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Detection and motion estimation of moving objects based on
3D-Warping

Robert Kastnér, Tobias Kithrt, Jannik Fritsch and Christian Goerick

Abstract— The detection of objects in the surrounding en- in 3D are segmented to build a 3D environment representa-
vironment is a key functionality for every Advanced Driver  tion. Afterwards, the intersection (and additional feal)rare
Assistance System (ADAS). Otherwise, it is impossible 10 gy q1yated between different time-steps of the found setgnen

realize any kind of advanced assistance functionality as @. a . ; . .
Forward Collision Warning. Besides static obstacles thatimit to identify the same object in different measurements. Ad-

the drivable area, dynamic objects can even be more dangersu ditionally, the ego-motion is compensated by a 3D warping
due to their ego-movement. Therefore, a detection and also of segments from previous time-steps. Finally, a residuum
motion estimation of moving objects in the surrounding is computation between the same segments of different time-
essential for everylADAS.. In this con’grlbutlon we present a ovel steps allows the detection of moving objects. The computa-
way to detect moving objects only with 3D-measurements of th . . . . L
current surrounding environment that we called 3D-Warping. tion Qf th? residuum 'S. done in 3D, thefebY also providing
But we are not only able to detect but also to provide the the direction and amplitude of a moving object. Due to the
direction and speed of moving objects in world coordinates. generic character of the proposed 3D segmentation all types
The method is generic and can be applied on any kind of of objects can be extracted (bicyclists, cars, motorcig;lis
depth sensor, as e.g. a stereo-camera, time-of-flight, and3  ;cks). The 3D measurements are carried out with a time-

laser scanner. . . - .
Keywords: moving object detection, object motion estima(-)f_fIIght sensor (Photonic Mixer Device - PMD).

tion, driver assistance IIl. RELATED WORK

|. INTRODUCTION In general, a number of publications deal with the detec-

Typical state-of-the-art Driver Assistance Systems (DAS)tion of moving objects from a static platform and also with
which are available on the market, rely on radar for théhe detection of general obstacles, which is not the focus
detection of dynamic objects. Therefore, providing distan OL_th'? cfontrlbunon. We f?c;s on g1e dtetect|on of mo;{mg
and speed of vehicles in the surrounding environment, e.g, Jects Trom a moving pratiorm. Due 1o our ego-mation,
used for an Adaptive Cruise Control (ACC). Nevertheles ,|mple approaches like difference images can not be applied

for future Advanced Driver Assistance Systems (ADAS)OI In the afppr(()ja;:h O:] Bzrtozm_ et. 6}" [1] r adarband Icam_T_La
additional information might be necessary, as e.g. anainiti ata are fused for the detection of moving obstacles. The

segmentation of the moving object, support for all kinds Oilmage is used to provide precise boundaries of the radar-
moving objects and a detection independent of moving

éjretected objects. Additionally, the authors propose a ateth
static obstacles. Furthermore, in technical terms a high f

lled ‘Motion Stereo’ which uses the transformation to
resolution to ease the separation between objects and a

§ birds-eye-view (BEV) to build an environment model.
a larger opening angle of the sensor would be performanc ince, the BEV is a metric representation the ego movement
improving features.

can be easily compensated by a translation and rotation. In
Currently, few approaches exist that do not rely on rad

Summary, to extract dynamic regions from the BEV two
sensors to detect ego-moving objects. In the majority deasconsecutive metric images are subtracted and the residuum
these approaches use a direct measurement of the motiarlir"’_meormed fo the persp_ective image for the indicat'rbn_o
(as e.g. an optical flow computation). Also a few approachégovmg objects. Also, additional algorithms as a pedestria
exist that use an indirect measurement by the generation

r&pognition are fused with the ‘Motion Stereo’. However, a
an environment model, as shown in the related work sectiofft

dar is still utilized in this approach.
In this contribution, we present a novel approach for the

Miyasaka et. al. [2] build a 3D occupancy grid by using
detection of moving objects based on 3D-measurements %fmul'u-layer LIDAR. First, they extract the ego-motion by
the surrounding environment, the 3D-Warping: First, otgec

measuring the translation and rotation between the (¥tatic

elements of two consecutive scans. Afterwards, all ostlier
IThe work was carried out during the PhD studies of the auOf the measurement indicate possible moving objects. These

thOJ in COOp%ration. bet}Neenf Honﬁa IReseaLch lnsr:itute Elr@m"t;H are clustered to get objects and also tracked over time. The

and Darmstadt University of Technology, the author now \soffior : e . : : " . :

Honda R&D Europe (Deutschland) GmbH, D-63073 Offenbachney. identified moving objects provide position, direction and

robertkastner@de.hrdeu.com speed according to the authors. Nevertheless, the usedrsens

2Darmstadt University of Technology, Institute for Autoeaontrol, D-  provides only a few scanning layers resulting in a small
64283 Darmstadt, Germany. The author now works for CoR-Baddefeld vertical Opening angle
University, Germany. ' . . .
3Honda Research Institute Europe GmbH, D-63073 Offenbaehm@ny. Wang et. al. [3], [4] describe a simultaneous localization

{jannik.fritsch, christian.goerigk@honda-ri.de and mapping (SLAM) approach, also capable of detecting



and tracking moving objects (DATMO). Based on lasedrawbacks. First, the optical-flow computation is resource
scanners they build an environment map with their SLAMlemanding. Second, the image-plane is ideal to detect motio
algorithm that also provides a pose estimation. Similar ttateral to the own movement direction, but has difficulties
the previous approach, outliers of the mapping algorithwith the longitudinal direction. Additionally, the quana-
indicate possible moving objects. For the tracking and prdion error of stereo vision is a limiting factor for precise
diction of each group of outliers (moving object) they usameasurements.

the Interacting Multiple Model (IMM) estimation algorithm

While [5] is based on a similar approach, the authors propose [1l. SYSTEM DESCRIPTION
an extension that relies on a probabilistic method for the ) )
differentiation between static and moving objects. In the following, a rough overview of our approach for

Another approach is described by Nguyen et. al. [6], wher@0Ving object detection is given (see Fig. 1). Thereafter,
an elevation map decodes the occupancy of the surroundifiy Processing steps and their theoretical background are
environment. To this end, areas with a large elevation af€scribed in more detail.
occupied. Based on that, areas whose occupancy status

vironment representation also adopt a laser scanner, ong
providing precise information on a few planes. _

One of the early approaches in the vehicle domain base [ segmentQpe into S pa”sh
on optical-flow is described by Heisele et. al. [7], where conditions on
an image is divided by a simple color segmentation intg [check lokal conditions or% jf S
16 predefined levels. After the segmentation of connecte —
regions, a number of features are extracted. The movin ot foat s

H H H H extract reatures save
gbjects are determ!ned by a search for cprrespoqdlng regio ftrt from § = ondfin

etween different time-steps and result in a motion image. J { )

Wang et. al. [8] use stereovision and an approach calle

‘U-V-disparity’ to extract 3D motion vectors, based on a t t-1 3. 3D Warping r
)

segmentation of the disparity image and a comparison wit ind g
the ego-motion. evaluate intersggtion S'gg&%?]’?ssggglvénegn}
A so called ‘6D vision’ approach (see [9]) is used by of § and § tand t-1

Rabe et. al. [10] to detect moving objects. Therefore, the 3l ¢
positions from a stereo camera are combined with optica [ check validity of Ar ]
flow vectors and the found objects are tracked with Kalman
filters. But the detection is only done for a number of featurg
points that were selected by a modified KLT-tracker (see
[11]) from the original image. The detection of a moving [ find corresponding motiomAm  between t and t-1
object is realized with the Kalman-filter, that predicts the i

speed of an object and all objects with a speed greater thg [ generate/update object )__4.[ lost objects
zero are moving.

The publication of [12] compares the previously intro-
duced ‘6D vision’ with a monocular motion detection. The
monocular approach also uses a number of selected featy 1
points (by the KLT-tracker) to compute the optical flow. The [ extract moving and static ObjectSJ%
results showed that the stereo approach outperformed the
monocular one in terms of accuracy.

Another approach is described by Fardi et. al. [13], also
using the optical-flow for segmentation and classificatibn Gig. 1.
the object motion. Therefore, they use the RANSAC (see
[14]) algorithm to differentiate between static and dynami The used PMD sensor has a resolution of 64 x 16
points. The static points are used to determine the egoemotimeasurement points and a framerate of 60Hz. Additionally,
of the camera. Afterwards, the dynamic points are extractdulit only for evaluation purposes a camera is used. All sensor
with the knowledge of the camera ego-motion. (PMD and camera) are mounted behind the windshield on

Optical-flow based approaches have in general two majtine passenger’s side of our test vehicle. The active indrare

. Input:
ghanges betw_een current qnd previous measurements are |t o CAN data
likely to contain dynamic objects. To differentiate betwee L[ :
false-positive measurements and real dynamic objectyfuzz Y - Freprocessing \

- - X
sets for a number_of features are used, providing a probabili Check validiy \dentify ground ego-motion
for a dynaml_c object. with y(u,v) points by gres estimation

Summarizing, most of the approaches that use an e J
[

2. Segmentation

/G
check global

Y

@

4. Temporal Stabilization

[ update probability of all objects ]

Output:
Y Static and moving objects

System structure for detection of moving objects By\Barping.



illumination of the PMD is positioned at the radiator covgin s

of the test vehicle. ‘ R T w0
The overall system can be divided into four main parts. “

The first one handles the raw data preprocessing, where noise .

and systematically inaccurate measurements are elindinate R B R

by a validity check on the PMD data. The ego-movement

of the test vehicle is calculated by using a single-track ;

model on the speed and yaw-rate coming from inertial 0 K

sensors. In the second part a segmentation is done to cluster R e FeLs 5 T £

the relevant segments of the PMD matiix The found L

segments have to fulfill certain requirements which areajlob i

and local conditions corresponding to general and segment

specific features/requirements. Afterwards, the featofése

segments are extracted. In the following, third part the so-

called 3D-Warping is applied. Starting with an interseatio

analysis to combine the same segments between the different

time-stepst and ¢t — 1. Therefore, a number of features,

e.g. size, width, height, additionally to the overlap aide

are compared to find the best match for each segment.

Afterwards, the motiomn! for each segment; between the

current time-steg and the previous one— 1 is extracted.

Finally, in the fourth part a temporal stabilization is ¢edr

out, matching motionsn with similar features between the

different time-steps (at least three) to one objegct For

the visualization of results the objects (in metric world

coordinates) are projected to the image plane by a pin-hole

camera model. Fig. 2. Noisy raw data of the PMD sensor and image of the same step.
For the sake of 5|mp||c|ty, we switch between the matriXNote that the camera and PMD sensor have different view antilerefore

notation (e.g. A) and the function notation (respectlvelyz] mappmg is only possible by world positions and the use oamera

a(u,v)), nevertheless both notations are equivalent., Als®

superscript for the current time-step is mostly omitted.

by Eq. (3).4 o B is the entry-wise product of the matrices
A. Preprocessing A andB.

The input of the system is a 64x16x3 PMD matiix
(q(u,v,w)) for the current time-step, having three layers Tpre = Tvat © Dstreet (2
which correspond to the X, Y and Z (depth) plane. Therefore,
each element from a plane provides a measurement in met-
rical coordinates of the environment for a certain direttio
A number of noisy or wrong measurements tend to happeB, Segmentation
see Fig. 2. To this end, we filtap by applying a validity
interval Eq. (1), resulting in an Boolean matiik,; for all

QPTE = Qw o Fpre YV w (3)

The second part of the algorithm handles the segmentation
of relevant areas frond),... The segmentation algorithm

valid points. is inspired by basic region growing and split & merge
algorithms (see [15], [8]). Also incorporated is the ideatth
Konin < q(u,v,1) < Xinaa measurements which belong to the same object lie within a
Y(u,v) =1¢ Yiin < q(u,v 2) < Yina certain depth interval. For the segmentation a number df sta
Lnin < q(u,v 3)< Znm, points (seed points) have to be defined. In general, there are
~(u,v) = 0 otherwise 1) two cases, first if the segmentation of the previous timp-ste

t — 1 exists, then a number of seed points for the current

Additionally, a number of measurements correspond tbme-stept are provided. Second, without knowledge about
the street surface, which are insignificant for moving objed@ previous segmentation.
detection. These measurements are identified by the Boolearin the former case, all center pointgt{;;') of the
matrix st gE€NErated by a street surface segmentation thatgmentsS‘t 1 (S; describes a segmentas bmary matrix)
starts at the lower bound of th@ matrix. The segmentation are used as seed points for the current time-gtefphe
algorithm is the one from Section III-B, but modified toMoore neighborhood of the seed points is evaluated by
extract the ground plane. Therefore, the final validity matr use of the Euclidean distance mettja — b||> (in metric
is given by Eq. (2) and the result of the preprocessing stageordinates). Therefore, the Euclidean distance between t



neighboring points must not exceed a certain threshold faf segments to only relevant ones. First of all, the pitch

being grouped to the same segment. After checking tlengle between sensor and segment must lie inside a validity

neighborhood of the seed point the newly added segmenterval, otherwise the segment is part of the street or the

points are evaluated in the same way. This procedure $&y and will be marked as invalid. The second condition is

repeated until no more neighboring points of a segmetihe maximum length of a segment (see Eq. (9)), measured

satisfy the distance constraint. In that case the method ligtween the points with the minimum and the maximum

continued with the next seed point. depth. These segments belong to large man made structures
All remaining points that have not been segmented blke houses and walls, which are not of interest for the

ftrf;l can act as new seed points. Hence,Ithe. matrix is detection of ego moving objects.

searched row wise for remaining valid points acting as new

seed points. If a new seed point is found the segmentation is Qi1 = Gpre(u, v,1) - si(u, v) (8)

started aggin as already described. A_\ft_er finis_hing a segmen LCy : max(Q;.3) — Min(Q; 3) 9)

the row wise search of,,. for remaining valid points is

continued. This procedure is repeated until all valid pointFor the final third condition the standard deviation (sed)[16

have been segmented. By usifig,. for the segmentation Of the segments depth (Eq. (11)) or the standard deviation

we simplify the retrieval of valid points, nevertheless theP€r point of a segment (Eq. (12)) has to be lower than a

distance between two points is measured in 3D metricHl”‘EShOld. OtherWise, the Segment is marked as invalid. The

coordinates. standard deviation per point is added for taking also the siz
Also, for the second case (without knowledge of previou8f @ segment into consideration.
segmen_ts) thé’,,.. matrix is sear_ched row wise and found S5 i3 (u, v)
valid points act as new seed points. 7= (10)
The next step is a check for global and local conditions n;
on all extracted segments;. The global conditionsC) -
. 1 ‘T
are on the one hand that a segment needs at Ieas_t two points fis = Z(Qi.ﬁ(a) _ %) (11)
(GCh, see Eq. (5)), otherwise it will be marked as invalid on ni — 14~
I'pre. Since, single point measurements can not be separated
from spurious detections. Hi3 (12)
n;
n; = Z Z si(u,v) 4) The result of the segmentation stage is therefSresalid
u segments withftr; ; features.

GCrini 22 ®) c 2 Warping
On the other hand, it is checked if a segment has two partsThe 3D Warping stage computes a motion between
that are connected by a single point in between, assumitige current time-step with segmentS! and the previous
this is a false connection of two independent segmentme-stept — 1 with a segmensS{~'. Hence, an intersection
Therefore, the connectivity of all valid points is calceldt analysis for all current segmentf with the previous seg-

by Eq. (6). mentsSlt*1 is carried out, resulting in three different cases:
il e 1) there is no segment with an overlap in time-stepl
con(u, v) = Z Z Ypre(n,m) — 1 (6) 2) there is exactly one overlapping segment of time-step
t—1

n=u—1 m=v—1

3) there are a number of segments with an overlap from
time-stept — 1
The first two cases are simple, either the segment is stored
sca(u) = Z(CONo S))(u, a) @ for the next time-step because there is no match or there is
" exactly one match for further processing. In contrast to the
third case, where additionally the size, number of points an

, If sc; ShOW_S a discontinuity (or a numbgr) th(_a segment depth difference between the segments are compared to find
is separated into several new segmeiitsvhich will replace the best match for a segmesif with S!~
F

the original segment. This is the second global condition
(GCo).

The next step is the extraction of featurgs-; ; for all
segmentsS;. To this end, for each segmeinthe center point
in matrix (ftr;1 = [u,v]) and metric coordinatesf{r; » = t t e t—1 ¢
[z,y, z]), the size (tr;3 = [width, height,length]) and Amy = Jiriy = g = Ameg, (13)
yaw angle {tr; 4) between segment and sensor is extracted. Therefore, the result of the 3D Warping stage is a motion
Based on these features a number of local conditidr(s)( vectorAm! between two segments, describing the speed and
are evaluated for each segmesit to reduce the amount direction in metrical world coordinates.

Afterwards the continuity of the sums of each column is
analyzed for each segmeff (see Eq. (7)).

After finding two corresponding segments the motion
between the time-steps is extracted by Eq. (13), where the
ego motion of the car is compensated wikhn!

ego’



D. Temporal stabilization In order to evaluate our algorithm, we adopt the Equa-

After the extraction of a motion vectakm,; between two tions (15), (16), and (17). The eguations define different
segments as shown in the previous section, the results davéfound truth based measures, which were taken from [17].

be stabilized over time and therefore assigned to certain ob TP

jects. Based on the search for corresponding segments, also Completeness = TP+ FN (15)
the correspondence between the motion vectors is realized. TP

Hence, the motion vectoAm! ™' based on segments 2 Correctness = w55 (16)
and Sltfl is part of an objecb;. In the current time-step ) TP

the motion vectorAm! (between segments; ' and SY) Quality = 55N (17)
corresponds with the objeet based on the same segment

Si=' of both motion vectors. Therefore, the speed and with

direction of o; is averaged over the measuremezﬁ\tmf*1

" TP ... True positive moving objects
and Am!. Additionally, to the features of the measurements uep ”V_ Vi g ) )
each object has a probability, which specifies if it is static FN .. False negative moving objects
or moving. To this end, an object can have three states: FP ... False positive moving objects

1) newlunknown; = 0.5) On a descriptive level the Completeness states, based on

2) static bi < 0.5) given ground truth data, how many of the moving objects

3) moving p; > 0.5) _ _ were actually detected. The Correctness states how many of
If a motion of a segment has no corresponding previoyge detected regions were actually relevant moving ohjects
motion vector (and therefore no object in a previous timerpe Quality combines both measures. Its computation is
step) a new object is generated with a probability) 0f  appropriate, since a trade-off between the Completeness
0.5 meaning the state is new/unknown. At each time-steghd Correctness exist. Based on this, the Quality measure
the probabilityp; of an object is updated based on theshould be used for a comparison, since it weights the FP
previous probability ;') and the similarity of the current ang FN detections equally. For a more detailed analysis the
direction {; ) and amplitude; ,) with the previous ones Completeness and Correctness state what exactly caused a
(see Eq. (14)). If the amplitude is below 3knp’bD andp;A difference in Quality.

are zero. The three measures were calculated on the detected mov-
. R , ing objects over all ground-truth images of the stream. The
pi=p; +DiatDpip—Apin (14)  gathered results are depicted in Tab. | and Tab. II.
Additionally, for small magnitudes of the amplitude: (

. . Number

3km/h)_ a penalty factorAp; g exists re@uqng the overall Category ofGT | TP | FP | EN
probability. Therefore, the probability; indicates the cer- . frames

tainty with which an object is moving or static. Rural tocity | 82 97 | 11| 19

Inner city 137 149 | 10 | 41

IV. RESULTS Highway 151 295 | 35 [ 17

In this section, we evaluate the performance of our system TABLE |

with an image stream showing different scene categorigs. Fo ~ GENERALINFORMATION ABOUT THE EVALUATION STREAM.

the evaluation the found moving objects are transformed to The computed measures show the reliability of the ap-
the image plane by a pin-hole camera model. Additionally tproach, given that a Quality of at least 74% is reached. In
the single segment points also the corners of each segmeetail the Correctness is about 90% on all categories. The
are transformed to the image plane (only for moving objectsjalse-positive detections are caused mostly by the used com
The segment corners span a rectangle on the image plantsrcial internal vehicle sensors that measure the egoemoti
which will be further used for the evaluation. One imagef the test vehicle. Especially, during curves the quality
per second was manually labeled, providing the groungf the ego-motion estimation drops significantly, which can
truth (GT) position and size of all moving objects (trucksproduce false positive detections. The Completeness shows
cars, motorcycles, bicyclists) on an image (img). In geheraa higher variation between the different categories, Lt st
also pedestrians can be detected as moving objects, but Hearly 80% of all moving objects can be detected. Since, the

resolution of the PMD sensor is too small to generate enougfyaluation is done on a single frame basis (one per second),
measurement points in the required distance.

A true-positive match is given, if the mutual overlap of the s - R — S
H . H H H ime per orrect- omple- uality
ground truth region W|th the found moving object rectangle i Category s] | GTimg hess teness
greater than 50% (relating to the smaller region). The Bi&ea [Rural to city | 82 013 89.8% 83.6% | 76.3%

show various scenes, with different scene complexities (s@_Inner city 141 0.07 93.7% | 78.3% | 74.5%
Fig. 3). On the image plane, the evaluation measure treatsdighway 153 | 023 89.4% | 94.6% | 85.0%
each moving object independently. To this end, each of the TABLE |I

moving objects on an image has to be classified. RESULTS OF THE EVALUATION



it happens periodically that a ‘new’ moving object has noMatlab to C in order to integrate them in our existing online
been detected yet. Because our approach needs at least tlsgestem [18] for evaluating them on our prototype vehicle.

measurements before a moving object is identified as such
(see Figure 3, Frame 6883). Also partly occluded objects

that are only visible for short intervals (see Figure 3, Feam [ '\’cl ’39?0?" l"abﬁon}b'fg' tP-t_Cem' dP- IMeg!C'-t, P. ?nt_(’”g” a”%
. . Miglietta, stacle detection and classification fugiradar an

4250)’ pmduce false-negatlve measurements. vision,” in Proc. |EEE Intelligent Vehicles Symposium, 2008.

[2] T. Miyasaka, Y. Ohama, and Y. Ninomiya, “Ego-motion asdition
and moving object tracking using multi-layer lidar,” iroc. IEEE
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V. SUMMARY AND OUTLOOK

In this contribution, we presented a novel way for the
detection and speed/direction estimation of moving object
only based on 3D measurements. As the results showed the
method reliably detects moving objects and also the object
speed estimation resulted in reasonable outputs. Therefor
we plan a sensor fusion with vision to further exploit the
gathered results for a highly flexible and robust system
architecture. We currently port the described extensiooms f



