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Abstract. We present the application of evolutionary optimization techniques to the
three dimensional aerodynamic design optimization of a gas turbine stator blade. This
problem is characterized by a high dimensional search space, which results from the need
to build a 3D model of the blade, and by an extremely expensive data acquisition process,
namely the analysis of the 3D flow around the blade. Although aerodynamic design opti-
mization often is treated as a single objective optimization problem by minimizing solely
the aerodynamic loss, the problem is inherently multi-objective. We consider as a sec-
ond objective the variation of the circumferential static outlet pressure distribution and
compare several single and multi-objective methods to incorporate this second objective
into the optimization. We discuss advantages and drawbacks of these methods in terms
of their feasibility for our optimization task and hence, more generally, for tasks that are
characterized by high costs of data acquisition, e.g. where the evaluation of the objective
function for optimization is computationally demanding and time consuming.
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1 INTRODUCTION

We present the application of evolutionary optimization techniques to the 3D aerody-
namic design optimization of an ultra-low-aspect-ratio (ULAR) gas turbine stator blade.
This kind of stator blades is only rarely used in gas turbines because of their relatively
poor stage efficiency as compared to the more conventional high-aspect-ratio (HAR) tur-
bines. The reason for this presumably lies in the complex 3D nature of the flow in the
ULAR case and the complex interaction of the secondary flow with the transonic main
flow. With respect to design optimization this has two consequences: on the one hand the
advanced design principles developed for HAR blades cannot be exploited to improve the
efficiency of the ULAR turbine stator blades because the flow characteristics in both cases
are too different. On the other hand we cannot resort to relatively fast two dimensional
or quasi three dimensional methods for flow analysis but have to analyze the full three
dimensional flow, a computationally expensive task.

From the optimization point of view 3D aerodynamic design optimization constitutes
an interesting problem for several reasons. The need to build a 3D model of the design
inevitably renders the problem high dimensional. The exploration of a high-dimensional
search space, however, requires a large number of data points. In the worst case the
number of necessary data points scales exponentially with the search dimension. In 3D
aerodynamic design optimization this constitutes a serious problem because here acqui-
sition of a data point means simulation of the fluid dynamic properties of the design
under consideration. Computational analysis of 3D flows is still a challenging task. Even
with high performance parallel codes this still may take hours. So the ultimate goals in
approaching such a kind of problem must be to restrict the problem dimension and to
choose methods that are able to cope with sparse data.

Another crucial question in every optimization problem is the formulation of the ob-
jective function. In aerodynamic design optimization, traditionally the minimization of
the aerodynamic loss, i.e. the average pressure loss, is chosen as optimization target.
However, design optimization, like most real world applications, is inherently a multi-
objective optimization problem. In our case, we found it necessary to include a second
objective, the minimization of the variation of the circumferential static pressure distri-
bution. In this paper, we consider and discuss four approaches to the optimization of
this multi-objective problem that span the whole range from single objective optimiza-
tion via reformulating the multi-objective problem as a single objective problem to true
multi-objective optimization.

In the next section, we introduce the optimization task and present our optimization
framework. In Sect. 3, we discuss single objective and multi-objective approaches to the
solution of this problem. The results from these approaches are presented in Sect. 4.
Finally, in Sect. 5, we will discuss advantages and drawbacks of these methods in terms
of their feasibility for our optimization task and hence, more generally, for tasks that are
characterized by extremely high costs of data acquisition.
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Figure 1: Ultra low aspect ratio turbine stator blades and their flow fields. The blade count is NB=8.

2 THREE DIMENSIONAL TURBINE BLADE DESIGN OPTIMIZATION

2.1 The turbine stator blade

The aerodynamic design that we optimize is part of a gas turbine that is used in small
business jets. In particular, our goal is to optimize the design of the turbine stator blades.
The stator in this case is of a special type. It is a so-called ultra-low-aspect-ratio (ULAR)
stator that is made up of only 8 stator blades. This is a very small number compared
to 20 - 60 blades that are used in more conventional turbine designs. For details on the
design specifications of the ULAR stator refer to [1].

ULAR stator blades have rarely been adopted as turbine components because of their
relatively poor performance. From the flow field based on CFD calculations that is shown
in Fig. 1 it can be seen that there is a very strong inward-radial cross flow on the blade
suction side and – due to the interaction of the secondary flow with the transonic main
flow – the flow field near the hub-end-wall is very complicated. Consequently, the loss
near the hub region is significantly increased as compared to conventional HAR blades.
Nevertheless, there are considerable benefits when adopting low aspect ratio blades. For
example, for a low number of stator blades rotor blade resonance, and hence material
fatigue, is reduced.

2.2 Evolutionary algorithms in design optimization

Evolutionary algorithms [2] are a class of stochastic optimization algorithms whose use
in design optimization problems is well established by now [3]. In our approach to 3D
turbine blade optimization we use a special variant of evolutionary algorithms, namely
an evolution strategy (ES) with covariance matrix adaptation (CMA) [4]. The basic idea
of CMA-ES is to make maximum use of the information contained in the search history
for self-adaptation of the search direction which is defined in terms of the covariance
matrix of a normal distribution from which new tentative solutions or, in the language of
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evolutionary algorithms, new individuals are drawn. Thereby the population size in the
evolutionary strategy is decoupled from the dimension of the search space. This means
that a drawback of stochastic search, the need for evaluation of a large number of possible
solutions, is alleviated.

Especially the latter feature is indispensable in 3D blade optimization which is char-
acterized by a fundamental conflict: on the one hand we need a 3D parametric model
of the design which entails a high-dimensional design space. As a consequence a large
number of different designs has to be evaluated during optimization. On the other hand
each evaluation of the blade performance is a computationally extremely demanding task
so that only a limited number of evaluations can be afforded.

2.3 Blade model

A crucial point in design optimization is the parametric model of the geometry that will
be optimized since this determines the design space. There are a number of requirements
on the design of a proper blade model. Among these are (i) flexibility – the model must
be flexible enough to allow for a wide variety of different designs, (ii) compactness – the
number of parameters describing the model must be low enough to allow for reasonable
convergence times of the optimization algorithm, and (iii) locality – variations of a single
model parameter should result in only local variations of the model and should not affect
the global model shape.

A good choice to fulfill these requirements is to use non-uniform rational B-spline
(NURBS) surfaces [5] to represent the blade. A B-spline surface is a tensor product of
two B-spline curves and hence is defined by two parameters, a set of control points and
two knot vectors, one for each parameter. Usually not all of these parameters are subject
to optimization. Often the variables in the design optimization problem are given by the
coordinates of the control points only. However, the suitable number of control points
must be chosen with care: the use of too few control points may unnecessarily restrict
the design space and exclude potentially interesting designs while the use of too many
control points complicates the optimization problem and additionally may have unwanted
side-effects like the creation of cusps or even self-intersections of the resulting surfaces.

Due to manufacturing reasons, our blade geometry is defined by two sections, the
hub section and the tip section. The remaining blade geometry is defined by linear
interpolation between these two sections. Thus our blade model consists of a B-spline
surface defined by a periodically closed cubic B-spline in one parameter direction and a
second order open B-spline in the other direction. The hub section and the tip section of
the blade are each modeled using 25 control points so that we have all in all 50 control
points. Using the coordinates of the 50 three-dimensional control points directly as design
variables would result in a 150-dimensional search space. Fortunately, we can exploit two
facts to reduce the search space dimension to just 88. We only need to include the 44
independent, non-periodic control points as design variables since they determine the
remaining 6 control points that are only needed to periodically close the B-Splines in
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the first parameter direction. Furthermore the hub and the tip section of the blade are
defined to lie on cylindrical surfaces. This means the z-coordinates of the control points
are implicitly determined by the blade geometry. Hence we only need to consider the x-
and y-coordinates of the non-periodic control points as design variables.

2.4 Flow analysis

For the evaluation of a blade design, we use CFD simulations of the flow from which
the necessary fluid dynamic quantities are calculated. For these simulations we use the
parallelized 3D Navier-Stokes flow solver HSTAR3D [6], with Wilcox’s k-ω two equations
model [7]. In order to obtain a high resolution of the boundary layer development, CFD
calculations for the baseline blade, that was used to initialize the optimization process,
were performed prior to optimization to determine the grid size. The computational grid
for the solution of the Navier Stokes equation consisted of 175 × 52 × 64 = 582, 400
cells. For each evaluated blade design a new grid was generated. This is a relatively
inexpensive operation that takes on average about 40 seconds on an AMD Opteron 2 GHz
double processor. The flow analysis, however, is an extremely time consuming task that is
parallelized into 4 processes and takes between 2 hours and 3.5 hours on AMD Opteron 2
GHz double processor machines depending on the number of flow solver iterations needed
for convergence. The calculation of about 300 generations comprised of 10 individuals of
the evolutionary optimization, took about 6 weeks time using a cluster of 40 computers!

3 SINGLE AND MULTI-OBJECTIVE APPROACHES

A complex optimization problem like aerodynamic design optimization is inherently
multi-objective even if often only a single objective is taken into account for optimization.
But also if multiple objectives are employed, the problem often is rendered as a single
objective one and solved with familiar and efficient single objective optimization methods.
An example for this approach is to linearly aggregate multiple objectives weighted by an
appropriate choice of parameters and to solve the resulting single objective problem.
Another approach that is often used to avoid multi-objective optimization is to use all
but one objectives as soft constraints, i.e. to tolerate small deviations from a target value.

Multi-objective optimization has been the subject of intense research in the recent years
in the field of evolutionary computation [8]. In contrast to single objective optimization,
which aims at finding a single optimal solution, multi-objective optimization strives for
searching a set of optimal solutions in problems with possibly conflicting objectives. This
Pareto set is characterized by the fact that no solution from this set is better than an-
other Pareto solution in all objectives involved. Since evolutionary algorithms inherently
operate on sets, i.e. a population of solutions, they seem to be particularly suitable for
multi-objective optimization problems. The drawback here is that most multi-objective
optimization algorithms seem to require more function evaluations than efficient single-
objective methods like the derandomized evolution strategies with cumulative step-size
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Martina Hasenjäger, Bernhard Sendhoff, Toyotaka Sonoda, and Toshiyuki Arima

adaptation. As already mentioned, the larger number of required function evaluations
poses a problem when each function evaluation is computationally demanding, like for
aerodynamic design optimization problems [9, 10], other fluid-dynamic problems [11] or
even multi-disciplinary problems [12]. In these cases, effort has been undertaken to min-
imize the needed population size [10] or to employ meta-models [13, 14]. Since we deal
with a particularly computationally demanding aerodynamic optimization problem, we
have to employ algorithms which minimize the required number of individual evaluations.
We use both “standard” static aggregated methods and the dynamic weight aggregation
method [15, 16] which employs an evolution strategy to represent the set of Pareto optimal
solutions in an archive.

3.1 Fitness functions and constraints

The main performance index in aerodynamic blade design is the aerodynamic loss of
the blade which is measured by the mass averaged pressure loss ω. In order to reduce the
stator-rotor-interaction in the turbine, we include the variation of the pitch-wise static
outlet pressure PSTVAR as a second criterion into the optimization.

In addition to these two objectives, we use a number of geometrical and manufacturing
constraints that are included in the objective function as penalty terms that will only
contribute if the constraints are violated. The constraints are (i) the outflow angle and
(ii) the mass flow rate which are determined as a result of the flow analysis. The other
constraints concern the blade geometry and basically can be considered as manufacturing
constraints. These are (ii) the minimum blade thickness, (iii) the minimum trailing edge
thickness, and (iv) the blade solidity.

We conducted a series of both single and multi-objective optimizations using the fol-
lowing objective functions and optimization approaches, respectively:

A. We only minimized the pressure loss ω and observed PSTVAR. This is a single
objective approach with the objective function

f1 = ω → min . (1)

B. We used static linear aggregation of the two objectives according to

f3 = w1 ω + w2 PSTVAR → min . (2)

Here the weights w1 and w2 of both objectives were constant throughout the op-
timization and were initially chosen such that both objectives contributed equally
to the objective function. This approach constitutes a simple, näıve approach to
multi-objective optimization.

C. We minimized the pressure loss and included the static outlet pressure as a constraint
thus turning the multi-objective problem into a single objective one. Thus the
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objective is

f2 = ω + w1 [min(0, PSTVAR,init − PSTVAR)]2 → min , (3)

where PSTVAR,init is the initial blade’s value of PSTVAR and w1 is the corresponding
weight.

D. We used the multi-objective approach of dynamic weight aggregation (DWA) [15,
16]. In this algorithm the two objectives are linearly aggregated according to

f3(t) = w1(t) ω + w2(t) PSTVAR → min . (4)

Here the weights of the two objectives are varied dynamically, gradually, and period-
ically during the optimization according to w1(t) =

∣

∣

∣sin
(

2π

p
t
)∣

∣

∣ and w2(t) = 1−w1(t),
where p defines the period of the variation and t is given by the generation of the pop-
ulation. This approach can easily be combined with arbitrary evolutionary strategies
which has the advantage that we can retain using CMA-ES and the associated small
populations.

4 RESULTS

In our experiments, we used a (µ, λ) CMA-ES with parameter settings as described
in [4]. We used µ = 1 parent individual and λ = 10 offspring individuals. The strategy
parameters σ were initialized with σ = 0.1. This value gave good results in preliminary
tests with a wider range of possible initialization values. We did not use recombination.
The simulations were run on a cluster of AMD Opteron 2GHz double processors.

We ran four single- and multi-objective variants of the optimization as detailed in
Sect. 3.1 above, cf. Eq. (1) - Eq. (4). In the multi-objective optimization using DWA
according to Eq. (4) we used a period p = 100 generations, i.e. the weights w1 and w2

were periodically varied from 0 to 1 within 50 generations. The results reported for this
run were taken after 426 generations.

A detailed analysis of the blade resulting from optimization with objective function
Eq. (1) from the aerodynamic point of view is given in [17]. In this paper we will restrict
our discussion of the results to a comparison of the various optimization approaches.

In Fig. 2, we show the evolution of the pressure loss and the variation of the static
outlet pressure, respectively, as a function of the number of generations for the three
single objective optimization approaches described in Sect. 3.1.

The curves denoted with “A.” give the optimization results according to Eq. (1). Here
only the pressure loss was included in the objective function. From the optimization point
of view this simulation was quite successful: a reduction in the pressure loss of about 10%
was achieved. However, as shown in Fig. 2 (right), this was reached at the expense of a
considerable increase in the variation of the static pressure which is a very undesirable
result from the engineering point of view.
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Figure 2: The developing of the pressure loss (left) and the variation of the static outlet pressure (right).
Here “baseline” denotes the performance of the baseline blade. The performance of the fitness-best
individuals of each generation are shown for the following fitness functions: A - minimization of the
pressure loss, cf. Eq. (1), B - static linear aggregation of the two objectives, cf. Eq. (2), C - minimization
of the pressure loss subject to an upper bound on the static outlet pressure, cf. Eq. (3).

This increase can be inhibited by including PSTVAR explicitly in the objective function.
The results of doing so by static linear weight aggregation according to Eq. (2) are shown
as curves “B.” in Fig. 2. As a first approach in this case, we chose the weights of the two
objectives such that initially both objectives received the same weight. The results show
that this choice is not the best one. The variation of the static outlet pressure received
too much weight, so that the optimizer was able to reduce only PSTVAR while allowing
an increase of the pressure loss of about 9%.

In a second approach, we included the variation of the static outlet pressure as a soft
constraint according to Eq. (3). We bounded PSTVAR from above using approximately
the value of the initial blade. The results are labeled by “C.” in Fig. 2. The constraint
is effective in controlling PSTVAR while at the same time the pressure loss is reduced.
Compared with curve “A.”, this reduction is achieved at a slightly slower pace. The
vertical lines in Fig. 2 indicate that from generation 150 to generation 160 the process
of grid generation and flow analysis failed for the whole population. In principle, this is
critical because it may lead to a failure of the whole optimization process. But here the
optimizer was sufficiently robust to tolerate the missing results from the flow analysis and
to drive the population back to a region in which flow analysis was possible with relatively
small loss in performance.

The results from the multi-objective optimization using dynamic weight aggregation
according the Eq. (4) are shown labeled as “D.”in Fig. 3. Here we plotted for each
individual that was produced in each of the four the optimization processes discussed in
this paper the values of PSTVAR against the value of the pressure loss ω. The Pareto
optimal individuals are marked by filled circles. In Fig. 3 also the performance of the
initial blade design is plotted as a dotted line for each of the two objectives. This means
all blade designs in the upper right quadrant are inferior to the initial blade and all blade
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Figure 3: The “Pareto front” aggregated from all four optimization runs. Here “baseline” denotes the
performance of the baseline blade. A - minimization of the pressure loss, cf. Eq. (1), B - static linear
aggregation of the two objectives, cf. Eq. (2), C - minimization of the pressure loss subject to an upper
bound on the static outlet pressure, cf. Eq. (3), D - multi-objective optimization using dynamic weight
aggregation, cf. Eq. (4). The individuals that build the Pareto front are marked by filled circles.

designs in the lower left quadrant are superior to the initial blade with respect to both
objectives. From the results of using dynamic weight aggregation – blue open pentangles –
we see that using multi-objective optimization techniques it is possible to reduce PSTVAR

and the pressure loss at the same time. However, the progress in this case is much slower
than in the single objective optimization.

The representation in Fig. 3 allows us to directly compare the results from all opti-
mizations with respect to the two involved optimization criteria and at the same time we
gain a more complete impression of the Pareto front in this problem. The designs found
by solely minimizing the pressure loss – denoted by A. in Fig. 3 – clearly achieve the
lowest pressure loss of all designs but are also characterized by the highest static pressure
variation. The other extreme, a high pressure loss and a low variation in the outlet pres-
sure, is represented by the solutions from the static linear aggregation of both objectives –
denoted by B. in Fig. 3. This is due to the minor influence of the pressure loss in this case
that was caused by the choice of the weights in the linear aggregation Eq. (2). Best at
simultaneously minimizing both objectives is the multi-objective approach using dynamic
weight aggregation – denoted by D. in Fig. 3, while using PSTVAR as a soft constraint –
denoted by C. in Fig. 3 – yields solutions with low pressure loss and slightly decreased
static pressure variation.

5 CONCLUSION

Three dimensional aerodynamic design optimization constitutes a challenging problem
because the need to work with a 3D model of the design entails a high dimensional search
space and in general requires large amounts of data. These data, however, are obtained
by analyzing the 3D flow around the blade, a process that consumes huge amounts of
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computation time and makes data acquisition expensive. This is the main limiting factor
in the optimization problem. Hence decisions on the choice of models and algorithms
must be governed by the goals of using a compact, yet flexible computational model and
optimization algorithms that are able to cope with sparse data in order to allow for only a
small number of objective function evaluations in the optimization. Our proposal here is
to use a B-spline model of the blade and to optimize this using a derandomized evolution
strategy with cumulative step-size adaptation, namely the covariance matrix adaptation
[4].

The target in this study was to find aerodynamic designs that achieve low aerodynamic
losses and at the same time low static outlet pressure variations. The trade-off relation
between both objectives has been previously pointed out in the literature [18]. In this
paper, we employed and compared several methods to combine the two objectives. The
simplest way to do so is static linear aggregation. Its main advantage is that the problem
remains single objective and more efficient algorithms can be used than are available for
multi-objective optimization. The drawbacks, besides the linearity of the combination,
are the ad-hoc choice and the inflexibility of the relative weights. A successful application
of this method requires careful exploration of the weight space, a possibly time-consuming
task that may well outweigh the advantage of being able to use efficient single objective
optimization algorithms. To make matters worse, the appropriate weighting of the con-
straints may change during optimization. Indeed as our results show, the ad-hoc choice
of the weights drew too much attention towards the static pressure variation.

Alternatively, we regarded the static pressure variation as a soft constraint – slight
overshooting was penalized only slightly – and only optimized the pressure loss. This
again was a single objective optimization approach with the aforementioned advantages
that will yield good results if, as in our case, it is sufficient to impose a bound on all but
one of the objectives.

Finally, we used a multi-objective approach, dynamic weight aggregation [15, 16], which
searches for the Pareto front by dynamically, gradually, and periodically changing the
weighting factors of a linear aggregation of the objectives during optimization. The ad-
vantage of this approach is that it can easily be combined with arbitrary evolutionary
strategies, so that we can retain using CMA-ES and the associated small populations.
This is especially important in cases like ours where a large number of individuals cannot
be afforded because of hardware and time restrictions. Small populations would not be
possible with all multi-objective evolutionary algorithms. NSGA-II [19], for example, a
successful and popular method that is based on genetic algorithms or real coded genetic
algorithms requires substantially larger populations than CMA-ES.
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