. For every successful
outcome of an epoch a reward r was generated as:

r = 1 +
tmax − t
tmax

, (4)

where tmax is the maximum epoch time, t < tmax is the
timestep in which the reaching action was concluded. This
increases the value of the tasks fulfilled in a shorter time.

For unsuccessful outcomes of tasks no reward is generated.
The reward is then used to update the weights of modules
following an unsupervised learning rule:

we+1
B(k) = weB(k) + α · γk · r · weB(k), (5)

where B(k) is a list that contains the indices of the selected
modules in the last thist timesteps (i.e. k ∈ 1, 2, ...thist) of
the epoch e, α is the learning rate and γ is the discount factor.
Inspired from the Hebbian theory, the learning rule reinforces
the weights of modules, which were selected during the
course of the epoch [10]. The buffer size thist controls how
far the rewards were propagated in history. This mechanism
ensures that a reward is propagated over the modules which
contributed the rewarding outcome from a series of actions.
The propagation of rewards is similar to the eligibility traces
used in reinforcement learning [16]. The relative values of
weights of modules, which contributed a positive outcome,
further increased by blunting the weights of the modules,
which were not selected in the last thist timesteps:

we+1
B(k)′ = weB(k)′ · (1− ε), (6)

where B(k)′ denotes the indices of modules other than B(k)
and ε is the blunting factor. This operation is called decision
sharpening in TransSARSA framework and provides rapid
learning by honing the value of states, which lead to positive
outcomes [7]. Learning rate α and blunting factor ε decays
exponentially over time to keep the values of the weights
stable:

α = α0e
−t/τα ,

ε = ε0e
−t/τε ;

where α0 and ε0 are initial values and τα and τε are
decay rates. Weights are initialised to one to achieve equi-
probable weight distribution in the beginning and they are
kept between 0 and 1 during the learning process.

IV. APPLICATION

The utility of the concept was demonstrated in a reaching-
while-interacting scenario where the system has to locate,
reach and touch a moving object without losing the attention
of an interaction partner. The position information about the
object is only updated when the object is in the field of
view. Additionally, the system has to look at the interaction
partner every once in a while otherwise the partner gets bored
and the scenario cannot be fulfilled. The system has no prior
knowledge about how often it has to attend to the interaction
partner. The gazing behaviour has to be optimised in order
to fulfil these tasks simultaneously.

An overview to the system is shown in Fig. 3 which is
composed of two major parts: a limb control mechanism that
controls the arm of the robot to manipulate the environment
and a vision architecture that supports the limb control
mechanism with information about the environment. The
vision architecture is composed of several modules that are



Fig. 3. An overview to the system on which the proposed framework
was applied. Six independent modules are responsible for various visual
processing operations and they may generate motor commands on demand.
Gaze dynamics are shown in Fig. 2 in detail. Limb control and collision
detection operations are responsible for reaching movement. A task monitor
generates rewards depending on the state of the system and the learning
component uses rewards for weight updates.

responsible for various visual processes and may generate
motor commands for gaze-shifts to various areas of the visual
field. The following subsections explain the basic building
blocks of the system in detail.

A. Vision Architecture

The architecture used in the experiments employed the
following modules: the Colour Tracking Modules, Visual
Exploration Module, Motion Detection Module and Human
Interaction Module. Since the modules are independent,
internal parameters of modules were selected manually in
the way that each module shows an optimum performance.

Every module j ∈ 1, 2, ...M (M being the number of
modules) generates an activation map highlighting desired
motor commands represented as a 2D Gaussian:

Sj(θ
P , θT ) = µj · exp

(
− 1

2

[ (θPj − θP )2
σ2
j,P

+
(θTj − θT )2

σ2
j,T

])
,

(7)
where (θP , θT ) denote the pan and tilt dimensions of the
activation map respectively, (θPj , θ

T
j ) is the motor command

selected by module j, µj is peak value and σj,P and σj,T
are spreads in pan and tilt dimensions respectively. µ was set
to the maximum of the conspicuity map for Colour Tracking
Modules and 1 for the rest of the modules. Spread parameters
were fixed for all modules.

1) Colour Tracking Module (CTM): For detection of
coloured objects (red, green and blue) a colour saliency
computation was done. The conspicuous maps Ci were
computed via the colour opponency method [11]:

Ci(x, y) =
∑
i′

Ii(x, y)− (ηIi′(x, y) + ϑ), (8)

where i is the colour index the conspicuous of which is being
computed, i′ denotes the colours other than i and In(x, y)

indicates the pixel value at position (x, y) on colour channel
n. Threshold parameters were set to η = 1.2, ϑ = 10.
Conspicuity maps were used by three CTMs each of which
was assigned a colour from red, green and blue. These
modules generate motor commands for gaze-shifts towards
the most conspicuous position if the peak value is above a
certain threshold which was set to 0.8.

2) Visual Exploration Module (VEM): Generating motor
commands for gaze-shifts towards positions which were not
visited for long time was done by the VEM. An exploration
map PV EM covering the whole head motor space in two
dimensions (i.e. pan and tilt) was used for this purpose.
At every timestep, values of the map were updated in the
following way1:

PV EM (θP , θT ) = Pinh(θ
P , θT ) ·(PV EM (θP , θT )+ξ). (9)

This involves an increment of all values by an amount given
by parameter ξ (set to 0.01) and an inhibition of the values
around the current gaze position (θP , θT ) done by:

Pinh(θ
P , θT ) = 1−exp

(
−1

2

[ (θP − θP )2
σ2
P

+
(θT − θT )2

σ2
T

])
,

(10)
where σP and σT determine the spread of the 2D Gaussian
in the pan and tilt dimensions respectively and both were
set to 2. Subsequently the probability distribution map was
normalised as it sums to one and a single motor command
is sampled randomly using this distribution. The VEM gen-
erates motor commands at every timestep.

3) Motion Detection Module (MDM): In order to detect
motion in the visual field the temporal difference of images
was computed via the MDM. Whenever a motion is detected,
a motor command is generated towards this position. Since
this basic method cannot deal with ego-motion, the module
does not perform any computation during gaze-shifts.

4) Human Interaction Module (HIM): The capability of
localising humans in the environment enhances the social
aspects of robotic systems. Various cues not only in vision
domain, but also in audio domain can be used for this
purpose. Face detection and sound localisation are two
operations that can be used for human localisation using
such cues. The HIM simulates a similar module that would
produce gaze shifts towards an interaction partner present in
the scene. Due to difficulties in generating both auditory (e.g.
sound) and visual (e.g. face) elements using the simulator,
the assumed position of the interaction partner (in front of
the robot, behind the table) is given to the system manually.

B. Limb Control and Reaching

The task, reaching a red coloured object moving on the
table, has to be fulfilled in a specific time determined by
a parameter tmax, otherwise it was considered as failure.
The reaching process is fulfilled by minimising the distance
between the position of the left hand and perceived object

1Products indicate element-wise multiplication.



position. The position of the hand is acquired directly
from the simulator (i.e. proprioception). For object position
an internal memory was created. The memory is updated
whenever the object resides in the field of view (i.e. having
its projection on the camera images). When the object was
not visible, the memory was not updated but the object was
still moving. An uncertainty factor was also applied to the
memory that would introduce a noise proportional to the
time the object was not visible. Two degrees of freedom
from the arm group of joints and one degree of freedom
from the waist group of joints were used to move the hand
in three dimensions for reaching. The motion of the hand
was realised by velocity control. Velocity commands were
generated/updated in a ballistic fashion (i.e. no feedback
control was used) using the errors between the hand position
and the perceived object position. A reaching action was
fulfilled if the euclidean distance between hand and object
was below a threshold ereach.

Apart from the reaching process, a collision detection
mechanism was implemented to monitor the position of the
hand, and other items in the environment and detect any
contact of the hand with other items in the environment
(e.g. the table). In case of a collision the reaching process
resumes after the hand is moved back to a safer location in
the vicinity.

C. Reward Scheme

Every successful completion of the task was rewarded as
explained in Eq. 4. This involves completing the reaching
action without losing the social interaction with the partner.
If reaching time exceeds a pre-defined threshold value (t >
tmax) the task was considered unsuccessful. Additionally, the
interaction partner encoded a boredom variable that increased
linearly during the time the robot did not look at her and
was set to zero otherwise. The rise of the boredom was
determined by a boredom rise rate parameter τb. If the
boredom reached one the interaction partner was considered
as bored and the scenario failed. For unsuccessful outcomes
no reward was generated.

V. RESULTS

A. Simulation Layout

A snapshot from the simulator and the major components
of the system running on the simulator is shown in Fig.
4. The iCub Simulator was used as the simulation engine
[17]. Fig. 5 shows the flowchart of simulations. Two sets
of experiments were conducted: the first set was designed
for proof of concept. In these experiments the interaction
partner was excluded and the task was just to locate and
reach an object. The second set of experiments included the
interaction partner in order to form a multitasking scenario.
All experiments included three objects on the table in red,
green and blue colours. The red object was the target for
reaching and continually moving on the table. Green and blue
objects were distractors. The parameters were set empirically.
For modules, the parameters were chosen to maximise indi-
vidual performance of each module. For the gaze control and

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 4. A snapshot of the system during a reaching action. (a) An external
view of the robot and the environment from the simulator, (b) view from
the left camera with white circle indicating the centre of the image, (c)-(e)
colour conspicuous for red, green and blue colours, (f) result of motion
detection, (g) combined activation map computed as in Eq. 7, (h) selected
motor command for gaze-shift (relative to current posture).

limb control systems the parameters did not heavily affect
the outcome of the scenario. The learning parameters were
set using a more simple simulation framework developed for
rapid prototyping. All parameters are shown in Tab. I.

For comparison, two additional gaze control mechanisms
were implemented. One of these is saliency, a simple appli-
cation of a saliency-based bottom-up attention mechanism
presented by Itti et al. [11]. This was carried out by gen-
erating a cumulative saliency map via the superposition of
activation maps received from all modules:

Ssal =

M∑
j=1

Sj . (11)

The most conspicuous location in the resulting saliency
map was selected as the motor command for a gaze-shift
if its value exceeds a previously defined threshold. An
inhibition of return procedure was applied to the saliency
map as explained in Sec. IV-A.2 to prevent previously visited
locations to reappear on the saliency map too soon.

A second method, pre-programming, prescribes setting
up heuristics for modules to follow in certain conditions.
Since the main task of the system is to locate and reach
a specific coloured object, intuitively a good strategy is to
use the VEM when the object being reached to is not in
the visual field and use the CTM tuned to the colour of the
object when the object is found. It will be shown that this
method was competent to solve the reaching task alone (i.e.
scenario without an interaction partner). When it comes to



Fig. 5. The simulation flowchart. Before each epoch the robot was moved
to its initial posture, which prescribes a straight arm position over the table,
and the objects were randomly distributed on the table. At every timestep
in an epoch the object is moved randomly in horizontal and depth axes (±
5 cm.)

reaching-while-interacting scenario the method is expected
to fail since it does not have any knowledge about the second
task. Of course a second pre-programmed method can be
implemented to deal with the new situation. However, in the
real world it is often not very easy to infer such heuristics. In
such cases the system has to live with its current capabilities.
We want to show here that our proposed solution can cope
with both situations.

TABLE I
PARAMETER VALUES USED IN THE EXPERIMENTS.

Simulator Limb Control
Image size 160× 120 tmax 25
τb 0.2 ereach 0.12
Modules Learning
µj , (j 6= CTM ) 1 α0 0.05
σj,P 5 γ 0.9
σj,T 5 ε0 0.001
Gaze Control τα 250
Z 0.25 τε 250
τj 0.95 thist 10
einh 0.1

B. Experiment 1: Simple scenario

The first set of experiments were conducted excluding the
role of the interaction partner. The task in this more simple
scenario is just to locate and reach a specific object. The
pre-programming method for gaze control was specifically

designed to solve this task. Comparing results from the pre-
programming and the proposed framework we can see if our
concept can learn a good strategy to fulfil this basic task.

Fig. 6 shows the performance of three methods as the
amount of acquired rewards with time (averaged over last
100 epochs). It is clear that our framework can learn a strat-
egy as good as a pre-programming method would achieve.
The performance of methods were very close to each other:
the task has been achieved 94%, 84% and 92% of the time
with pre-programming, saliency and the proposed method
respectively.

Fig. 6. Mean of last 100 acquired rewards in a simple reaching scenario.

C. Experiment 2: Reaching-while-interacting
The second set of experiments incorporated an interaction

partner in the scenario. The remaining elements were the
same as in the first set of experiments. The main task was
still to locate and reach the moving red coloured object but
this time the system had to attend to the interaction partner
simultaneously by gazing at her from time to time.

Fig. 7 shows the acquired rewards of the three methods
for the multitasking scenario. Clearly, the pre-programming
method specifically designed for the reaching task was not
sufficient for the multitasking scenario. The scenario was
also too complex for the saliency method. The proposed
framework was able to learn an optimum distribution of
gaze control among various modules to fulfil the desired
scenario. Success rates of the task were 38%, 51% and 63%
with pre-programming, saliency and the proposed method
respectively. Please note that these statistics include the
training time for the proposed method as well.

The learning time was around 200 epochs. Average run-
time of an epoch was 10.6 timesteps in learning experiments
and every timestep takes approximately one second. This is
equal to 35 minutes of learning time which is a considerably
short period compared to common reinforcement learning
methods. The system performed 8.7 gaze-shifts on average
during the learning time. This means approximately 1800
gaze-shifts were enough to learn the presented multitasking
behaviour.



Fig. 7. Mean of last 100 acquired rewards in a reaching-while-interacting
scenario.

VI. CONCLUSION

For vision systems, when multiple tasks have to be
achieved at the same time a scheduling mechanism is nec-
essary in order to distribute motor resources of the system
among different cognitive processes dealing with these tasks.
An adaptive framework was introduced where the utilisation
of gaze control among different tasks is learnt through a
reward mechanism. The framework was demonstrated in
a reaching scenario where an effective resource allocation
policy was necessary to gain maximum reward. The system
eventually learnt such a policy. The results showed that it is
possible to apply the methodology to large-scale systems that
have to schedule different tasks and this is more beneficial
than strategies using fixed policies.

One of the major benefits of the proposed framework is
that it can reveal task-relevant modules in a system and use
them. This may be applied to resource constrained systems,
in which parallel execution of modules is restrained. It was
also shown that learning was accomplished in a short time.
On the other hand, since the concept is based on a reward
mechanism, the credit assignment is crucial. For instance,
even though the gaze control mechanism followed a good
strategy, reaching process may fail due to some other reason.
Gaze control mechanism should not be penalised in such
cases. In this work we established a stable environment
by using the same limb control strategy and having high
number of trials in all experiments. However, in a real
world application it is important to make accurate credit
assignments.

Future work entails migration of the system to the real
robot. Shifting from a controlled simulation environment to
the real world brings technical challenges in its wake. Our
adaptive framework may assist addressing difficulties related
to operations of visual processing modules by finding the
best sets of modules for specific tasks. Additionally, decay
rates for modules were set to a constant value in this work.
Adaptation framework will be extended to these parameters

as well that will allow learning temporal sequencing of
modules.
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