
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Spike-latency coding of topological feature
homogeneity, and the shaping of synaptic
potentials by forward inhibition

Rüdiger Kupper, Marc-Oliver Gewaltig, Andreas
Knoblauch, Ursula Körner, Edgar Körner

2005

Preprint:

This is an accepted article published in Proceedings of the 3rd HRI International
Workshop on Advances in Computational Intelligence. The final authenticated
version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


SPIKE-LATENCY CODING OF TOPOLOGICAL FEATURE HOMOGENEITY,
AND THE SHAPING OF SYNAPTIC POTENTIALS BY FORWARD INHIBITION
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ABSTRACT

Spiking neurons can code stimulation strength in firing la-
tency. This latency code carries the same information as
firing rate, but is readily established in a few milliseconds.
The brain can employ this fast and accurate time-based code
for the processing of homogeneous stimulation. We have
proposed that the koniocellular path of the visual system
performs spatial homogeneity detection. Here, we present a
model implementation of this process, using spike-latency
code. In a network simulation, we demonstrate the fast
detection of spatially homogeneous luminance. We also
demonstrate, how the homogeneity threshold can be dynam-
ically adjusted. Here, we use forward inhibition to shape
synaptic potentials.

1. INTRODUCTION

Spiking neurons can code stimulation strength in firing la-
tency [1]. Figure 1 shows a recording from orientation-
selective cells in the primary visual cortex, taken from the
original works by Hubel and Wiesel. Latency of the first
response spike is large when firing rate is small, and vice
versa. Both carry the same information, but the latency code
can readily be assessed after a few milliseconds, while read-
out of rates affords integrating over time or space.

In a recent publication [2], we described neural mech-
anisms for putting ensembles of spiking neurons into con-
sistent internal states. Such ensembles then use a common
time frame for latency coding. The brain can then em-
ploy this fast and accurate time-based code to detect ho-
mogeneous stimulation in a group of neurons. We have
previously suggested homogeneity detection (“surface de-
tection”) to support stimulus processing in primate visual
cortex [3]. Here, we demonstrate in a network simulation,
how visual neurons can detect spatially homogeneous lumi-
nance. The latency code can be flexibly read-out for this
purpose. We show how a simple neural process (forward
inhibition) can dynamically adjust the threshold, at which
homogeneity is detected.
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Fig. 1. Firing rate and response latency of a typical V1 neu-
ron, in response to an oriented bar stimulus.Left: Firing
rate as a function of bar orientation.Right: Latency of first
spike in response to four different bar orientations (marked
red). Response latency and firing rate carry the same infor-
mation: Latency of the first response spike is large when
firing rate is small, and vice versa.

2. TOPOLOGICAL FEATURE HOMOGENEITY

Due to their internal dynamics, spiking neurons act asco-
incidence detectors[4, 5]. A packet of input spikes con-
verging onto a neuron increase the probability of a response
spike, if they arrive in a narrow time window, in contrast
to being dispersed over a long period of time. At the same
time, in the framework of latency coding, coinciding ac-
tion potentials have a distinct meaning: If neural elements
reliably convert stimulus strength into firing latency, then
coincidentally firing neurons must have received the same
stimulation. If these neurons prefer a certain stimulus fea-
ture, this feature must have been similarly present in their
receptive fields (fig.2).

This principle can be applied to topologically arranged
sets of neurons. This creates, from a set of detectors for
featuref , a set of detectors for homogeneous appearance of
f (fig. 3). The principle requires only two well-known ar-
chitectural ingredients, and they can be found virtually ev-
erywhere in cortex: Topologically arranged sets of feature
detectors, and topology-preserving convergent projections.
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Fig. 2. The principle of spike-latency based homogeneity
processing. Example: A set of visual neurons respond at
latencies depending on the luminance inside their receptive
field. The receiving neuron responds when their action po-
tentials coincide. This makes it a detector for homogeneous
luminance.

2.1. The generic design pattern for feature homogeneity
detection

The above described design principle can be formalized in
the following way:

1. A sending neural populationNs is a set of latency-
coding feature detectors for featuref . (That is, firing
of a neuron inNs corresponds to the appearance of
featuref , and latency corresponds to some gradual
quality q of f , usually its strength. However,q may
correspond to any feature quality that can be mapped
to latency, such as size or orientation.)

2. The neural populationNs is arranged across the cor-
tical surface preserving the topology of a stimulation
spaceT (e.g. retinotopically, tonotopically, somato-
topically, etc.).

3. Neurons in a receiving populationNr receive con-
vergent input from local sub-populations ofNs with
a fixed diameterd measured inT, and with a fixed
transmission delay.

4. The local sub-populations ofNs and respective re-
ceiving neurons inNr are chosen as to preserve topol-
ogy. (This makesNr topologically arranged accord-
ing toT.)

In this case, activity of a neuron in populationNr indi-
cates the appearance of featuref with homogeneous qual-
ity q across a local region of diameterd in the stimulation
spaceT, and at the location corresponding to the respective
neuron’s topological position. Moreover, the qualityq of
appearance of featuref is encoded in the firing latency of
this neuron.

This is a generic design principle, which in general is
completely independent from the kind of stimuli or features
that shall be processed. Visual, auditory and somatosensory
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Fig. 3. Detecting feature homogeneity from spike latency in
a topological arrangement of feature detectors. Homogene-
ity detection is implemented in two network stages.Ns is
a topologically arranged set of feature detectors for feature
f . They generate a spike-latency code for the quality of fea-
ture f at the respective location in the input space.Left:
A singleNr neuron receives action potentials from a local
patch ofNs neurons. Its sensitivity for coincident synap-
tic events makes this neuron a detector for homogeneous
appearance of featuref inside its receptive field.Right:
Each neuron of the completeNr population receives action
potentials from a topologically corresponding local patch of
Ns neurons. This makesNr a topologically arranged set of
detectors for homogeneous appearance of featuref .

features come to mind, suggesting that this design principle
may be re-used at various cortical locations.

2.2. Methods

In the remainder of this paper, we will use a concrete im-
plementation of the above described generic design pattern,
giving aproof of principle, while at the same time allowing
for further investigation. We choose an example from the
visual domain.

In [3], we suggested that the konio-cellular pathway of
the visual system plays an important role in the process-
ing of surface-like regions in the visual stimulus. “Surface-
detecting” konio-cells could improve the reliability of edge-
detection. They can neurally impose the principle, that “where’s
a surface, there can’t be edges”. “Surface-detection” is sup-
posedly done by konio-cells with large receptive fields, and
lacking an antagonistic surround. Cells with these proper-
ties have been observed in macaque cortex [6].



Network

Our model consists of two retinotopically arranged sets of
spiking neurons, applying the generic design pattern de-
scribed above (fig.3). The lower network stage (Ns) is a
retinotopic set of latency-coding feature detectors, which
are sensitive to local luminance. The higher network stage
(Nr) applies the principle of spike-latency based homogene-
ity detection to the output of these neurons. It corresponds
to a retinotopic set of konio-cells with large receptive fields
and no antagonistic surround.

For stimulating our simulated network, we select patches
of 100×100 pixels from natural gray-scale images (fig.5,
panel A). The local gray values of these stimulus patches
are transformed into neural spike responses by injecting cur-
rents of corresponding magnitude into a 100×100 layer of
model integrate-and-fire neurons (Ns). The mapping of im-
age pixels to stimulated neurons is retinotopic. In order
to generate a latency code from this stimulation, theNs

neurons need to be suitably prepared. To initiate latency-
coding, we use the methods analyzed in [2] (artificial reset,
input suppression, common inhibition). They put theNs

neurons into consistent internal states. This ensures reliable
conversion of stimulation strength into spike latency, using
a common time-frame for latency coding across the whole
population. Permanently applying the stimulus, we initiate
latency coding, and allow the neurons to fire for 100 ms. We
then repeatedly re-initiate latency coding after each 100 ms
of firing. This makes populationNs a retinotopically ar-
ranged set of latency-coding neural detectors for local lu-
minance (the featuref ). The brighter the visual stimulus
in their receptive field (feature qualityq), the shorter the la-
tency.

As a next processing stage, sub-populations of diameter
d = 11 neurons ofNs (representingd = 1.1◦ visual angle)
project convergently onto another layer of 100×100 model
neurons (Nr), while preserving topology (fig.3). Transmis-
sion delays are identical for all connections. According to
the design principle described above, this makes population
Nr a retinotopically arranged set of neural detectors forspa-
tially homogeneousluminance across distances ofd = 1.1◦

visual angle.

We use the NEST simulator developed in collaboration
with the Neural Simulation Technology Initiative [7] for
simulating the structured neural network. During the whole
simulation, we record the spike responses of all neurons,
and then analyze this data with respect to response latencies
and robustness of spike production.

2.3. Results

We recorded the action potentials ofNs andNr neurons,
mainly being interested in theirresponse latency. We de-
fine response latency as the time until a neuron’s first action

potential, after latency-coding has been initiated.
Figure4 shows spike-trains recorded fromNs andNr

neurons. These are typical responses.Ns neurons have
been excited according to the visual stimulus patch shown in
panel A, and latency coding has been initiated att = 0, us-
ing three different methods (reset, input suppression, com-
mon inhibition [2]). Regions of homogeneous luminance in
the stimulus patch cause groups of neighboringNs neurons
to respond with similar latencies. Their action potentials
show up as “spike-fronts” in the plots. These coincident
spikes, in turn, cause responses in theNr neurons in corre-
sponding locations.

Figure5 indicates typical response latencies ofNr neu-
rons on a gray-level scale. Blue color indicates, that the re-
spective neuron did not produce an action potential. Panel A
shows three different stimulus patches. Panel B depicts re-
sponse latencies obtained, when theNs neurons are opti-
mally prepared for latency coding. This is achieved by an
artificial reset of the model neurons, a process that we use
for evaluation, but which cannot occur in the real brain.
Panels C and D depict response latencies obtained, when
theNs neurons are prepared by two biologically plausible
mechanisms, input suppression and inhibition [2]. They can
achieve only a partial reset of the neurons’ internal states.
This affects the fidelity of latency coding, and consequently,
response latencies jitter.

Still, locations of activeNr neurons correspond to re-
gions of homogeneous luminance in the stimulus patch —
the Nr neurons act ashomogeneity detectors. By relying
on only the first action potentials of latency-coding neu-
rons, spike-latency based homogeneity processing is very
fast, with first components signaled after 5–20 ms.

3. CONTROLLING THE HOMOGENEITY
CONSTRAINT BY FORWARD INHIBITION

Spike-latency based homogeneity detection relies on the con-
structive superposition of post-synaptic potentials (PSPs).
The PSP caused by an incoming action potential is usually
modeled as an alpha function (fig.6, red curve),

U(t) = t e−
t
τ ,

the sign and time constant depending on the type of synapse
that is to be modeled (inhibitory, excitatory, AMPA, NMDA,
etc.). The function has a hill-shaped appearance, reaching
its maximum att = τ and then declining.

For a set of excitatory spike events to raise the receiv-
ing neuron’s membrane potential above firing threshold, the
events must be close enough in time for their PSPs to over-
lap and thus superimpose constructively. The allowed tem-
poral spread of synaptic events is determined by the synap-
tic time constantτ . The smallerτ , the smaller the overlap of
PSPs, and the greater the required coincidence of incoming
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Fig. 4. Processing of spatial homogeneity. Typical spike responses of 100Ns andNr neurons. Topological positions of the
100 selected neurons correspond to the center row of pixels in the stimulus patch (marked in red). Spike time histograms
shown in gray at the bottom of spike trains.A: Stimulus patch.B, E: Spike responses ofNs andNr neurons, whenNs

neurons were prepared for latency coding using artificial reset.C, F: Using input suppression.D, G: Using inhibition.
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Fig. 5. Detecting homogeneity of luminance. Results from our network simulation.A: Stimulus patches.B–D: Typical
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the sending neural populationNs was optimally prepared for latency coding by an artificial reset.C and D: Nr latencies
obtained, whenNs was prepared by neurophysiologically plausible reset mechanisms (input suppression and inhibition [2]).
E: Overlay of the stimulus patches and the region classified as homogeneous (taken from panel B). This simulation featured
an additional OFF-pathway for the processing of dark regions. Both, ON- as well as OFF-responses are shown in the plots.
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Fig. 6. Shaping of an excitatory PSP by delayed feed-
forward inhibition. Red: Excitatory PSP withτ=2 ms.
Green: Inhibitory PSP withτ=2 ms and delay∆t=1 ms.
Dashed black: Effective PSP resulting from superposition.

action potentials. For spike-latency based homogeneity pro-
cessing, this translates into a higher amount of homogeneity
required in the input features.

Shaping of post-synaptic potentials

It is obvious that controlling the synaptic time constantτ
would be beneficial, because this would enable us to select
the grade of homogeneity to be detected. However, con-
trolling τ through biologically plausible network effects is
difficult. In most cases, the speed of synaptic dynamics is
fixed, or depends on chemical processes which cannot be
directly influenced for the means of neural computation.

There is, however, the possibility of shaping theeffective
PSPcaused by a synaptic event. This is achieved by pair-
ing an excitatory action potential with an inhibitory action
potential transmitted shortly afterwards to the same neu-
ron (forward inhibition). Figure6 shows the effect of an
inhibitory PSP arriving shortly after an excitatory PSP of
same strength and time constant. The resultingeffective
PSPis much narrower than the original curve, raising the
constraint for constructive superposition of subsequent events.

3.1. Methods

Controlling the delay of the paired feed-forward inhibition,
the constraints put on feature homogeneity can be gradu-
ally changed. This effectively determines the threshold, at
which a local region is classified as homogeneous by the
Nr neurons. We have included the principle of PSP shap-
ing into our example network for the processing of spatial
homogeneous luminance. We extended the architecture by
duplicating each connection from the sending to the receiv-
ing neuron layer. Action Potentials transmitted along these
duplicated connections cause inhibitory PSPs in the post-
synapticNr neurons. They have a fixed time delay relative
to the excitatory action potential (see illustration in fig.7).

Dt Dt

large∆t – homogeneity threshold low small∆t – homogeneity threshold high

Fig. 7. Controlling the homogeneity threshold, using addi-
tional feed-forward inhibition. Each excitatory action po-
tential transmitted to the post-synaptic neuron is followed
by an inhibitory action potential to the same neuron, with
a fixed relative delay of∆t. Shorter delays require higher
homogeneity for the detector neuron to respond. Left: The
homogeneity threshold is low, the detector responds to the
stimulus. Right: The homogeneity threshold is high, the
detector does not respond to the (identical) stimulus.

We then systematically changed the time delay between ex-
citatory and inhibitory action potential, in otherwise identi-
cal simulation runs.

3.2. Results

Figure8 shows response latencies of the homogeneity pro-
cessingNr neurons under these conditions. Inhibitory de-
lays used in the simulation increase from upper left to lower
right in reading order. All non-blue portions indicate active
Nr neurons. This means that luminance values in the corre-
sponding region of the stimulus patch have been classified
as homogeneous. The area identified as homogeneous (non-
blue) changes monotonically with the inhibition delay. For
short delays, fewer regions of the stimulus patch are clas-
sified as homogeneous, due to the much sharper effective
PSPs caused by these delays.

Note that the delay, at which action potentials are pro-
duced in response to a given stimulus, can be influenced
through a variety of network effects. Background stimu-
lation may lower the effective firing threshold of neurons,
or the neurophysiological effects of attention may promote
neural processing. Hence, the criterion for homogeneity de-
tection, the “homogeneity threshold”, may be dynamically
changed according to the momentary requirements or inter-
ests.

4. DISCUSSION

Processing of feature-homogeneity by neural coincidence
detection is a process that strongly depends on the dynamics
of the synapses. Incoming action potentials cause superim-
posing excitatory post-synaptic potentials, that must exceed



stimulus patch

Nr latencies / ms

no
spike

> 20 ms

20 ms

5 ms

D = 0.2 ms D = 0.4 ms D = 0.6 ms D = 0.8 ms D = 1 ms D = 3 msD = 2 ms D = 4 ms

D = 5 ms D = 6 ms D = 7 ms D = 8 ms D = 9 ms D = 50 msD = 10 ms D = ¥
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the firing threshold to cause a post-synaptic action potential.
The principle of PSP shaping, described in sec.3, makes use
of this property. In principle, the response of a homogeneity
detecting neuron conveys different aspects of information.

4.1. Information content of homogeneity detection

Number of incoming action potentials

One statement that can be trivially formulated is that there
exists a lower bound on the number of coincident action
potentials to raise the receiving neuron’s membrane poten-
tial above firing threshold. In general, the number of action
potentials participating in the code will influence at what
threshold and to what resolution feature homogeneity can
be detected. A higher number of participating action po-
tentials increases the number of combinatorial possibilities,
and allows for more sharply formed PSPs to be used.

Spike response and latency

The spike response of a homogeneity-detectingNr neuron
will carry two components of information:

1. The fact that an action potential was producedat all
indicates that the received action potentials arrived
close enough in time for their PSPs to superimpose
constructively. This indicates that the feature homo-
geneity in the respective stimulus region exceeds a
given threshold.

This is a Boolean (binary) statement (yes/no) on topo-
logical feature homogeneity.

2. The responselatencyof the homogeneity detecting
Nr neuron will reflect the latency of the coincident in-
put spikes. TheNr response will have an additional,
constant delay, given by the spike transmission time
from Ns to Nr, and the neuron’s internal dynamics.

This is a gradual (analog) value, describing feature
quality q.

This means that theNr neurons do not only detect re-
gions of homogeneous feature activation in the stimulus.
They also loop through the latency code of the participat-
ing neurons, giving information onhow strongly activated
this feature is. Another way is to look upon theNr neurons
as a kind of neural filters. They block spike responses from
non-homogeneous regions, and let the latency code from
homogeneous regions pass.

4.2. Robustness of homogeneity processing

Latency-based processing of feature homogeneity relies on
the generation of good latency codes in the pre-synaptic net-
work stageNs. However, the quality of the latency code can
be subject to changes [8].

As described above, the output of homogeneity process-
ing neurons carries a binary and an analog component of in-
formation: (1) Is an action potential produced? (2) If so, at
what latency? Both components can be investigated regard-
ing their robustness to changes in the latency code.

Figure9 shows the robustness of the binary component.
The values depicted are probabilities of spike production
(regardless of latency) for repeated presentations of the same
stimulus patch (panel A). Latency coding each time was ini-
tiated at stimulus onset, using three different methods (reset,
input suppression, common inhibition [2]). If homogeneity
detection was robust against variations in the latency code,
spike probabilities should turn into a binary relation (values
0.0 and 1.0 only). An action potential should either always
or never be produced for presentation of a certain stimulus
patch. Panel B shows that this is the case, when theNs

neurons are optimally prepared for latency coding. This is
achieved by an artificial reset of the model neurons, a pro-
cess that we use for evaluation, but which cannot occur in
the real brain. From panels C and D it can be seen that spike
responses of theNr neurons are sensitive to the fidelity of
the pre-synaptic latency code. Again, the two biologically
plausible methods, input suppression and inhibition, were
used for preparing theNs neurons. They can achieve only
a partial reset of the neurons’ internal states, makingNs
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Fig. 9. Robustness of spatial homogeneity detection, expressed as spike probability of homogeneity-detecting neurons to
repeated presentation of the same stimulus patch.A: Stimulus patches.B–D: Spike probabilities in the neural population
Nr. B: Nr spike probabilities obtained, when the sending neural populationNs was optimally prepared for latency coding
by an artificial reset: Spike responses are perfectly reproducible.C and D: Nr spike probabilities obtained, whenNs was
prepared by neurophysiologically plausible reset mechanisms (input suppression and inhibition [2]). This simulation also
featured the additional OFF-pathway for the processing of dark regions. Both, ON- as well as OFF-responses are shown in
the plots.

response latencies jitter. This, in return, makesNr spike
production less reliable. However, from panels C and D it
can be seen thatNr responses are highly reproducible for
strongly homogeneous image regions, while reproducibil-
ity is degraded for regions of less expressed homogeneity.
Hence, the spike probability of homogeneity-detecting neu-
rons degrades gracefully with decreasing homogeneity.

4.3. Influence of delay and inhibition strength in PSP
shaping

As can be seen from fig.6, using paired feed-forward inhi-
bition for PSP shaping does not only influence the width of
the resulting PSP, but also its peak value. This, of course,
does have an additional effect on the number and coinci-
dence of incoming action potentials required to exceed the
firing threshold. The form of the resulting PSP depends
on delay, amplitude, and time constants of the paired PSPs.
The question, how this translates into constraints on homo-
geneity processing, shall not be further addressed here.

4.4. Further applications of topological feature homo-
geneity processing

The detection of spatially homogeneous visual luminance
is not the only example for the processing of topological

feature homogeneity. Among those that come to mind are
the following:

4.4.1. Processing of texture homogeneity

By processing the topological homogeneity of more com-
plex visual features, we can also detect homogeneous ap-
pearances of oriented lines, patterns, etc., depending on the
featuref that is extracted from the visual stimulus. A pos-
sible application is the detection of object surfaces that are
not homogeneous in luminance, but of homogeneous tex-
ture, e.g. a table surface, a carpet, ground covered by sand
or pebbles, treetops, and water surfaces.

4.4.2. Processing of motion homogeneity or change homo-
geneity (newness)

If f is a feature that is spatio-temporally defined, spatially
homogeneous motion can be detected. A first approach
would be the extraction of changes in visual stimulus by
computation of difference images. Homogeneity processing
of this feature would then indicate coherent change (new-
ness) of extended regions in the stimulus, e.g. (dis)appearing
objects. A more sophisticated implementation could use di-
rectionally sensitive Reichardt detectors for feature detec-
tors. This would allow for detection of coherently moving



extended regions in the visual stimulus, such as moving ob-
jects or the processing of ego-motion.

5. CONCLUSION

Recently we have shown, that stimulation of neurons in the
visual system can reliably be transformed into a fast and ac-
curate latency code [2]. Here we have formulated a generic
design principle, which employs this efficient code for the
processing of topological feature homogeneity. The design
principle is independent from the kind of stimuli or features
to be processed. Visual, auditory and somatosensory fea-
tures come to mind, suggesting that the method may be re-
used for homogeneity processing at various cortical loca-
tions. Applying this design principle, we presented a spik-
ing implementation of the previously proposed mechanism
for surface detection in the konio-path of the visual sys-
tem [3]. We showed that influencing the temporal overlap
of successive PSPs by forward inhibition presents a possi-
ble mechanism for setting the sharpness of the homogeneity
constraint. In spatial homogeneity detection, this translates
to a coarser or finer processing of homogeneous regions in
the visual stimulus. This can be used by the visual system to
switch between whole-scene processing and the processing
of visual details at high resolution.

In addition, the principle of PSP shaping opens up an
attractive new opportunity for dynamically controlling the
mode of operation in a spike-coding network: Two types
of stimulus-related information can be conveyed in the train
of action potentials produced by a neuron: (1) information
conveyed in the rate of firing, and (2) information conveyed
in spike-latency relative to a given time-frame. The subse-
quent processing of this information by post-synaptic neu-
rons relies on two different mechanisms. For the extraction
of (2), the exact timing and separability of single synaptic
events is crucial, while the extraction of (1) requires inte-
grating large numbers of synaptic events over space or time.
PSP shaping, as a means of controlling the temporal integra-
tion of synaptic events by the post-synaptic neuron, holds
the opportunity to select, through a neural process, which
of the two components of information is extracted. A neu-
ron reliably detecting the coincidence of single spike events
in the one case (narrow PSPs) will turn into a neuron de-
termining the mean rate of incoming events, regardless of
their temporal precision (broad PSPs). Likewise, an ensem-
ble of neurons acting as the source for fast spike-latency
based processing of homogeneity in the one case, will turn
into a source for the assessment of instantaneous ensemble
rate. Active transition from latency to rate processing in
the very same neurons presents a possible approach to the
unification of both, spike-time and rate codes, in a single
network.
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