
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

A multi-cluster grid enabled evolution framework
for aerodynamic airfoil design optimization

Hee-Khiang Ng, Dudy Lim, Yew-Soon Ong, Lars Freund,
Shuja Shaikh, Bu-Sung Lee, Bernhard Sendhoff

2005

Preprint:

This is an accepted article published in International Conference on Natural
Computation ICNC. The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

A MULTI-CLUSTER GRID ENABLED EVOLUTION FRAMEWORK FOR
AERODYNAMIC AIRFOIL DESIGN OPTIMISATION

Hee-Khiang Ng*, Dudy Lim*, Yew-Soon Ong*, Lars Freund #, Shuja Parvez#, Bu Sung Lee*, Bernhard Sendhoff#

*School of Computer Engineering

Nanyang Technological University, Nanyang Avenue, Singapore 639798
{mhkng, dlim, asysong, ebslee}@ntu.edu.sg

Honda Research Institute Europe Gmbh
Carl-Legien-Strasse 30, 63073 Offenbach

shshgs01@fht-esslingen.de, {lars.freund , bernhard.sendhoff]}@honda-ri.de

Abstract- Advances in grid computing have recently
sparkled the research and development of Grid problem
solving environments for complex design. Parallelism in
the form of distributed computing is a growing trend,
particularly so in the analysis and optimisation of high-
fidelity computationally expensive real world design
problems in science and engineering. In this paper, we
present a powerful and inexpensive grid enabled evolution
framework based on Globus and NetSolve toolkits for
facilitating parallelism in hierarchical parallel
evolutionary algorithms. By exploiting the grid evolution
farmework and a multi-level parallelisation strategy of
hierarchical parallel GAs, we present the evolutionary
optimisation of a realistic 2D aerodynamic airfoil
structure. Further, we study the utility of hierarchical
parallel GAs on two potential grid enabled evolution
frameworks and analysis how it fares on a grid
environment with multiple heterogeneous clusters, i.e.,
clusters with differing specifications and processing nodes.
From the results, it is possible to conclude that a grid
enabled hierarchical parallel evolutionary algorithm is not
mere hype but offers a credible alternative, providing
significant speed-up to complex engineering design
optimisation.

1 Introduction

Genetic Algorithms (GA) represents one of the well-
known modern stochastic search techniques inspired by
the Neo-Darwinian theory of natural selection and
evolution [1]. By emulating the process of natural
evolution, GAs have been employed with great success
for solving many complex engineering design problems
including advanced high turning compressor airfoils
design [2], three dimensional aerodynamic design [3],
aircraft wing design [4], military airframe preliminary
design [5] and large flexible space structures design [6].
The popularity of Gas lies in the ease of implementation
and the ability to arrive close to the global optimum
design. Another well-known strength of GAs is that
sub-linear improvements in the search efficiency may
be easily achieved by incorporating parallelism. Many
studies on the parallelism of GAs have been made over
the last decade [7-10], with many strategies introduced
to date. In general, these strategies to achieve

parallelism in evolutionary algorithm (EA) may be
categorised as master-slave, fine-grained, or coarse-
grained parallel EAs.

Recently, there has been a new paradigm shift in
science and engineering towards the utilisation of
increasingly high-fidelity and accurate analysis codes in
the design analysis and optimisation processes. In many
application areas such as photonics, electromagnetics,
aerospace, biomedical, micro-electro-mechanical
systems and coupled-field multidisciplinary system, the
design process generally requires a Computational
Structural Mechanics (CSM), a Computational Fluid
Dynamics (CFD) or a Computational Electronics &
Electromagnetics (CEE) simulation procedure. Here, a
single analysis of the design involving CFD, CSM or
CEE could take up many minutes to hours or even days
of supercomputing time [11-13]. The high
computational costs associated with the use of high-
fidelity simulation models thus poses a serious
impediment to the successful application of
evolutionary algorithms (EAs) to engineering design
optimisation since EAs typically require many
thousands of function evaluations to locate a near
optimal solution. Hence, when computationally
expensive high-fidelity simulation models are used for
predicting design improvements, the use of EAs may be
computationally prohibitive. Moreover, solving
computationally expensive design optimisation
problems using a parallel EA may be regarded as
impractical since this often requires a huge amount of
computational power that is extremely costly for any
single organisation to take full ownership of. Hence,
the use of Grid computing presents a viable and cost
effective option to large-scale and computationally
expensive design optimisation problems.

Recent technologies in Grid computing [14-16]
have therefore offered a fresh solution to this problem
by enabling collaborative computing on an
unprecedented scale via leveraging from geographically
distributed computing resources. These computing
resources can belong to a single or to a number of
different organisations. Here, we harness the idea of
employing heterogeneous computing resources
distributed in different design teams at disparate

geographical locations as a powerful and inexpensive
technology to facilitate parallelism in evolutionary
optimisation. Due to the large design spaces often
considered, usually stochastic optimisation algorithms
such as parallel GA and its variants are employed in the
aerodynamic search in order to arrive at a near optimum
design efficiently.

The use of Grid technologies in optimisation can be
found in [17-19]. The Grid Enabled Optimisation and
Design Search for Engineering (GEODISE) [17] of the
e-science group, UK, represents one of the recent
initiatives of Grid computing for engineering design
search and optimisation. Other works includes using
Grid computing to demonstrate optimisation speed-up
in data-driven reservoir studies [18], and earth system
modelling [19]. However, many existing studies on
Grid optimisation frameworks were not targeted on
multi-clusters within a distributed Grid environment,
but are rather limited to single clusters.

In this paper, we present a scalable parallel
evolutionary optimisation framework for engineering
design problems in a Grid infrastructure which we refer
to as Grid Enabled Evolution (GEE). In particular, we
consider the parallel evolutionary design optimisation
of 2D aerodynamic airfoil using the proposed GEE,
where an optimal solution is sought for a particular
configuration of flight speed given by the Mach number
M∞, and the angle of attack (AOA). The 2D
aerodynamic airfoil design problem represents one of
the most frequently tackled computationally expensive
design problems in aeronautics.

One major feature of GEE is the ability to harness
computing clusters that spans across international
boundaries, i.e., computing clusters in Asia and Europe
may be used simultaneously in the GEE. This is
achieved by using standard Globus [20] and NetSolve
[21] toolkits. In the GEE, the parallel evolution of
multiple subpopulations are conducted across all
computing clusters available on the Grid. The use of
multiple subpopulations not only facilitates possible
parallelism in the EA search, it at the same time
generates greater diversity in the final design solutions.

The rest of this paper is organised as follows. In
section 2, we present a brief overview on parallel GAs.
Section 3 provides a brief description of the
aerodynamic airfoil design problem we consider in this
work while section 4 describes the GEE framework.
The empirical study of GEE for hierarchical parallel
evolutionary optimisation of a realistic 2D aerodynamic
airfoil structure is presented in section 5. Analysis of
the multi-cluster GEE for hierarchical parallel
evolutionary design optimisation based on the result
obtained from the experiments are also presented in the
section. Finally section 5 concludes this paper.

2 Parallel Genetic Algorithm

A well-known strength of GAs is the ease of extensions
to incorporate parallelism. For instance, parallel GA

represents an extension of the canonical GA (also
known as simple or standard GA). Since the algorithm
works with sets of populations, instead of a single
individual, the basic concept of parallel GA is a simple
division of the tasks in the GA across different
processors. The other benefit of parallel GA is that it
facilitates speciation, a process where subpopulations
evolve in different directions simultaneously. They
have been shown to speed up the search process as well
as to obtain higher quality solutions when dealing with
complex design problems. In general, the various types
of parallel GAs may be classified into three main
categories [8-9], i.e. the global single-population
master-slave, single population fine-grained, and multi-
population coarse-grained parallel GAs.

2.1 Master-slave PGA
In master-slave PGAs, it is assumed that there is only a
single panmictic population, i.e., a simple GA. Like the
simple GA, each individual competes and reproduces
with any other in the master-slave PGA. However,
unlike the simple GA, evaluations of individuals are
distributed by scheduling fractions of the population
among the processing slave nodes. In addition, master-
slave PGA uses parallel computing to speed up the
operation of the simple GA without changing the basic
operations of the sequential GA. Such a model has the
advantage of ease of implementations and does not alter
the search of the canonical GA, i.e., the existing theory
of simple GA still applies. Further, it poses as an
efficient method of parallelisation when evaluation of
the fitness functions is computationally expensive. A
motivating example for us is aerodynamic wing design,
where one function evaluation involving the solution of
the Navier–Stokes equations can take many hours of
computer time [4-5].

2.2 Fine-grained PGA
Fine-grained parallel GA consists of only a single
population, which is spatially structured. It is designed
to run on closely-linked massively parallel processing
systems, i.e. a machine consisting of a large number of
processing elements and that is connected in a specific
high-speed topology. For instance, the population of
individuals in a fine-grained PGA may be organised as
a 2-Dimensional grid, since many massively parallel
computers have processing elements that are connected
using this topology. Consequently, selection and mating
in a fine-grained parallel GA are restricted to small
groups. Nevertheless, groups overlap to permit some
interactions among all the individuals so that good
solutions may disseminate across the entire populations.
Sometimes, fine-grained parallel GAs are also termed
cellular models.

2.3 Multi-population PGA
The multi-population (or deme) GA is more
sophisticated, as it consists of several subpopulations
that exchange individuals occasionally. This exchange
of individuals is called migration and it is controlled by
several parameters. Hence, the important characteristics

of a multi-population GA are in the use of multiple
subpopulations and migration. Multi-population PGAs
are known by different names. Besides, since multi-
population PGA resembles the “island model” in
population genetics that considers relatively isolated
demes, it is often also known as “Island GA”.

Here in the proposed GEE, we consider a hybrid
of the multi-population coarse-grained and master-slave
type which we call it PHGA in short. In particular, we
consider a multi-population coarse-grained GA model
at the first level of the hybrid, where the multiple
subpopulations are deployed across the pool of
computing clusters available on the Grid. Subsequently,
we consider the master-slave model at the second level,
i.e., the subpopulation level, where all individuals in
each subpopulation are farmed across all processing
nodes onto the cluster where evolution of the
subpopulation resides.

3 Grid Enabled Evolutionary Framework

In this section, we present the architecture of the
proposed GEE for complex engineering design
optimisation. Like any Grid computing setups, it would
be necessary to first enable the software components as
grid services so that they may be accessed within the
Grid environment. Here, two grid services are created
using our extended GridRPC technologies proposed in
[22] for ‘gridifying’ existing applications. The first
‘subpopulation-evolution’ service is a composition of
the standard GA evolutionary operators for evolving a
GA subpopulation. On the other hand, the other ‘airfoil-
analysis’ grid service is the gridified aerodynamic
airfoil analysis code or the objective function of the GA
for evaluating the subpopulation of chromosomes.
Further for security reasons, we restrict the
‘subpopulation evolution’ service to be executed only
on the master node of each cluster. This implies that the
‘subpopulation-evolution’ is developed as a Globus grid
services capable of remote execution across unlimited
computing clusters. In contrast, we consider the ‘airfoil-
analysis’ as a Netsolve services that resides on all
processing nodes of the clusters. This ensures all
evaluations of the chromosomes are evaluated within
the cluster of processing nodes where the
‘subpopulation-evolution’ executes in.

As described briefly in, previous section, we
employ two levels of parallelism in the GA search: the
first level consists of the parallelism of subpopulation i
onto the computing cluster i (here we consider the case
where the number of subpopulations is defined to be
equal to the number of computing clusters), while the
second level involves the parallelism of all evaluations
of chromosomes in subpopulation i across the
processing nodes in cluster i only. A PHGA algorithm
using the GEE framework is outline in Figure 1. Before
the search starts, the services are deployed onto the
clusters on the grid and registered with the resource
agent. This enables the latter to search for the available

computing resources and ‘airfoil-analysis’ service. The
workflow of the Grid enabled evolutionary optimisation
framework is also depicted in Figure 2.

T
n
s
1

2

Hiera
Paral
with m
opera

START PHGA
Initialise GA
while termination condition not met
 for each subpopulation
 Globus function call of ‘subpopulation-reproduction’
 start “subpopulation-reproduction”
 for each chromosome
 NetSolve function calls of ‘airfoil-analysis’
 end for
 GA specific operations
 end ‘subpopulation-reproduction’
 end for
 chromosomes migration
end while
END PHGA

Figure 1. PHGA algorithm using GEE framework.

‘airfoil-analysis’

Figure 2. Workflow of the Grid enabled evolutionary
optimisation framework

he detailed workflow of the GEE can be outlined as
ine crucial stages and is depicted in Figure 3. The nine
tages are described as follows:
) Prior to the start of the evolutionary search, the

grid enabled PHGA contacts the meta-scheduler,
requesting for services and resources necessary
required for conducting the evolution of the GA
subpopulations.

) The metascheduler [22] then obtains a list of the
available resources together with their status of
availability. Such status information is acquired
from services provided by the Globus Monitoring

Globus communication

NetSolve communication

‘subpopulation -
reproduction’

Cluster-1 for subpop-1

CPUs at Cluster-1 ‘subpopulation
-reproduction’ rchical

lel GA
igration

tor.

‘airfoil-analysis’

Cluster-2 for subpop-2

Cluster-3 for subpop-n

CPUs at Cluster-2

‘airfoil-analysis’‘subpopulation
-reproduction’

CPUs at Cluster-n

and Discovery Service (MDS) and Ganglia
monitoring toolkit [22-24]. The populations of
design analysis requests may then be farmed out
to the available grid resources accordingly to the
workload and resource information provided by
the monitoring services. It is worth noting that
whenever a new computing resource or software
service, for instance the ‘airfoil-analysis’ service,
is added, they get reflected in the monitoring
services automatically, since mechanisms are
provided to ensure any new resources are
registered to the Globus MDS before they are
allowed to join the Grid environment.

3) These resources information and services are then
provided to allow the PHGA to proceed with the
parallel evolutionary search.

4) Upon obtaining the information in relation to the
resources and services, the Grid Security
Infrastructure (GSI) [25] credentials are
subsequently generated. This forms the
authentication or authority to use the computing
resources available in the system.

5) The GridFTP [26] mechanism provided in the
GEE then transfers the subpopulations in the form
of ASCII data files to the computing clusters that
have the correct services to perform genetic
evolution and fitness evaluation.

6) Parallel evolution of the multiple subpopulations
is then started at the remote computing clusters
using the Globus job submission protocol.

7) Whenever the Globus Resource Allocation
Manager (GRAM) [27] gatekeeper of a cluster
receives a request to start the ‘subpopulation-
evolution’ service, an instance of this service gets
instantiated on the master node of the cluster.
Subsequently, the nested set of ‘airfoil-analysis’
service requests within the ‘subpopulation-
evolution’ service can then be farmed across the
processing nodes within the cluster using any
cluster level local scheduler, for example,
NetSolve, Sun Grid Engine [28], Condor [29] or
others. The responsibility of the local agent in
each cluster is to perform local scheduling and
resource discovery across the processing nodes
within a cluster.

8) When the ‘airfoil-analysis’ services completed
execution, the fitness values of the chromosomes
are conveyed back to the ‘subpopulation-
evolution’ service so that standard GA operations
such as mutation, crossover and selection can take
place.

9) Similarly when the ‘subpopulation-evolution’
services deployed across the remote clusters
completes, the resultant evolved subpopulations
are then marshalled back to the main PHGA
program using the Global Access to Secondary
Storage (GASS) [30]. The migration operation of
the PHGA then proceeds. The process repeats
until the termination condition is met.

Figure 3. GEE Workflow.

4 Aerodynamic Airfoil Design Problem

In this section, we present a 2D aerodynamic airfoil
design problem, particularly, the subsonic inverse
pressure design problem used in our present study. The
target pressure profile is generated from the NACA
0012 airfoil, which itself is the baseline shape. The
airfoil geometry is characterised using 24 design
variables as depicted in Figure 4. Hence, there exists for
this problem a global solution corresponding to

0241 === zz … . The free-stream conditions in this
problem are subsonic speed of Mach 0.5, and zero angle
of attack (AOA), corresponding to symmetric pressure
profiles on the upper and lower walls.

It is worth noting that the inverse problem
constitutes a good test problem for validating the
convergence property of GEE, since the optimal design
is known in advance. At the same time, it facilitates our
study on complex engineering design optimisation
problems of variable-fidelity. Secondly, the inverse
design problem also has a practical purpose, as the
designer generally has an idea of the desired pressure
profile that yields good aerodynamic performance. For
example, in transonic design, a shock front on the upper
surface generally leads to undesirably high pressure
drag that degrades the efficiency of the airfoil. A typical
approach to inverse pressure design is to ‘smoothen’ the
pressure distribution on the upper-surface in a way that
maintains the area under the curve, so as to maintain the
lift force generated by the airfoil. Thus, the inverse

pressure design problem can be formulated as a
minimisation problem of the form:

σdppSwI d∫ −=
wall

2)(
2
1),((1)

subject to constraints.

Figure 4. A 2D airfoil geometry characterised using 24
design variables with the NACA 0012 as baseline.

5 Empirical Study

In this section we present an empirical study of the
PHGA using the GEE framework for complex
engineering design, particularly, aerodynamic airfoil
design optimisation.

5.1 Experimental Setup

The control parameters of the PHGA are configured as
follows: population size for every subpopulation is 80,
crossover probability is 0.9, mutation probability is 0.1,
migration period is for every 10 generations with 1
chromosome per migration phase, linear fitness scaling,
elitism, and termination upon maximum number of
generation 100. Further, three computing clusters are
used in our study and are listed in Table 1, where we
provide the processing power of these computing
clusters measured based on the commonly used Linpack
benchmark problem [31]. The processing power here
refers to the Millions of Floating-Point Operations per
Second (MFLOPS).

Cluster
Name

No. of
CPUs

CPU Clock Memory MFLOPS
(average)

pdcc 28 PIV Xeon

3.6GHz
10G 920

pdpm 20 PIV Xeon

2.6GHz
10G 800

surya 21 PIII 450MHz
PIII 550MHz
PIII 733MHz

6G 150

Table 1. Specifications of the clusters used.

It can be observed that all the three clusters we

considered here have very different MFLOPS values.
The pdcc cluster has a significantly higher MFLOPS
than the surya cluster. Clearly they are heterogeneous
clusters and pdcc and pdpm are much more powerful
than surya.

5.2 Experimental Results and Analysis

Using 24 design variables and the cost function in
equation 1, the PHGA with the GEE framework is
applied for the optimisation of the subsonic inverse
pressure design problem described in Section 4. Further
we consider two separate analysis codes or variable-
fidelity in our study. The low-fidelity and moderate-
fidelity analysis codes considered here represent
realistic computationally inexpensive and expensive
design problems, respectively. The exact wall clock
time for a single airfoil analysis on the three
heterogeneous clusters is summarised in Table 2. A
single moderate-fidelity analysis of the airfoil geometry
using an Euler CFD solver takes around 110 seconds on
a Pentium III processor, while a low-fidelity takes
around 10 seconds. From Table 2, it may also be
observed that the time taken for each clusters to
complete an analysis is clearly significantly different on
the moderate-fidelity analysis code.

Variable
Fidelity

Low-fidelity

Analysis code

Moderate-fidelity

Analysis code

Cluster surya pdpm pdcc surya pdpm pdcc
Wall
Clock
Time

10 s 9 s 8 s 110 s 54 s 37 s

Table 2. Wall clock time to conduct a single of the variable-

fidelity airfoil code on clusters on the clusters

For each set of experimental study, 10 PHGA runs

using the GEE framework were conducted and the
average of the runs are reported. The average wall clock
time taken by the PHGA to complete a maximum of
100 generations on a GEE with single cluster or
multiple clusters for 2 subpopulations is depicted in
Figure 5. From these results, the PHGA with 2
subpopulations and a GEE a single pdcc cluster appears
to complete the maximum of 100 generations much
earlier than all other single-cluster or two-cluster
combinations. Specifically, all two-cluster
combinations of the three clusters have longer wall
clock time than using the pdcc alone to complete the
evolution of two subpopulations in parallel. This is a
consequence of our present restriction on the GEE
which enforces a one-to-one mapping between
subpopulations and computing clusters. This implies

that we assign the same workload to all clusters
regardless of their specifications, i.e., CPU clock,
number of processing nodes, memory, MFLOPS, etc.
This effect is more evident in Figure 5(b) than (a), due
to the larger differences between the execution time to
perform a single analysis of the moderate-fidelity code
on the three clusters. In addition, the extremely poor
performance of the PHGA-two subpopulations
optimisation runs on the surya cluster, i.e., 10 times
slower than pdcc alone, is a result of overloading due to
mismatch between the low memory specification of
surya as opposed to the heavy memory requirement of
many moderate-fidelity analysis code executing in
parallel.

0

1000

2000

3000

4000

5000

6000

7000

8000

pd
cc

pd
pm

su
rya

pd
cc

:pd
pm

pd
cc

:su
rya

su
rya

:pdp
m

Cluster(s) Used

W
al

l C
lo

ck
 T

im
e

(a) Low-fidelity analysis code

0

50000

100000

150000

200000

250000

300000

350000

pd
cc

pd
pm

su
rya

pd
cc

:pd
pm

pd
cc

:su
rya

su
rya

:pdp
m

Cluster(s) Used

W
al

l C
lo

ck
 T

im
e

(b) Moderate-fidelity analysis code

Figure 5. Average wall clock time for PHGA-2

subpopulations using the GEE framework for variable-
fidelity analysis code.

Besides, due to the large differences in completion

time by the clusters to complete the evolution of a
subpopulation, all subpopulations have to wait for the
slowest cluster to complete evaluations of all
chromosomes and evolution before any migration
operation may take place and proceed with the next
generation. Hence, it appears proper parallelism and
division of the subpopulations and chromosomes
evaluations is crucial to the performance of the PHGA

and GEE when operating on a heterogeneous
computing cluster environment such as the grid. It may
not always be the case that using greater computing
resources would provide significant speed-up of the
optimisation search of PHGA.

Clearly, a GEE that enforces a one-to-one mapping
between subpopulations and computing clusters limits
the potential of the PHGA to attain high performance in
optimisation efficiency. Here, to fully utilise the grid
computing cluster resources for complex engineering
design of computationally expensive optimisation
problems, dynamic bundling of chromosomes is
proposed. Here we pool all chromosomes in the
subpopulations together and submit chromosomes to
clusters according to their specifications, for instance
based on their MFLOPS and CPU numbers. In this way,
more chromosomes are sent to the high-end clusters
than to its lower-end counterparts. In our case, as the
number of CPUs are all almost the same, i.e. varying
from 20-28 CPUs for the three clusters (see Table 1),
we consider only MFLOPS as the criterion for dynamic
bundling. For instance, using the MFLOPS of the three
heterogeneous clusters defined in Table 1, dynamic
bundling is carried out as follows:

Pop

C

C
R

n

i
i

i
i ×=

∑
=1

 (2)

where Ri = Ratio of chromosomes sent to the
 cluster i.

Ci = MFLOPS of cluster i.
 n = Total number of clusters to be used.
 Pop = Population size.

Using the GEE with dynamic bundling, the PHGA

with 2 subpopulations is once again used for optimising
the airfoil design problem. Note that all other
parameters are kept the same as in previous
experiments. Using two-cluster, pdcc:surya and
pdcc:pdpm, the chromosomes are bundled as shown in
Table 3 using equation (2).

Cluster Name MFLOPS

Ratio
Chromosomes
Distribution

Ratio
pdcc : surya 920:150 138:22

pdcc : pdpm 920:800 86:74

Table 3. Chromosomes distribution ratio based on the

MFLOPS of the clusters for 2 subpopulations (a total of 160
chromosomes).

The average wall clock time of the experiments are

depicted in Figure 6 and 7. It can be observed that with
the use of the dynamic bundling GEE for PHGA
optimisation, the wall clock time is significantly
improved on all the two-cluster combinations, see
Figure 7. This is because chromosomes are now sent to

more powerful clusters for evaluations than their less
powerful counterparts on the grid. In effect, it is
possible to conclude that the use of the Grid and hence
the proposed GEE for facilitating parallelism in PHGA
can provide significant speed-up on the optimisation
search.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

pd
cc

pd
cc

:su
rya

 (n
o b

und
lin

g)

pd
cc

:su
rya

 (b
un

dlin
g)

pd
cc

:pd
pm

 (n
o b

un
dli

ng
)

pd
cc

:pd
pm

(bu

nd
lin

g)

Cluster(s) Used

W
al

l C
lo

ck
 T

im
e

Figure 6. Average wall clock time for PHGA-2
subpopulations with and without using the dynamic bundling

GEE framework for moderate-fidelity analysis code.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

pdcc pdcc:surya (bundling) pdcc:pdpm
(bundling)

Cluster(s) Used

W
al

l C
lo

ck
 T

im
e

Figure 7. Average wall clock time for PHGA-2
subpopulations using the dynamic bundling compared to

without using dynamic bundling in a single fast cluster (pdcc).

5 Conclusion

In this paper, we have presented the Grid Enabled
Evolution framework, which employs Grid computing
technologies for facilitating parallelism in multi-
population parallel GA optimisation of computationally
expensive design problems. Using a multi-level
parallelisation strategy of hierarchical parallel GAs in a
Grid environment, we present the evolutionary
optimisation of a realistic 2D aerodynamic airfoil
structure. Based on the experimental results obtained,
an assessment and analysis of the GEE is performed.
The negative consequences of using heterogeneous

clusters in a realistic grid environment based on a GEE
with one-to-one mapping between subpopulations and
computing clusters is discussed. Further, dynamic
bundling based on the MFLOPS metric of the clusters is
also proposed and demonstrated to provide significant
speed-up in the PHGA optimisation search. From our
analysis, it is possible to conclude that a grid enabled
hierarchical parallel evolutionary algorithm is not mere
hype but does offers as a credible alternative for
providing significant speed-up to complex engineering
design optimisation.

Acknowledgments

This work is a collaboration between Honda Research
Institute Europe Gmbh and Nanyang Technological
University, Singapore. The authors also would like to
thank the Parallel and Distributed Computing Centre at
the School of Computer Engineering, Nanyang
Technological University and the Honda Research
Institute Europe Gmbh for providing the support and
computing resources to this work.

References

[1] Goldberg D.E., “Genetic Algorithms in Search,
Optimisation and Machine Learning”, 1989.

[2] Sonoda T., Yamaguchi Y., Arima T., Olhofer M.,
Sendhoff B., Schreiber H.A., “Advanced High
Turning Compressor Airfoils for Low Reynolds
Number Condition”, Journal of Turbomachinery,
Vol. 126, pp. 350-359, 2004.

[3] Hasenjager M., Sendhoff B., Sonoda T., Arima T.,
“Three Dimensional Evolutionary Aerodynamic
Design Optimization with CMA-ES”, Proceedings
of the Genetic and Evolutionary Computation
Conference – GECCO, 2005.

[4] Y. S. Ong and A.J. Keane, “Meta-Lamarckian in
Memetic Algorithm”, IEEE Trans. Evolutionary
Computation, Vol. 8, No. 2, pp. 99-110, April
2004.

[5] I. C. Parmee., D. Cvetkovi., A. H. Watson, C. R.
Bonham, “Multi objective satisfaction within an
interactive evolutionary design environment”,
Evolutionary Computation, Vol. 8, No. 2, pp. 197-
222, 2000.

[6] P. B. Nair and A. J. Keane, “Passive Vibration
Suppression of Flexible Space Structures via
Optimal Geometric Redesign”, AIAA Journal
39(7), pp. 1338-1346, 2001.

[7] Baluja S., “The Evolution of Genetic Algorithms:
Towards Massive Parallelism”, Machine Learning:
Proceedings of the Tenth International Conference,
1993.

[8] Mariusz Nowostawski, Riccardo Poli, “Parallel
Genetic Algorithm Taxonomy”, Proceedings of the
Third International conference on knowledge-
based intelligent information engineering systems
(KES'99), pages 88-92, Adelaide, August 1999.
IEEE.

[9] Cantu-Paz E., “A Survey of Parallel Genetic
Algorithms” , Calculateurs Paralleles, Reseaux et
Systems Repartis vol. 10 No. 2 pp. 141-171, 1998.

[10] Lobo F.G., Lima C.F., Martires H., “An
Architecture for Massive Paralleization of the
Compact Genetic Algorithm”, Genetic and
Evolutionary Computation Conference – GECCO,
2004.

[11] Huyse L. and Lewis R.M., “Aerodynamic Shape
Optimisation of Two-dimensional Airfoils Under
Uncertain Operating Conditions”, Hampton,
Virginia: ICASE NASA Langley Research Centre,
2001.

[12] Padula S.L. and Li W., “Robust Airfoil
Optimization in High Resolution Design Space”,
Hampton, Virginia: ICASE NASA Langley
Research Centre, 2002.

[13] Ong Y.S., Lum K.Y., Nair P.B., Shi D.M. and
Zhang Z.K., “Global Convergence of
Unconstrained and Bound Constrained Surrogate-
Assisted Evolutionary Search in Aerodynamic
Shape Design Solvers”, IEEE Congress on
Evolutionary Computation, Special Session on
Design Optimization with Evolutionary
Computation”, 2003.

[14] Foster I. and Kesselman C., editors, “The Grid:
Blueprint for a New Computing Infrastructure,”
Morgan Kaufman Publishers,1999.

[15] Foster I., Kesselman C., and Tuecke S., "The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations" , International J. Supercomputer
Applications, vol. 15, no. 3, 2001.

[16] Baker M., Buyya R., Laforenza D., "The Grid :
International Efforts in Global Computing",
International Conference on Advances in
Infrastructures for Electronic Business, Science,
and Education on the Internet, 2000.

[17] Cox J., "Grid enabled optimisation and design
search for engineering (Geodise)", in: NeSC
Workshop on Applications and Testbeds on the
Grid, 2002.

[18] Parashar M. et. al., “Application of Grid-enabled
Technologies for Solving Optimization Problems in
Data-Driven Reservoir Studies”, submitted to
Elsevier Science, 2004.

[19] Price A.R. et. al., “Tuning GENIE Earth System
Model Components using a Grid Enabled Data
Management System”, School of Engineering
Sciences, University of Southampton, UK.

[20] Foster I., “The Globus Toolkit for Grid
Computing”, Proceedings of the 1st International
Symposium on Cluster Computing and the Grid,
2001.

[21] Agrawal S., Dongarra J., Seymour K., Vadhiyar S.,
“NetSolve: past, present, and future; a look at a
grid enabled server”, 2002.

[22] Ho Q.T., Cai W.T., and Ong Y.S., “Design and
Implementation of An Efficient Multi-cluster
GridRPC System”, Cluster and Computing Grid,
2005.

[23] Globus: Information Services/MDS, [online]
http://www-unix.globus.org/toolkit/mds.

[24] Massie M., Chun B., and Culler D., “The Ganglia
Distributed Monitoring System: Design,
Implementation, and Experience”, Technical
report, University of California, Berkeley, 2003.

[25] Tuecke S., “Grid Security Infrastructure (GSI)
Roadmap”, Internet Draft Document: draft-
gridforum-gsi-roadmap-02.txt, 2001.

[26] The Globus Project, “GridFTP Universal Data
Transfer for the Grid”, The Globus Project White
Paper, 2000.

[27] The Globus Resource Allocation Manager
(GRAM) [online] http://www-unix.globus.org/
developer/resource-management.html.

[28] Geer D., “Grid Computing Using the Sun Grid
Engine”, Technical Enterprises, Inc., 2003.

[29] Frey J., Tannenbaum T., Livny M., Foster I.,
Tuecke S., "Condor-G: A Computation
Management Agent for Multi-Institutional Grids",
Proceedings of the Tenth IEEE Symposium on High
Performance Distributed Computing (HPDC10),
2001.

[30] Samwel B., “Data Management in Computational
Grid,”, [online]
http://www.liacs.nl/home/llexx/gc/dm/pdf.

[31] Dongarra J.J., Luszczek P., Petitet A., “The
LINPACK Benchmark: Past, Present, and Future.”,
University of Tennessee, Department of Computer
Science, Knoxville, USA, 2002.

