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Abstract- We present a case study of applying multi-
objective optimization techniques to the three dimen-
sional design of a turbine blade in a gas turbine that is
designed for use in a small business jet. We illustrate the
iterative approach to the formulation of the fitness func-
tion that is characteristic for such a practical problem
and show how the Pareto front accumulated in this pro-
cess may serve to represent the knowledge on this prob-
lem that was collected in the complete optimization pro-
cess.

1 Introduction

Multi-objective optimization has been the subject of intense
research in the recent years in the field of evolutionary com-
putation. The simplest but nevertheless very efficient way to
treat problems with multiple criteria is to aggregate the ob-
jectives linearly weighted by an appropriate choice of pa-
rameters and to render the problem single-objective. As
long as the choice of the parameters is well founded, this
approach is indeed very sensible since it is the computa-
tionally most efficient one. At the same time, the infor-
mation we gain about the problem after the optimization is
limited and the result is valid strictly only for the chosen
weights. More popular are evolutionary algorithms which
target the whole Pareto front, i.e., the set of all solutions for
which no solutions exist which are better than the Pareto
solutions in all objectives. Therefore, the optimization tar-
get of the Pareto methods is a set of solutions or even a
solution space instead of a single solution. Since evolu-
tionary algorithms inherently operate on sets, i.e., the pop-
ulation of solutions, they seem to be particularly suitable
for multi-objective optimization problems. The drawback
is that most multi-objective optimization algorithms seem
to require more function evaluations than efficient single-
objective methods like the derandomized evolution strate-
gies with cumulative step-size adaptation. We carefully
chose the statement “seem to require” in the previous sen-
tence, since no statistically sound analysis has been pub-
lished yet to support this proposition. At the same time, it
seems intuitive that the identification of a set of solutions
or even a space will on average constitute a more difficult
optimization problem than the search for a single solution
does. Indeed this intuition is supported by our own em-
pirical findings. The larger number of required function
evaluations poses a problem when each function evaluation
is computationally demanding, like for aerodynamic design
optimization problems [1, 2], other fluid-dynamic problems

[3] or even multi-disciplinary problems [4]. In these cases,
effort has been undertaken to minimize the needed popula-
tion size [2] or to employ meta-models [5, 6]. At the same
time, most of these problems are multi-objective, even if the
additional objective might be hidden either in an inherently
aggregated problem formulation or might be represented as
“soft constraints”. We will come back to the formulation
of soft-constraints in later sections, because it can – in some
instances – provide a simple way out of the problem of com-
putational demand of multi-objective algorithms.

Many different multi-objective evolutionary algorithms
have been suggested which mainly differ with respect to the
selection mechanisms they employ [7]. Since we deal with
a particularly computationally demanding aerodynamic op-
timization problem in this paper, we have to employ algo-
rithms which minimize the required number of individual
evaluations. We will use both “standard” static aggregated
methods and the dynamic weight aggregation method [8, 9]
which employs an evolution strategy to represent the set of
Pareto optimal solutions in an archive. We will use the visu-
alization of the solutions close to the Pareto curve in quality
space to represent the information that we gain about the
optimization problem during several optimization runs. We
will motivate such a patchwork-style optimization in Sec-
tion 5 after we introduced the problem and presented the
optimization results in Sections 2, 3 and 4.

2 Three Dimensional Turbine Blade Design
Optimization

The aerodynamic design that we optimize is part of a gas
turbine that is used in small business jets. The main parts of
a gas turbine are depicted schematically in Fig. 1.

In the current research we focus on the turbine which is
composed of several rows of airfoil cascades. Some of these
rows, the rotors, are connected to the central shaft of the
engine and rotate at high speed thus driving the engine’s fan
and compressor and converting gas energy to mechanical
energy. The other rows, the stators, are fixed and serve to
keep the flow from spiraling around the axis. Our goal is to
optimize the design of the turbine stator blades.

2.1 The Turbine Stator Blade

Fig. 2 depicts part of a turbine stator row. The stator is of
a special type in our case. It is a so-called ultra-low-aspect-
ratio (ULAR) stator. This means that a stator row is made
up of only 8 stator blades. This is a very small number com-
pared to 20 - 60 blades that are used in more conventional



a. b. c. d. e.

Figure 1: Schematic sketch of a gas turbine. The turbine
consists of a fan (a.) that pulls air into the engine. Part of
this air is compressed in the compressor (b.) and then forced
into the combustion chamber (c.) where it is mixed with fuel
and ignited. The resulting hot, high energy gases go into the
turbine (d.) causing the turbine blades to rotate. The task of
the turbine is to convert gas energy into mechanical work
to drive the compressor (b.). The nozzle (e.) is the exhaust
duct of the engine.

Figure 2: Ultra low aspect ratio turbine stator blades and
their flow fields. The blade count is NB = 8.

turbine designs. Fig. 2 depicts part of a ULAR stator row.
For details on the design specifications of the ULAR stator
refer to [10].

Low aspect ratio turbine stator blades have rarely been
adopted as components of conventional turbines because of
their relatively poor performance. However, there are con-
siderable benefits when adopting low aspect ratio blades.
For example, for a low number of stator blades, rotor blade
resonance, and hence material fatigue, is considerably re-
duced.

The ULAR blade flow characteristics make it unlikely
that the advanced design principles developed for conven-
tional high aspect ratio blades will help to improve the ef-
ficiency of ULAR stator blades: The flow phenomena that
can be observed are too different to enable direct exploita-
tion of design principles developed for high aspect ratio
blades. Hence ULAR stator blades are excellent candidates
for numerical optimization. The goal of optimization from
the engineering point of view is not only to increase blade
efficiency, i.e. ultimately to reduce the engine’s fuel con-
sumption, but also to identify new design concepts that con-
trol the three-dimensional nature of the flow.

2.2 The Blade Model

A crucial point in design optimization is the parametric
model of the geometry that will be optimized since this de-
termines the design space. There are a number of require-
ments on the design of a proper blade model. Among these
are

• flexibility: the model must be flexible enough to al-
low for a wide variety of different designs,

• compactness: the number of parameters describing
the model must be low enough to allow for reasonable
convergence times of the optimization algorithm, and

• locality: variations of a single model parameter
should result in only local variations of the model and
should not affect the global model shape.

A good choice to fulfill these requirements is to use non-
uniform rational B-spline (NURBS) surfaces [11] to repre-
sent the blade. A B-spline surface is a tensor product of two
B-spline curves and hence is defined by two parameters, a
set of control points and two knot vectors, one for each pa-
rameter. Usually not all of these parameters are subject to
optimization. Often the variables in the design optimization
problem are given by the coordinates of the control points.
However, the suitable number of control points must be cho-
sen with care: the use of too few control points may unnec-
essarily restrict the design space and exclude potentially in-
teresting designs while the use of too many control points
complicates the optimization problem and additionally may
have unwanted side-effects like the creation of cusps or even
self-intersections of the resulting surfaces. The geometry of
the baseline blade is defined by two cross sections, the tip
section and the hub section. Our blade model consists of a
B-spline surface defined by a periodically closed cubic B-
spline in one parameter direction and a second order open
B-spline in the other direction. The hub section and the
tip section of the blade are each modeled using 25 control
points so that all in all 50 control points are used. The con-
trol net of the blade model and the section geometries are
shown in Fig. 3.

Using the coordinates of the 50 three-dimensional con-
trol points directly as design variables would result in a 150-
dimensional search space. Fortunately, we can exploit two
facts to reduce the search space dimension to only 88:

1. We note that we use closed periodic splines in the
first parameter direction of the blade surface model
to achieve a closed and seamless shape that has no
beginning or end points. This implies that the first
d and the last d control points of each blade section
coincide. Here d denotes the degree of the splines
which is d = 3 in our case of cubic splines. This
means that each of the two blade sections is defined
by only 25− 3 = 22 independent control points. The
periodic control points need not be taken into account
as design variables so that in total we only have to
consider 44 control points.

2. The hub section as well as the tip section of the blade
are defined to lie on cylindrical surfaces. This means
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Figure 3: The blade model is created from the hub section
(dark gray) and the tip section (light gray) of the baseline
blade. These sections are defined by 25 control points each.
The control net of the baseline surface model, that connects
neighboring control points is depicted by a black line.

the z-coordinates of the control points are implicitly
fixed by the blade geometry. Hence we only need to
consider the x- and y-coordinates of the non-periodic
control points as design variables and so we are left
with only 2 × 44 = 88 design parameters.

The knot vectors are not subject to optimization.

2.3 Flow Analysis

For the evaluation of the fitness function, an analysis of the
aerodynamic properties of the proposed design is necessary.
Eventually the design will be built and tested in a wind tun-
nel. This procedure would be too expensive and time con-
suming during the design process, so the usual approach is
to simulate the flow and thus to estimate the dynamic prop-
erties of the blade designs.

For these simulations we used the parallelized 3D
Navier-Stokes flow solver HSTAR3D [12]. The computa-
tional grid for the solution of the Navier Stokes equation
consisted of 175 × 52 × 64 = 582, 400 cells. For each
evaluated blade design a new grid was generated. This is a
relatively inexpensive operation that takes on average about
40 seconds on an AMD Opteron 2 GHz double processor.
The flow analysis, however, is an extremely time consuming
task that takes between 2 hours and 3.5 hours on an AMD
Opteron 2 GHz double processor depending on the num-
ber of flow solver iterations needed for convergence. So the
calculation of about 300 generations of the evolutionary op-
timization, takes about 6 weeks time.

2.4 The Simulation Environment

To conduct the blade optimization, we designed and imple-
mented a simulation environment that is highly configurable
and at the same time hides much of the complexity of run-
ning a large scale simulation from the user.
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Figure 4: Simulation environment architecture. The pro-
gram is parallelized at 2 levels: the first level of paralleliza-
tion is a master-slave model that uses PVM to organize the
distribution of single individuals to slave processes while
the second level that is started by the slave processes is a
node-only model for parallelizing the flow solver calcula-
tions using MPI.

Using evolutionary optimization is ideally suited to par-
allelization. In our case the fitness evaluation is the most
time consuming task we have to solve. Thus we decided to
evaluate the individuals’ fitness in parallel using a master-
slave model where the master is responsible for the orga-
nization and execution of the evolutionary cycle except for
the evaluation of the fitness function. For each offspring in-
dividual, the master spawns a slave process to take care of
this. The slave processes generate the computational grids,
run the flow solvers, calculate the fitness values from the
CFD results and return them to the master.

Note that there is a second level of parallelization in the
slave processes: the flow solver itself is also parallelized
on 4 processes. This means the evaluation of λ offspring
individuals requires to manage 4λ processes! The architec-
ture of the simulation environment is shown in Fig. 4. The
flow solver is parallelized using MPI [13], while the master-
slave model of the optimization loop was implemented us-
ing the Parallel Virtual Machine (PVM) library [14]. Large
scale applications that involve extremely long run times like
the one discussed here raise interesting questions concern-
ing hard- and software stability and fault tolerance.
Ideally the failure of one or more of the involved hosts
should be intercepted either by migrating the jobs from the
affected machine to another machine or by rescheduling
and/or restarting the jobs on the next available machine.



Another option which is especially applicable in popula-
tion based methods like evolutionary algorithms would be
to tacitly ignore the host failure and simply proceed with a
smaller population in the affected generation.
In any case some kind of check-pointing is highly advis-
able that regularly saves the internal state of the simulation
and in this way allows for a restart of the calculation after a
crash without noticeable loss of results or the need for heavy
recalculations.

2.5 Using Evolutionary Algorithms

Evolutionary algorithms [15] are a class of stochastic opti-
mization algorithms whose use in design optimization prob-
lems is well established by now [16].

In our approach to 3D turbine blade optimization we
use a special variant of evolutionary algorithms namely an
evolution strategy (ES) with covariance matrix adaptation
(CMA) [17]. The basic idea of CMA-ES is to make maxi-
mum use of the information contained in the search history
for self-adaptation of the search direction that is defined in
terms of the covariance matrix of a normal distribution from
which individuals are drawn. Thereby the population size is
decoupled from the dimension of the search space.

Especially the latter feature is indispensable in 3D blade
optimization which is characterized by a fundamental con-
flict: on the one hand the design space is very high-
dimensional. As a consequence a large number of differ-
ent designs has to be evaluated during optimization. On the
other hand each evaluation of the blade performance is a
computationally extremely demanding task so that only a
limited number of evaluations can be afforded.

2.6 Multi-Objective Optimization

A complex optimization problem like aerodynamic design
optimization is inherently multi-objective even if often only
a single objective is taken into account for optimization.
One approach that is often used to avoid more complicated
and less efficient multi-objective approaches is to use all but
one objective as soft constraints, i.e. small deviations from
the target are tolerated. Such an approach is especially ap-
propriate where it is desirable but not mandatory to mini-
mize the objectives used as constraints while an increase of
the objective value above a certain value is not tolerable.

Another way to avoid multi-objective optimization is by
linear aggregation of the objectives. The drawback of such
an approach is that the weights of the aggregated objectives
have to be chosen carefully – a difficult task that often needs
additional experiments – and that the appropriate weighting
of the constraints may change during optimization.

When using real multi-objective approaches in real
world problems in which the evaluation of the fitness func-
tion is time consuming the most important criterion for the
choice of the multi-objective optimization algorithm again
is efficiency.

In our approach we used dynamic weight aggregation
[8, 9] which searches for the Pareto front by dynamically,
gradually, and periodically changing the weighting factors

of a linear aggregation of the objectives during optimiza-
tion. This approach can easily be combined with arbitrary
evolutionary strategies so that we can retain using CMA-ES
and the associated small populations.

3 Fitness Functions and Constraints

The main performance index in aerodynamic blade design is
the aerodynamic loss of the blade which is measured by the
mass averaged pressure loss ω. The use of this quantity as
performance measure is certainly a coarse but viable sim-
plification of the problem. In practice, a number of other
quantities play an important role in the assessment of the
blade quality. Unfortunately, it often is difficult to detail the
crucial factors and anticipate the influence of a combination
of these quantities on the optimization.

However, in the course of the blade optimization project,
we identified the variation of the pitch-wise static outlet
pressure PSTVAR as a second quantity that should be con-
trolled explicitly in the optimization. From the engineer-
ing point of view it is well known that the pressure loss
ω and PSTVAR are closely related but to date it is not
clear whether it is possible to minimize both quantities at
the same time. So the goal in our optimization project is
twofold: to find an improved blade design and to collect
knowledge about the relation between ω and PSTVAR.

With these aims in mind we conducted a series of both
single and multi-objective optimizations:

• We only minimized the pressure loss and observed
PSTVAR.

• We only minimized PSTVAR and observed the pres-
sure loss.

• We used both objectives but rendered PSTVAR as a
constraint thus turning the multi-objective problem
into a single objective one.

• We used simple linear aggregation of the two objec-
tives. Here initially both objectives received the same
weight. This constitutes a simple, naı̈ve approach to
multi-objective optimization.

• We used the true multi-objective approach of dy-
namic weight aggregation [8].

In addition to these two objectives, we used a number of
geometrical and manufacturing constraints that concerned
the blade thickness, the outflow angle, the solidity, and the
mass flow rate. These constraints were fixed during one
optimization but were subject to change between different
simulation runs based on the analysis of the optimization
results.

The baseline blade model that we used to initialize the
optimization and that is described in Sec. 2.2 lies within
the feasible region of the design space. We formulated the
objective function in a way that only violated constraints
contributed a penalty. The weights on the constraints were
chosen such that the contribution of a violated constraint by
far outweighs the contribution of the objectives in order to
quickly drive the search back into the feasible region.



4 Results

In our experiments, we used a (µ, λ) CMA-ES with param-
eter settings as described in [17]. We used µ = 1 parent
individual and λ = 10 offspring individuals. The strat-
egy parameters σ were initialized with σ = 0.1. We ran
5 single- and multi-objective variants of the optimization:

A. Minimization of the pressure loss In this optimiza-
tion run we used the single objective of minimizing the pres-
sure loss ω. This is the standard approach in aerodynamic
blade optimization. In Fig. 5 the results from this run are de-
noted with A and are marked by squares. In Fig. 5 also the
performance of the blade design that was used to initialize
the optimizations is plotted as a dotted line for each of the
two objectives. This means all blade designs in the upper
right quadrant are inferior to the initial blade and all blade
designs in the lower left quadrant are superior to the initial
blade with respect to both objectives. The designs found by
solely minimizing the pressure loss clearly achieve the low-
est pressure loss of all designs but are also characterized by
the highest static pressure variation.

B. Minimization of the static pressure variation The
opposite is true when we minimize only the static pressure
variation PSTVAR. This run is denoted by B in Fig. 5.

C. Static linear aggregation of both objectives Al-
though in some cases a reduction of only the static pressure
variation irrespective of the pressure loss is a good result,
we were rather interested in a reduction of both objectives at
the same time. So we used as a first naı̈ve approach a linear
aggregation of both objectives. The weights in the aggrega-
tion were chosen such that initially both objectives received
the same weight. Figs. 6(a)-(d) in which the development of
the populations over time is plotted show that this approach,
denoted by C, works quite well in the initial phase of the
optimization but then it becomes clear that the reduction of
the static pressure variation receives too much weight in the
optimization: PSTVAR is reduced but the pressure loss in-
creases even though this increase is not as strong as in the
unconstrained case.

D. Minimization of the pressure loss with PSTVAR as
constraint As last single objective approach we mini-
mized the pressure loss and used the second objective as
a soft constraint. We constrained the value of the static
pressure variation from above, i.e. values that exceeded
the value of the initial blade incur a penalty in the fitness
function. This approach is quite successful in this case: the
pressure loss is decreased and the static pressure variation
is controlled, see individuals denoted by D in Fig. 5. The
optimization ran for 451 generations in this case.

E. Dynamic weight aggregation Finally, we used with
the dynamic weight aggregation a multi-objective approach.
Here we varied the weights of the two objectives according
to w1(t) = | sin( 2π

100
t)| and w2(t) = 1 − w1(t), i.e. the

weights are periodically varied from 0 to 1 within 50 gener-
ations. The results of this method are denoted by E in Fig. 5.
We see that this approach is quite successful in minimizing
both objectives in an efficient way. The results shown here
are taken after 426 generations.

Looking at the overall picture in Fig. 5 and Fig. 6 it be-
comes nicely clear how the combination of the results from
all 5 runs of the optimization helps to develop a more com-
plete picture of the Pareto front for this problem, a picture
that cannot be created in this completeness using only one
objective function.

5 Patchwork Optimization

The patchwork-like approach to the multi-objective opti-
mization problem that we outlined in the last section might
be typical for practical optimization problems for several
reasons. Firstly and most obviously, the problem is compu-
tationally expensive. Therefore, we have to choose the al-
gorithms that we employ very carefully with respect to the
number of function evaluations the algorithm requires until
Pareto optimal or sub-optimal solutions are found. It is of-
ten not possible to run a high-fidelity but time consuming
algorithm to obtain the Pareto front in one step. Instead we
have to “grope” toward the Pareto front step by step learn-
ing more and more about the problem on the way. In this
sense, weight aggregation both static and dynamic seems
to be a feasible way to start the optimization project. Sec-
ondly, we would argue that many practical problems are in-
herently dynamic with respect to the quality criterion. From
our experience, more often than not, the definition of the op-
timization problem in itself is subject to a learning process
for the application engineers. Real-world application prob-
lems are usually tackled by bringing application engineers
together with optimization experts. However, we should
not assume that the application engineers can formulate the
problem characteristics in the same concrete and transparent
way as we formulate test functions. Instead the engineers
learn more and more about their problem as optimization
proceeds. Therefore, driven by some intermediate solutions
they will alter the formulation of the problem, the definition
of the constraints and add new quality measures or change
existing ones. For the optimization expert this process can
be difficult depending on the degree of changes. Often the
endpoint of such a process is not marked by a final opti-
mal solution of one or even several optimization runs, but
by a collection of information about the problem at hand.
From this information pool the application engineers pick
innovative elements and ideas and combine them with own
intuition to finally devise the blueprint of the new improved
design or process. Of course such an approach to a prob-
lem requires an appropriate representation of the informa-
tion gained during the different optimization runs that have
been carried out during the project. In this paper, the two-
dimensional quality space, particularly close to the Pareto
front, turns out to be such a useful representation. However,
different projects might require different representation and
research is required into what these might look like.

One might argue that the “patchwork” optimization de-
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Figure 5: Accumulated Pareto front of the blade optimization problem. Here “baseline” denotes the performance of the
baseline blade. A - minimization of the pressure loss, B - minimization of the static outlet pressure variation, C - static
linear aggregation of both constraints, D - minimization of the pressure loss with PSTVAR as constraint, E - multi-objective
optimization using dynamic weight aggregation. The individuals that build the Pareto front are marked by filled circles.

scribed above (as opposed to a linear optimization chain, see
Figure 7) is neither surprising nor new to optimization en-
gineers. Nevertheless, it is worthwhile to point out that the
difference between targeting one optimal design and gather-
ing information about a certain problem is at least as big as
between targeting the Pareto front or Pareto space instead of
one design. Indeed, by moving our target from one single
design point to the space of Pareto optimal solutions is al-
ready a big step toward gaining knowledge about the prob-
lem at hand. However, we might not want to restrict our-
selves to the space of Pareto optimal solutions. One could
consider a space made up of different Pareto fronts which
belong to different constraints/quality values, where some
might be frozen in some runs. Information on the robust-
ness of solutions [18], which constitutes a multi-objective
optimization problem in itself [19], might also be worth in-
cluding in the final description of the problem. One could
even consider the representation of poor quality solutions,
as long as they represent some design aspect which is non-
trivial and which at the same time can be identified to be
avoided. Basically, the choice of the representation, in the
sense of what can be represented and how easily can it be
read out by the application engineer, is the only limiting fac-
tor to collecting knowledge about the problem during the

optimization process. Therefore, to advance these kind of
optimization projects it seems that more research on ade-
quate information representations is required. Such repre-
sentations are not restricted to quality landscapes, the meta-
modeling technique [6] – although usually employed for
other reasons – also provides a means to collect informa-
tion about the problem.

The fast identification of optimal or sub-optimal solu-
tions, which usually is the measure we currently use for
the quality of optimization algorithms, might be superficial
for this type of optimization problems, because the quality
landscape is not sufficiently stable during the lifetime of the
optimization project. It seems that evolutionary methods are
particularly useful for patchwork optimization because their
population based approach already represents the collection
and storage of information during search.

6 Conclusions

Aerodynamic design optimization is a particularly suitable
application area of multi-objective optimization methods.
The use of numerical optimization methods in this subject
area requires the explicit formulation of an objective func-
tion for the optimization. Traditionally, engineers do not use
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Figure 6: The evolution of the Pareto front in the course of the optimization. The results from the different optimization
runs are shown after (a) 50, (b) 100, (c) 200), and (d) 400 generations. For an explanation of the nomenclature of the
figures, see Fig. 5.

such an explicit formulation of the objective when creating
a design but rather depend on a rough formulation of the
objective augmented by experience and expert knowledge.
The paramount goal in aerodynamic design optimization in
general is the reduction of the aerodynamic loss, the pres-
sure loss. At the same time a number of other criteria, whose
relevance may emerge only during the optimization process,
play a role in the final quality of the design. So generally
in a practical application the selection of the objectives to
use is an iterative process. In this contribution, we showed
that we can and must make use of the experience we gained
during this iterative process by recording and utilizing the
results collected during the process of optimization.
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