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Honda Research Institute Europe GmbH, Carl-Legien-Str.30, D-63073 Offenbach/Main, Germany

ABSTRACT

In this work we present simulation results substantiating a
previously proposed model of computation in neocortical
architecture (Körner et al., Neural Networks 12:989-1005,
1999). For each stage of the cortical hierarchy we hypothe-
size three interacting columnar systems for (A) fast forward
recognition, (B) refined recognition by feedback, and (C)
behavior/prediction related processes, roughly correspond-
ing to middle (IV), superficial (II/III), and deep (V/VI) cor-
tical layers. In a first example we implement a simple sys-
tem for word recognition. Focusing on the dynamics, we
explore the interaction of the A and B systems in recogniz-
ing words, quenching out expected signals, and representing
new words based on previously learned representations. In
a second large-scale implementation of the visual and sac-
cadic system we additionally demonstrate the learning of
new object representations and the generation of predictions
within the C system based on saccadic sequences.

1. INTRODUCTION

Recognizing and categorizing previously experienced ob-
jects and scenes as well as learning new representations is
still one of the hardest problems in artificial intelligence and
related disciplines such as computer vision or robotics. Be-
cause sensory stimuli regularly include complex and am-
biguous scenes, it is necessary to use top-down prediction
in order to reduce the tremendous number of possible inter-
pretations at each level of representation. Thus, any solution
has to detail (i) how prior knowledge is to be integrated (top-
down) with the actual (bottom-up) stream of sensory data in
a meaningful way, and (ii) when and how new representa-
tions are to be created and stably integrated into the pre-
viously learned knowledge hierarchy. Because biological
organisms are currently the only systems capable of solv-
ing these tasks to a satisfactory degree, we want to use the
growing knowledge about the anatomy and physiology of
the brain to incorporate this knowledge in biologically in-
spired models.

In this work, we present first simulation results substan-
tiating a previously proposed model of computation in neo-
cortical architecture [1]. This model gives a detailed func-
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Fig. 1. Cortical processes must be able to distinguish be-
tween different representational modi. E.g., representa-
tional states may refer to present, future, reality, wish, sig-
nal, or symbol. We have the idea that, at least for higher
mammals, a single cortical column can represent several
modi at the same time, and that different modi relate to dif-
ferent cortical layers.

tional interpretation of the well-known six-layered colum-
nar cortical architecture and related subcortical (thalamic)
structures. It hypothesizes three different but interfering
processing systems at each stage of the cortical hierarchy:
The A-system (including the middle cortical layers IV and
III) accomplishes fast bottom-up processing where the first
spike wave traveling up the cortical hierarchy can activate
a coarse initial hypothesis at each level. In the B-system
(superficial layers II and III) the initial hypothesis is refined
by slower iterative processes, involving horizontal and ver-
tical exchange of information. Finally, the C-system (deep
layers V and VI) represents the local hypothesis of a macro-
column, which is fed back to the B-system of a lower level
inducing expectations and predictions for the present and
future input signals. Recognized or predicted input signals
are suppressed at an early cortical stage, and only differ-
ences between predicted and actual signals can reach the
next higher level. Learning of new representations is in-
duced if the difference signal is too large and if the differ-
ence signal reaches the highest level of cortical integration,
the hippocampus.

These ideas are illustrated by two example implementa-
tions of the model. The first example is a very simple (but
instructive) system for word recognition consisting of three
cortical levels representing letters, syllables, and words. Fo-
cusing on the dynamics, we show how the different process-



ing systems interact in order to quench out expected signals
and accomplish symbolic recognition of words, and how
representations for new words can be constructed based on
old representations. The second example is a large-scale
implementation of the visual system, involving several pri-
mary and higher visual cortical “areas” (denoted as V1, V2,
V4, V6, IT) as well as parts of the hippocampal forma-
tion (EC, HC), and further subcortical structures involved
in generating eye saccades. With this model we can demon-
strate object classification and learning of new object repre-
sentations based on the incremental refinement of an object
hypothesis during a saccadic sequence.

2. FUNCTIONAL MODEL OF A CORTICAL
COLUMN

Although, it is well known for a long time that neocortical
anatomy exhibits a 6-layered structure, modeleres have of-
ten neglected this fact when modeling a cortical patch by
a single “monolithical” neuron population (e.g., [2, 3, 4]).
This may be attributable to the wish to focus on a single
layer or the lack of adequate computational resources to
simulate more detailed models, but also to doubting or un-
derestimating the functional significance of discrete within-
or between-layer synaptic connections which appear to have
a rather “fuzzy” character [5, 6].

In accordance with ideas developed earlier in [1] (cf.,[7,
8]), we assume that the basic function of a cortical column is
to adequately represent and predict (or generate) its sensory
inputs. To achieve this in a self-organizing, autonomous
way, it is necessary to have access to different representa-
tional modi such as actual vs predicted sensory input. We
propose that different representational modi of the same en-
tity (e.g., orientation at a particular position in the visual
field) are located in different layers within the same column
rather than monolithically in different columns or areas (see
Fig. 1).

What does such a generative model look like? We can
assume that the model represents external states that pro-
duce the observed sensory inputs. Thus, at each time t the
model must represent a state v from the state space V (or
more generally, a probability distribution on the state space
describing in which state the columnar system “believes” to
be in). Then the system should be able to use sensory input
s to update the state v according to a function f ,

v(t+ ∆t) = f(v(t), s(t)) (1)

where ∆t can be interpreted either as a fixed small simula-
tion step size (for continuous models) or as a variable time
interval between two events (for discrete models driven by
events such as the onsets of stimuli presented in a sequence).

It makes sense to divide the state variable v = (w, a)
into two rather independent entities, one variablew describ-
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Fig. 2. Left: Basic functional circuit of a cortical column.
Sensory input s is used to update the current world state w.
This is used to choose an appropriate action a. World state
and action can be used to predict the next world state w′

and next sensory input s′. Right: A simple histogram rep-
resentation of the conditional probability density g(w, a) on
(discrete) states and actions: The example shows the den-
sity of the predicted “world” states w′ when being in state
w2 and performing action a4. Learning is accomplished by
simply incrementing bin k of the histogram in row i, col-
umn j whenever evidence (wi, aj) → wk is experienced.
Our model essentially implements such a histogram repre-
sentation where the states or state combinations (wi, aj) are
“coded” with distributed cell assemblies in order to relieve
combinatorial problems and reduce the number of required
neuronal units [9, 10, 11, 12, 4].

ing “external” entities from the outside world, and another
variable a describing a local “internal actor”. In addition
to updating a state, the system should also be able to pre-
dict a future state w′ (without accessing sensory input) and
sensory inputs s′,

w(t+ ∆t) = f(w′(t), s(t)) (2)
a(t) = fa(w(t), . . .) (3)
w′(t) = g(w(t), a(t)) (4)
s′(t) = h(w′(t)) (5)

We will also refer to f as the “forward recognition func-
tion”, to g as the “predictive function”, and h as the “back-
ward function”.

How can we learn the recognition, prediction, and back-
ward functions? In general, updating the model will involve
two phases: (i) finding the most probable w, (ii) assuming
fixed world and actor states (w,a), the functions can simply
be learned by counting up experienced evidence. For ex-
ample, the prediction function g is essentially a conditional
probability (the probability to get to state w′ given state w
and action a) which, for discrete states and actions, can be
represented by evidence histograms for each combination
(w, a) (see Fig. 2).



By comparison with well known anatomical facts we
can match our functional model (Fig. 2) with the layered
organization of neocortex ([1, 13, 6]; see Fig. 3). We believe
that the forward recognition function (f ) is located in the
middle and upper layers, while the remaining functionality,
related to behavior and predictions, is located in the lower
layers (see also introduction). Furthermore, we believe that
f is split up into two subsystems, one for fast bottom-up
recognition (A system) and another for refined recognition
employing feedback (B system).

Fig. 3. Layered model of a cortical column as proposed in
[1]. Three different processing subsystems corresponding
to different vertical locations (i.e., layers) are intertwined
within each cortical column. The A-system (middle layers)
accomplishes fast bottom-up processing of sensory signals,
the B-system (superficial layers) represents the input from
the A-system in a refined way by activating more sparse
and abstract representations and by exchanging information
with neighboring columns. The C-system (deep layers) de-
velops representations related to action/behavior and pre-
dictions used for feedback control. See text for more de-
tails. We have implemented parts of this model (see Fig. 7,
cf. Fig. 2).

3. CORETEXT MODEL

In our first model example we investigate the basic activa-
tion dynamics within the columnar A and B subsystems.
For this we have implemented a model that has been re-
duced to the minimum of necessary subsystems and con-
nections, that still maintain the desired function.

It consists of three cortical stages, which are internally
identically structured (Fig. 4). Just for convenience, they
are denoted as V1,V2, and IT, but the setup is completely
generic and may refer to any place in the cortical hierarchy.

In order to have concrete examples for features and re-
ceptive field properties, and concentrate on the principle sig-
nal flow inside the columns, we chose an example of word

recognition. We assume that text and images have similar
structural properties. E.g., text consists of words, consisting
of syllables which again are constructed from characters.
For the principle purpose described here, this is sufficiently
similar to visual scenes, consisting of objects, which again
are constructed from features such as corners and edges (de-
spite the reduction to one-dimensional space; cf. [14]).

Fig. 4. The “CoreText” model implements three cortical
levels (denoted V1, V2, IT for convenience) including the
columnar A and B subsystem to explore the neural activa-
tion dynamics and the “switching-off” mechanism (inhibi-
tion from B to A2) as proposed in [1]. We use word recog-
nition as a simplified example, giving exact rules for the
construction of receptive fields.

In our current implementation, area V1 represents let-
ters, area V2 syllables, and area IT words. Each area con-
sists of three populations A1, A2, and B corresponding to
the cortical layers of the A and B subsystem (see Fig. 3).
Each population consists of simple threshold units. For sim-
plicity, each cell codes a single entity (letter, syllable, word).
Synaptic connections from A1 to A2 are one-to-one (i.e., A2
is essentially a copy of A1). Connections from A2 to B are
such that “symbolic” representations in B classify entities
corresponding to the next higher level from the lower-level
inputs A2 (e.g., in area V2, layer B classifies words from
syllable based representations in A2).

Currently, the model is hard-wired without any synap-
tic plasticity where we focus on the activation dynamics,
in particular the switching-off of familiar signals in layer
A2 induced by inhibition from B [1]. Results from the
CoreText model are illustrated by two simulation examples
(Figs. 5, 6).

In the following, we describe results from a comple-
mentary large scale model which aims to implement the full
functionality of a cortical column and focusses in particular
on the interaction of the A,B subsystems with the behavior
and prediction related C system.



Fig. 5. Stimulation example using a known word “mut-
ter”. The stimulus is decomposed into known parts in the
B-system, which shows self-supportive activation. The ac-
tivation in the B-system switches off all known parts from
the signal stream in the A2 system. Since the word can be
fully explained from knowledge, no activation remains at all
in the A2-system.

Fig. 6. Stimulation example of an unknown word that is
similar to the known word “vater”, but contains two dis-
torted characters. The stimulus is decomposed into known
parts in the B-system, which shows self-supportive activa-
tion. Known parts are switched off from the signal stream
in the A2 system. The two unknown characters remain ac-
tivated in the A2 system, indicating the new parts of the
stimulus that have to be learned.

4. MODEL OF SACCADIC OBJECT
RECOGNITION

Modeling the behavioral and predictive functionality of the
C system requires a more dynamic scenario which covers
at least some of the functional implications hypothesized by
our model. For this we have designed a model of visual ob-
ject recognition involving saccadic eye movements which
allows the incremental refinement of an object hypothesis
during a saccadic sequence. Here the first object view ini-
tiates an object hypothesis by “holistic” recognition which
can be used to make saccades to other object parts and to
predict the corresponding new object views. Then, by com-
paring the actual object view with the predicted object view,
the initial hypothesis can be strengthened or weakened.

We have implement a model of several primary (V1,V2)
and higher visual cortical areas from the “what” (V4,IT) and

“where” path (V6) as well as parts of the hippocampal for-
mation (EC) and further subcortical structures involved in
generating eye saccades and triggering learning (see Fig. 7,
right panel). At this point we have used only a simple neu-
ron model to simulate and explore the basic neuronal dy-
namics and columnar functions without too much computa-
tional expenses. Most neuron populations are modeled ei-
ther as a simple k-WTA population (i.e., at each simulation
step, the k most excited neurons are activated), or as simpli-
fied spiking associative memories ([4, 15, 16]; cf. [17]).

In retinal area R we represent binary images (size 81×
81) of simple line drawings of buildings (Fig. 8). The cells
in primary visual area V1 receive input via oriented Gabor-
like filter kernels (8 orientations per spatial location). Area
V2 represents additionally corner parts (i.e., conjunctions
of two edges, 120 per location). Area V6 averages over all
corners types at a spatial location thereby representing the
positions of key features in a visual scene (cf. Fig. 8). Area
V4 represents invariant visual object views at a lower spa-
tial resolution. Area IT (inferior temporal) represents visual
objects. For learning new objects we activate a static rep-
resentation in an auditory area AC to label the new object
with a spoken word. Converging multimodal (visual, audi-
tory) input to a further area EC (entorhinal cortex) of the
hippocampal complex allows the binding of different object
views to a single object representation. Furthermore there
are a number of presumably subcortical auxiliary areas in-
volved in generating saccades and triggering learning (ar-
eas Sac1,Sac2,Sac3,SacX,LX). In particular, we have im-
plemented a simple model of the superior colliculus (SC/
Sac2) representing target locations of saccades determined
by the location of key features (input from V6) and an at-
tentional window (region of interest represented in Sac1 and
biased by V4). Additionally, area Sac3 represents “control
sequences” to control the execution of saccades (area SacX)
and the triggering of learning (area LX) in specific phases
of a repeating “frame generating” oscillation.

Each area consists of one or several neuron populations
to implement our ideas of the layered architecture of cor-
tical columns. Fig. 7 (left) shows the architecture of the
columnar model as implemented for area V4. The other ar-
eas implement only parts of our columnar model, mostly
the fast forward processing A-system. Our columnar model
as implemented for area V4 consists of 6 neuron popula-
tions. Input layer A1 receives input from area V2 and con-
sists of 120× 9 cells corresponding to the 120 V2 features
and 9 spatial fields (central plus 8 peripheral), each V4 cell
pooling over the corresponding set of V2 cells. A1 cells
have no local recurrent excitatory connections but feedfor-
ward and lateral inhibition with a “soft” winner-takes-all
that is emulated by activating only the k = 13 most ex-
cited cells (k-WTA). A1 cells project in a one-to-one man-
ner to population A2 corresponding to lower layer III. A2
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Fig. 7. Left: Columnar model as implemented for our current simulations. Boxes correspond to cell populations (correspond-
ing to particular cortical layers, cf. Fig. 3), arrows to synaptic connections between the cell populations/layers. Populations
with recurrent connections (A2,B,C1,C2) are implemented as simplified spiking associative memories [4, 15, 16]. The addi-
tional population CU (“combinatorial units”) is used to combine representations of B and C1 (cf. Fig. 2). Right: Layout of
our visual model of saccadic object recognition. The model consists of various visual areas (R,V1,V2,V4,V6,IT), auditory
areas (AC), hippocampal areas (EC), saccade related areas (SC, S1, S3), and some auxiliary areas triggering learning and the
execution of saccades (LX, SX). Currently only area V4 implements the full columnar model.

has the same size as A1 but is modelled as a spiking associa-
tive memory [4, 15, 16]. Thus A2 has recurrent excitatory
connections used to store auto-associatively feature vector
prototypes learned during saccadic object recognition. Sim-
ilarly, population B (size 100) is also modelled as spiking
associative memory but the auto-associatively learned pat-
terns consist of randomly selected cells (k = 5) and there-
fore have rather symbolic character. Population B receives
hetero-associative input from A2, where backprojections of
B can inhibit A2 thereby emulating the ideas of quench-
ing off expected signals as described above (see section 3).
The representation of B can be used to bias the selection
of behaviorally relevant symbols in population C1 (corre-
sponding to cortical layer V). C1 is also realized as spik-
ing associative memory of 100 cells representing currently
9 possible target directions of saccadic eye movements (cen-
tral plus 8 equispaced directions). During learning of new
objects this population receives random inputs and thereby
biases the production of random saccades to explore new vi-
sual scenes or objects. An additional neuron population CU
is used to represent conjunctions (w, a) of “world states”
and “actions” (see Fig. 2). The most simple way to do this
is to model CU as a k-WTA population (CU has size 100
or 2500 and k = 13) receiving inputs from B and C1 via
random connections leading to nearly “uncorrelated” activ-
ity in CU for any combination of w and a. This is useful
for hetero-associatively linking conjunctions (w, a) to pre-

dicted states w′ represented in population C2. C2 is also
modelled as spiking associative memory (size 100, k = 13).
The short-cut link of the external sensory input (from V2)
to C2 is used to learn the prediction (w, a) → w′ (see be-
low). The prediction represented in C2 can be used to bias
expectations in other (lower) areas of the cortical hierarchy
and/or to narrowing the search space within the same corti-
cal column (e.g., via a modulating input from C2 to A1,A2,
or B).

Learning may occur in three different hypothesized sub-
systems of the cortical columns.

1. PCA-like basis vector learning system for cell popu-
lations A1 and A2.

2. Clustering-like learning algorithm in populations A2
and B.

3. Predictive learning on symbolic states in populations
B, C1, CU, and C2.

The first learning system is concerned with generating ap-
propriate basis vectors for adequately describing the sensory
inputs (possibly only during a critical learning period). So
far this learning system has not been implemented in our
model, i.e., all sensory inputs to layer A1 are hard-wired.
Instead, we have conducted some isolated simulation ex-
periments (unpublished results) which suggest that a sim-
ple standard statistical learning procedures (such as essen-



Fig. 8. We used simple line drawings for stimulating the vi-
sual model, e.g., a house or a church (upper panel). Prepro-
cessing in areas R,V1,V2,V6 essentially extracts key fea-
tures (such as corners) as the basis for saccade generation
and object view recognition in the higher areas. Lower pan-
els show the V6 representations of the key features corre-
sponding to the house and church stimuli.

tially additive Hebbian learning plus an adequate synaptic
normalization procedure) will do the job similar to PCA or
maximation of reconstruction quality and sparseness which
can generate plausible receptive field properties [18, 19].

The second learning system involving populations A2
and B performs a kind of clustering on the space spanned by
the basis vectors of A1/A2, quite similar to ART networks
[20] but relying on cell assemblies instead of simple nodes.
Essentially, it implements the operation

IF (|A2−H ·B| > Θ) THEN NEW SYMBOL

where A2 and B denote the activity vectors of the corre-
sponding neuron populations, H is the matrix of hetero-
associative inhibitory connections from B to A2, and | . . . |
essentially sums over the residual activity after subtracting
B from A2. This learning process involves the following
steps. Input from A1 initiates a retrieval in the spiking as-
sociative memory A2, i.e. A1 will activate a prototype (or
a mixture of several prototypes) in A2 that is most similar
to A1. Then A2 will activate a corresponding cell assem-
bly in the spiking associative memory B. This activation
pattern is fed back via inhibitory hetero-associative con-
nections to A2. Ideally, the two representations in A2 and
B match each other and B will quench the activity in A2.
However, if the activity vector in A2 is too far from a previ-
ously learned protoype then there will be considerable resid-
ual activity. This then initiates the learning of new “sym-
bols”. For that, the original activity of A1 and A2 is stored
auto-associatively in A2 and a new “symbolic” cell assem-
bly (generated by noise) is stored in B and bidirectionally
and hetero-associatively linked with the new A2 assembly.
Additionally, a new cell assembly (of the same quality as
A2) is stored in C2. We note that it may be challenging

to create a more detailed neurodynamic model which im-
plements these discrete steps using realistic spiking neuron
and plasticity models.

The third learning system essentially learns to make pre-
dictions on the symbolic states learned by the second learn-
ing system. Functionally, it implements the learning of the
conditional probability density histograms p(w′|w, a) illus-
trated in Fig. 2. First a new unquenched sensory signal s
enters the column. On the main path it will travel via A1,
A2, B, C1 finally to C2 (Fig. 9). However, on the shortcut
to cortical layer VI it will directly enter C2 and transiently
activate, by hetero-association, a symbol corresponding to
the new sensory input. Since at that time the old state sym-
bols are still active in B, C1, and CU, a simple asymmetric
STDP-like Hebbian learning rule will hetero-associatively
link the old CU-representation to the new C2 symbol. Sim-
ilar to the second learning system it will also be a challenge
to implement this procedure employing more realistic neu-
ron and plasticity models.

In order to test our model we have conducted simula-
tions applying simple line stimuli as shown in Fig. 8. In
each simulation run we presented one new stimulus or sev-
eral new stimuli in a sequence. During the presentation the
system will saccade on the key features (i.e., corners) of
the stimulus. Eye movements are controlled by the saccade
control system (areas Sac1,Sac2,Sac3,SacX,LX) as follows:
In the first phase the system executes a saccade defined by
the visual target map in area SC/Sac2 (superior colliculus).
After the saccade up to three correction saccades follow
in order to center the fixation on the location of the most
salient feature. After that learning is enabled for 10 simula-
tion steps by modulating input from area LX (which could
correspond to some hippocampal and/or subcortical areas)
to several targets: (i) within the A/B system of area V4 in or-
der to learn a new object view in case the current object view
differs too much from the views experienced previously; (ii)
within the C system of area V4 in order to learn to predict
the outcome of the saccade; (iii) between area IT and EC in
order to associate the particular object view representation
in V4 and IT with a static auditory representation in the area
AC via entorhinal area EC. At the same time, population C1
of area V4 preselects a future saccade direction out of 9 pos-
sible directions (2Πi/8 for i = 0, 1, . . . , 7 or “center”). Via
area S1 this biases a particular region of the visual field in
area SC. Since SC receives also the locations of the key fea-
tures from area V6, the most active cells in the target map
of SC can again select the location of the following saccade.

Fig. 10 shows some simulation results when stimulat-
ing with the house illustrated in Fig. 8. The plot shows that
our model is able to rapidly learn new object views and to
learn to predict the outcome of saccades under a certain ob-
ject hypothesis. For the latter the system has to learn some-
thing like the prediction histogram of Fig. 2. Combining a
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Fig. 9. Temporal dyamics of the activation of the different populations or layeres in a cortical column within an ac-
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large number of world states with a large number of possi-
ble behaviors/actions the complete histogram will be quite
large. Here, we have compressed the representations by us-
ing cell assemblies where a state or state combination is not
represented by a single cell or a conjunctive unit, but in-
stead by distributed cell groups [9, 11, 2]. Theoretically,
this could reduce the number of required neural units from
M = #states ×#actions (if we use one conjunctive unit
for each combination of world states and actions) to approx-
imately

√
M for large networks of distributed cell assem-

blies [12, 16].
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Fig. 10. Simulation results from area V4. The plot shows
the probability of making a correct prediction about a fu-
ture object view before executing a saccade as a function of
the number of saccades when learning a new object (here
the house of Fig. 8). Different lines correspond to different
model parameters. Best results results occur if population
CU is large and the corresponding representations are un-
correlated.

5. CONCLUSION

We have described two initial implementations of a previ-
ously suggested model of the columnar organization of the
cortex [1]. The first model for word recognition (CoreText;
see section 3) focussed on the activation dynamics in the
A and B columnar subsystems (see Figs. 3,7 left) which is
used for fast bottom-up processing in the A system and sub-
sequent top-down driven refinement in the B system. We

demonstrated the viability of previously presented ideas [1],
in particular the quenching-off of familiar signals to be able
to attend to residuals conveying potentially new informa-
tion, and to compose new hierarchically structured repre-
sentations from the old (already learned) ones.

In a complementary large scale model of the visual sys-
tem (see section 4) we have focussed on the interaction of
the columnar A and B subsystems with the C system which
is required to influence behavior/actions and to make pre-
dictions about future sensory inputs [1]. This model is able
to generate new representations for new object views and
to learn predictions about the outcome of saccades apply-
ing the framework of cell assemblies [9, 10, 11, 12, 4]. To
this end it was necessary to model a larger part of the visual
system involving several visual cortical areas of the ven-
tral (what) and parietal (where) stream as well as additional
areas to control saccades and learning. Our implementa-
tion gives a plausible illustration how a cortical column can
develop representations for its incoming sensory inputs in
order to predict future sensory states. So far we have en-
dowed only some key areas (V4 and partially IT) with the
complete set of properties of our columnar model while the
other areas rather perform preprocessing of sensory input
and control of the saccades and learning. Consequently, this
model example can also implement only a limited version of
the switching-off demonstrated in the first (CoreText) model
example.

In future work we will extend and unify our models of
the visual system to include to the full set of columnar func-
tionality across any level of the cortical hierarchy. We be-
lieve that our approach scales well to an integrative imple-
menation of the visual system and parts of the hippocam-
pus. Another key challenge will be to translate our results
which are based on the crude dynamics of very simple neu-
ron models to more realistic spike based models of neurons
and synaptic plasticity.
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