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Detection and motion estimation of moving objects based on
3D-Warping

Robert Kastner1, Tobias Kühnl2, Jannik Fritsch3 and Christian Goerick3

Abstract— The detection of objects in the surrounding en-
vironment is a key functionality for every Advanced Driver
Assistance System (ADAS). Otherwise, it is impossible to
realize any kind of advanced assistance functionality as e.g. a
Forward Collision Warning. Besides static obstacles that limit
the drivable area, dynamic objects can even be more dangerous
due to their ego-movement. Therefore, a detection and also
motion estimation of moving objects in the surrounding is
essential for every ADAS. In this contribution we present a novel
way to detect moving objects only with 3D-measurements of the
current surrounding environment that we called 3D-Warping.
But we are not only able to detect but also to provide the
direction and speed of moving objects in world coordinates.
The method is generic and can be applied on any kind of
depth sensor, as e.g. a stereo-camera, time-of-flight, and 3D-
laser scanner.

Keywords: moving object detection, object motion estima-
tion, driver assistance

I. I NTRODUCTION

Typical state-of-the-art Driver Assistance Systems (DAS),
which are available on the market, rely on radar for the
detection of dynamic objects. Therefore, providing distance
and speed of vehicles in the surrounding environment, e.g.
used for an Adaptive Cruise Control (ACC). Nevertheless,
for future Advanced Driver Assistance Systems (ADAS)
additional information might be necessary, as e.g. an initial
segmentation of the moving object, support for all kinds of
moving objects and a detection independent of moving or
static obstacles. Furthermore, in technical terms a higher
resolution to ease the separation between objects and also
a larger opening angle of the sensor would be performance-
improving features.

Currently, few approaches exist that do not rely on radar
sensors to detect ego-moving objects. In the majority of cases
these approaches use a direct measurement of the motion
(as e.g. an optical flow computation). Also a few approaches
exist that use an indirect measurement by the generation of
an environment model, as shown in the related work section.

In this contribution, we present a novel approach for the
detection of moving objects based on 3D-measurements of
the surrounding environment, the 3D-Warping: First, objects
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in 3D are segmented to build a 3D environment representa-
tion. Afterwards, the intersection (and additional features) are
evaluated between different time-steps of the found segments
to identify the same object in different measurements. Ad-
ditionally, the ego-motion is compensated by a 3D warping
of segments from previous time-steps. Finally, a residuum
computation between the same segments of different time-
steps allows the detection of moving objects. The computa-
tion of the residuum is done in 3D, thereby also providing
the direction and amplitude of a moving object. Due to the
generic character of the proposed 3D segmentation all types
of objects can be extracted (bicyclists, cars, motorcyclists,
trucks). The 3D measurements are carried out with a time-
of-flight sensor (Photonic Mixer Device - PMD).

II. RELATED WORK

In general, a number of publications deal with the detec-
tion of moving objects from a static platform and also with
the detection of general obstacles, which is not the focus
of this contribution. We focus on the detection of moving
objects from a moving platform. Due to our ego-motion,
simple approaches like difference images can not be applied.

In the approach of Bertozzi et. al. [1] radar and camera
data are fused for the detection of moving obstacles. The
image is used to provide precise boundaries of the radar-
detected objects. Additionally, the authors propose a method
called ‘Motion Stereo’ which uses the transformation to
the birds-eye-view (BEV) to build an environment model.
Since, the BEV is a metric representation the ego movement
can be easily compensated by a translation and rotation. In
summary, to extract dynamic regions from the BEV two
consecutive metric images are subtracted and the residuum
is transformed to the perspective image for the indication of
moving objects. Also, additional algorithms as a pedestrian
recognition are fused with the ‘Motion Stereo’. However, a
radar is still utilized in this approach.

Miyasaka et. al. [2] build a 3D occupancy grid by using
a multi-layer LIDAR. First, they extract the ego-motion by
measuring the translation and rotation between the (static)
elements of two consecutive scans. Afterwards, all outliers
of the measurement indicate possible moving objects. These
are clustered to get objects and also tracked over time. The
identified moving objects provide position, direction and
speed according to the authors. Nevertheless, the used sensor
provides only a few scanning layers resulting in a small
vertical opening angle.

Wang et. al. [3], [4] describe a simultaneous localization
and mapping (SLAM) approach, also capable of detecting



and tracking moving objects (DATMO). Based on laser
scanners they build an environment map with their SLAM
algorithm that also provides a pose estimation. Similar to
the previous approach, outliers of the mapping algorithm
indicate possible moving objects. For the tracking and pre-
diction of each group of outliers (moving object) they use
the Interacting Multiple Model (IMM) estimation algorithm.
While [5] is based on a similar approach, the authors propose
an extension that relies on a probabilistic method for the
differentiation between static and moving objects.

Another approach is described by Nguyen et. al. [6], where
an elevation map decodes the occupancy of the surrounding
environment. To this end, areas with a large elevation are
occupied. Based on that, areas whose occupancy status
changes between current and previous measurements are
likely to contain dynamic objects. To differentiate between
false-positive measurements and real dynamic objects fuzzy-
sets for a number of features are used, providing a probability
for a dynamic object.

Summarizing, most of the approaches that use an en-
vironment representation also adopt a laser scanner, only
providing precise information on a few planes.

One of the early approaches in the vehicle domain based
on optical-flow is described by Heisele et. al. [7], where
an image is divided by a simple color segmentation into
16 predefined levels. After the segmentation of connected
regions, a number of features are extracted. The moving
objects are determined by a search for corresponding regions
between different time-steps and result in a motion image.

Wang et. al. [8] use stereovision and an approach called
‘U-V-disparity’ to extract 3D motion vectors, based on a
segmentation of the disparity image and a comparison with
the ego-motion.

A so called ‘6D vision’ approach (see [9]) is used by
Rabe et. al. [10] to detect moving objects. Therefore, the 3D
positions from a stereo camera are combined with optical-
flow vectors and the found objects are tracked with Kalman-
filters. But the detection is only done for a number of feature
points that were selected by a modified KLT-tracker (see
[11]) from the original image. The detection of a moving
object is realized with the Kalman-filter, that predicts the
speed of an object and all objects with a speed greater than
zero are moving.

The publication of [12] compares the previously intro-
duced ‘6D vision’ with a monocular motion detection. The
monocular approach also uses a number of selected feature
points (by the KLT-tracker) to compute the optical flow. The
results showed that the stereo approach outperformed the
monocular one in terms of accuracy.

Another approach is described by Fardi et. al. [13], also
using the optical-flow for segmentation and classification of
the object motion. Therefore, they use the RANSAC (see
[14]) algorithm to differentiate between static and dynamic
points. The static points are used to determine the ego-motion
of the camera. Afterwards, the dynamic points are extracted
with the knowledge of the camera ego-motion.

Optical-flow based approaches have in general two major

drawbacks. First, the optical-flow computation is resource
demanding. Second, the image-plane is ideal to detect motion
lateral to the own movement direction, but has difficulties
with the longitudinal direction. Additionally, the quantiza-
tion error of stereo vision is a limiting factor for precise
measurements.

III. SYSTEM DESCRIPTION

In the following, a rough overview of our approach for
moving object detection is given (see Fig. 1). Thereafter,
all processing steps and their theoretical background are
described in more detail.

lost objects

update probability of all objects

extract moving and static objects

Output:

Static and moving objects

check lokal conditions on

segment partsinto

64x16x3 PMD matrix
Input:

of and

Identify ground
points by

ego−motion
estimation

CAN data

find corresponding motion between t and t−1

extract motion

evaluate intersection

extract features
from

save
and

check validity of

4. Temporal Stabilization

segments between
find corresponding

2. Segmentation

1. Preprocessing

3. 3D Warping

check global
conditions on

t and t−1

generate/update object

Check validity
with

SiQpre

St
i St−1

j

∆m

∆mt
i

ot
i

f trt
i Si

Si

f tri

Si

t t −1

∆mt
i

γ(u,v) Γstreet

Si

Fig. 1. System structure for detection of moving objects by 3D-Warping.

The used PMD sensor has a resolution of 64 x 16
measurement points and a framerate of 60Hz. Additionally,
but only for evaluation purposes a camera is used. All sensors
(PMD and camera) are mounted behind the windshield on
the passenger’s side of our test vehicle. The active infrared



illumination of the PMD is positioned at the radiator cowling
of the test vehicle.

The overall system can be divided into four main parts.
The first one handles the raw data preprocessing, where noise
and systematically inaccurate measurements are eliminated
by a validity check on the PMD data. The ego-movement
of the test vehicle is calculated by using a single-track
model on the speed and yaw-rate coming from inertial
sensors. In the second part a segmentation is done to cluster
the relevant segments of the PMD matrixQ. The found
segments have to fulfill certain requirements which are global
and local conditions corresponding to general and segment
specific features/requirements. Afterwards, the featuresof the
segments are extracted. In the following, third part the so-
called 3D-Warping is applied. Starting with an intersection
analysis to combine the same segments between the different
time-stepst and t − 1. Therefore, a number of features,
e.g. size, width, height, additionally to the overlap criteria
are compared to find the best match for each segment.
Afterwards, the motionmt

i for each segmentSi between the
current time-stept and the previous onet − 1 is extracted.
Finally, in the fourth part a temporal stabilization is carried
out, matching motionsm with similar features between the
different time-steps (at least three) to one objectoi. For
the visualization of results the objects (in metric world
coordinates) are projected to the image plane by a pin-hole
camera model.

For the sake of simplicity, we switch between the matrix
notation (e.g. A) and the function notation (respectively
a(u,v)), nevertheless both notations are equivalent. Also, the
superscriptt for the current time-step is mostly omitted.

A. Preprocessing

The input of the system is a 64x16x3 PMD matrixQ
(q(u, v, w)) for the current time-stept, having three layers
which correspond to the X, Y and Z (depth) plane. Therefore,
each element from a plane provides a measurement in met-
rical coordinates of the environment for a certain direction.
A number of noisy or wrong measurements tend to happen,
see Fig. 2. To this end, we filterQ by applying a validity
interval Eq. (1), resulting in an Boolean matrixΓval for all
valid points.

γ(u, v) = 1







Xmin ≤ q(u, v, 1) ≤ Xmax

Ymin ≤ q(u, v, 2) ≤ Ymax

Zmin ≤ q(u, v, 3) ≤ Zmax

γ(u, v) = 0 otherwise (1)

Additionally, a number of measurements correspond to
the street surface, which are insignificant for moving object
detection. These measurements are identified by the Boolean
matrixΓstreet generated by a street surface segmentation that
starts at the lower bound of theQ matrix. The segmentation
algorithm is the one from Section III-B, but modified to
extract the ground plane. Therefore, the final validity matrix
is given by Eq. (2) and the result of the preprocessing stage

Fig. 2. Noisy raw data of the PMD sensor and image of the same time-step.
Note that the camera and PMD sensor have different view angles, therefore
a mapping is only possible by world positions and the use of a camera
model.

by Eq. (3).A ◦ B is the entry-wise product of the matrices
A andB.

Γpre = Γval ◦ Γstreet (2)

Qpre = Qw ◦ Γpre ∀ w (3)

B. Segmentation

The second part of the algorithm handles the segmentation
of relevant areas fromQpre. The segmentation algorithm
is inspired by basic region growing and split & merge
algorithms (see [15], [8]). Also incorporated is the idea that
measurements which belong to the same object lie within a
certain depth interval. For the segmentation a number of start
points (seed points) have to be defined. In general, there are
two cases, first if the segmentation of the previous time-step
t − 1 exists, then a number of seed points for the current
time-stept are provided. Second, without knowledge about
a previous segmentation.

In the former case, all center points (ftrt−1

l,1 ) of the
segmentsSt−1

l (Si describes a segmenti as binary matrix)
are used as seed points for the current time-stept. The
Moore neighborhood of the seed points is evaluated by
use of the Euclidean distance metric||a − b||2 (in metric
coordinates). Therefore, the Euclidean distance between two



neighboring points must not exceed a certain threshold for
being grouped to the same segment. After checking the
neighborhood of the seed point the newly added segment
points are evaluated in the same way. This procedure is
repeated until no more neighboring points of a segment
satisfy the distance constraint. In that case the method is
continued with the next seed point.

All remaining points that have not been segmented by
ftrt−1

l,1 can act as new seed points. Hence, theΓpre matrix is
searched row wise for remaining valid points acting as new
seed points. If a new seed point is found the segmentation is
started again as already described. After finishing a segment
the row wise search ofΓpre for remaining valid points is
continued. This procedure is repeated until all valid points
have been segmented. By usingΓpre for the segmentation
we simplify the retrieval of valid points, nevertheless the
distance between two points is measured in 3D metrical
coordinates.

Also, for the second case (without knowledge of previous
segments) theΓpre matrix is searched row wise and found
valid points act as new seed points.

The next step is a check for global and local conditions
on all extracted segmentsSi. The global conditions (GC)
are on the one hand that a segment needs at least two points
(GC1, see Eq. (5)), otherwise it will be marked as invalid on
Γpre. Since, single point measurements can not be separated
from spurious detections.

ni =
∑

u

∑

v

si(u, v) (4)

GC1 : ni ≥ 2 (5)

On the other hand, it is checked if a segment has two parts
that are connected by a single point in between, assuming
this is a false connection of two independent segments.
Therefore, the connectivity of all valid points is calculated
by Eq. (6).

con(u, v) =
u+1
∑

n=u−1

v+1
∑

m=v−1

γpre(n,m)− 1 (6)

Afterwards the continuity of the sums of each column is
analyzed for each segmentSi (see Eq. (7)).

sci(u) =
∑

a

(CON◦ Si)(u, a) (7)

If sci shows a discontinuity (or a number) the segmentSi

is separated into several new segmentsK, which will replace
the original segmenti. This is the second global condition
(GC2).

The next step is the extraction of featuresftri,j for all
segmentsSi. To this end, for each segmenti the center point
in matrix (ftri,1 = [u, v]) and metric coordinates (ftri,2 =
[x, y, z]), the size (ftri,3 = [width, height, length]) and
yaw angle (ftri,4) between segment and sensor is extracted.
Based on these features a number of local conditions (LC)
are evaluated for each segmentSi to reduce the amount

of segments to only relevant ones. First of all, the pitch
angle between sensor and segment must lie inside a validity
interval, otherwise the segment is part of the street or the
sky and will be marked as invalid. The second condition is
the maximum length of a segment (see Eq. (9)), measured
between the points with the minimum and the maximum
depth. These segments belong to large man made structures
like houses and walls, which are not of interest for the
detection of ego moving objects.

Qi,l = qpre(u, v, l) · si(u, v) (8)

LC2 : max(Qi,3)− min(Qi,3) (9)

For the final third condition the standard deviation (see [16])
of the segments depth (Eq. (11)) or the standard deviation
per point of a segment (Eq. (12)) has to be lower than a
threshold. Otherwise, the segment is marked as invalid. The
standard deviation per point is added for taking also the size
of a segment into consideration.

zi =

∑

u

∑

v

qi,3(u, v)

ni

(10)

µi,3 =

√

√

√

√

1

ni − 1

ni
∑

a=1

(qi,3(a)− zi)2 (11)

µi,3

ni

(12)

The result of the segmentation stage is therefore,Si valid
segments withftri,j features.

C. 3D Warping

The 3D Warping stage computes a motionmi between
the current time-stept with segmentSt

i and the previous
time-stept− 1 with a segmentSt−1

l . Hence, an intersection
analysis for all current segmentsSt

i with the previous seg-
mentsSt−1

l is carried out, resulting in three different cases:

1) there is no segment with an overlap in time-stept− 1
2) there is exactly one overlapping segment of time-step

t− 1
3) there are a number of segments with an overlap from

time-stept− 1

The first two cases are simple, either the segment is stored
for the next time-step because there is no match or there is
exactly one match for further processing. In contrast to the
third case, where additionally the size, number of points and
depth difference between the segments are compared to find
the best match for a segmentSt

i with St−1

l .
After finding two corresponding segments the motion

between the time-steps is extracted by Eq. (13), where the
ego motion of the car is compensated with∆mt

ego.

∆mt
i = ftrti,2 − ftrt−1

l,2 −∆mt
ego (13)

Therefore, the result of the 3D Warping stage is a motion
vector∆mt

i between two segments, describing the speed and
direction in metrical world coordinates.



D. Temporal stabilization

After the extraction of a motion vector∆mi between two
segments as shown in the previous section, the results have to
be stabilized over time and therefore assigned to certain ob-
jects. Based on the search for corresponding segments, also
the correspondence between the motion vectors is realized.
Hence, the motion vector∆mt−1

l based on segmentsSt−2
r

and St−1

l is part of an objectol. In the current time-step
the motion vector∆mt

i (between segmentsSt−1

l and St
i )

corresponds with the objectol based on the same segment
St−1

l of both motion vectors. Therefore, the speed and
direction of ol is averaged over the measurements∆mt−1

l

and∆mt
i. Additionally, to the features of the measurements

each object has a probability, which specifies if it is static
or moving. To this end, an object can have three states:

1) new/unknown (pi = 0.5)
2) static (pi < 0.5)
3) moving (pi > 0.5)

If a motion of a segment has no corresponding previous
motion vector (and therefore no object in a previous time-
step) a new object is generated with a probability (pi) of
0.5 meaning the state is new/unknown. At each time-step
the probability pi of an object is updated based on the
previous probability (pt−1

i ) and the similarity of the current
direction (pti,D) and amplitude (pti,A) with the previous ones
(see Eq. (14)). If the amplitude is below 3km/hpti,D andpti,A
are zero.

pti = pt−1

i + pti,A + pti,D −∆pi,H (14)

Additionally, for small magnitudes of the amplitude (<
3km/h) a penalty factor∆pi,H exists reducing the overall
probability. Therefore, the probabilitypi indicates the cer-
tainty with which an object is moving or static.

IV. RESULTS

In this section, we evaluate the performance of our system
with an image stream showing different scene categories. For
the evaluation the found moving objects are transformed to
the image plane by a pin-hole camera model. Additionally to
the single segment points also the corners of each segment
are transformed to the image plane (only for moving objects).
The segment corners span a rectangle on the image plane,
which will be further used for the evaluation. One image
per second was manually labeled, providing the ground
truth (GT) position and size of all moving objects (trucks,
cars, motorcycles, bicyclists) on an image (img). In general,
also pedestrians can be detected as moving objects, but the
resolution of the PMD sensor is too small to generate enough
measurement points in the required distance.

A true-positive match is given, if the mutual overlap of the
ground truth region with the found moving object rectangle is
greater than 50% (relating to the smaller region). The streams
show various scenes, with different scene complexities (see
Fig. 3). On the image plane, the evaluation measure treats
each moving object independently. To this end, each of the
moving objects on an image has to be classified.

In order to evaluate our algorithm, we adopt the Equa-
tions (15), (16), and (17). The equations define different
ground truth based measures, which were taken from [17].

Completeness =
TP

TP+ FN
(15)

Correctness =
TP

TP+ FP
(16)

Quality =
TP

TP+ FP+ FN
(17)

with

TP ... True positive moving objects

FN ... False negative moving objects

FP ... False positive moving objects

On a descriptive level the Completeness states, based on
given ground truth data, how many of the moving objects
were actually detected. The Correctness states how many of
the detected regions were actually relevant moving objects.
The Quality combines both measures. Its computation is
appropriate, since a trade-off between the Completeness
and Correctness exist. Based on this, the Quality measure
should be used for a comparison, since it weights the FP
and FN detections equally. For a more detailed analysis the
Completeness and Correctness state what exactly caused a
difference in Quality.

The three measures were calculated on the detected mov-
ing objects over all ground-truth images of the stream. The
gathered results are depicted in Tab. I and Tab. II.

Number
Category of GT TP FP FN

frames
Rural to city 82 97 11 19
Inner city 137 149 10 41
Highway 151 295 35 17

TABLE I

GENERAL INFORMATION ABOUT THE EVALUATION STREAM.

The computed measures show the reliability of the ap-
proach, given that a Quality of at least 74% is reached. In
detail the Correctness is about 90% on all categories. The
false-positive detections are caused mostly by the used com-
mercial internal vehicle sensors that measure the ego-motion
of the test vehicle. Especially, during curves the quality
of the ego-motion estimation drops significantly, which can
produce false positive detections. The Completeness shows
a higher variation between the different categories, but still
nearly 80% of all moving objects can be detected. Since, the
evaluation is done on a single frame basis (one per second),

time FP per Correct- Comple- Quality
Category [s] GT img ness teness
Rural to city 82 0.13 89.8% 83.6% 76.3%
Inner city 141 0.07 93.7% 78.3% 74.5%
Highway 153 0.23 89.4% 94.6% 85.0%

TABLE II

RESULTS OF THE EVALUATION



it happens periodically that a ‘new’ moving object has not
been detected yet. Because our approach needs at least three
measurements before a moving object is identified as such
(see Figure 3, Frame 6883). Also partly occluded objects
that are only visible for short intervals (see Figure 3, Frame
4250), produce false-negative measurements.

Frame 4250

54.3

Frame 4355

42.6
27.7

Frame 5360

30.1
−19.3

Frame 6402

37.8
−34.0

Frame 6883 Frame 6966

Frame 12842 Frame 13249

101.4 109.8

−27.9
38.5 38.8

18.8

107.5

86.0104.8
77.8

Fig. 3. Example images of the results, red points depict moving objects,
green static ones. The moving objects show additionally rectangles of the
temporal stabilization, where the color intensity indicates the certainty for
moving. The average speed (km/h, after temporal stabilization) for the
detected moving objects from our approach is also depicted.Note: in Frame
5360, the moving object on the right hand side is a bicyclist.

V. SUMMARY AND OUTLOOK

In this contribution, we presented a novel way for the
detection and speed/direction estimation of moving objects,
only based on 3D measurements. As the results showed the
method reliably detects moving objects and also the object
speed estimation resulted in reasonable outputs. Therefore,
we plan a sensor fusion with vision to further exploit the
gathered results for a highly flexible and robust system
architecture. We currently port the described extensions from

Matlab to C in order to integrate them in our existing online
system [18] for evaluating them on our prototype vehicle.
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