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Abstract- Advances in grid computing have recently 
sparkled the research and development of Grid problem 
solving environments for complex design. Parallelism in 
the form of distributed computing is a growing trend, 
particularly so in the analysis and optimisation of high-
fidelity computationally expensive real world design 
problems in science and engineering. In this paper, we 
present a powerful and inexpensive grid enabled evolution 
framework based on Globus and NetSolve toolkits for 
facilitating parallelism in hierarchical parallel 
evolutionary algorithms. By exploiting the grid evolution 
farmework and a multi-level parallelisation strategy of 
hierarchical parallel GAs, we present the evolutionary 
optimisation of a realistic 2D aerodynamic airfoil 
structure. Further, we study the utility of hierarchical 
parallel GAs on two potential grid enabled evolution 
frameworks and analysis how it fares on a grid 
environment with multiple heterogeneous clusters, i.e., 
clusters with differing specifications and processing nodes. 
From the results, it is possible to conclude that a grid 
enabled hierarchical parallel evolutionary algorithm is not 
mere hype but offers a credible alternative, providing 
significant speed-up to complex engineering design 
optimisation. 

1 Introduction 

Genetic Algorithms (GA) represents one of the well-
known modern stochastic search techniques inspired by 
the Neo-Darwinian theory of natural selection and 
evolution [1]. By emulating the process of natural 
evolution, GAs have been employed with great success 
for solving many complex engineering design problems 
including advanced high turning compressor airfoils 
design [2], three dimensional aerodynamic design [3], 
aircraft wing design [4], military airframe preliminary 
design [5] and large flexible space structures design [6]. 
The popularity of Gas lies in the ease of implementation 
and the ability to arrive close to the global optimum 
design. Another well-known strength of GAs is that 
sub-linear improvements in the search efficiency may 
be easily achieved by incorporating parallelism. Many 
studies on the parallelism of GAs have been made over 
the last decade [7-10], with many strategies introduced 
to date. In general, these strategies to achieve 

parallelism in evolutionary algorithm (EA) may be 
categorised as master-slave, fine-grained, or coarse-
grained parallel EAs.  

Recently, there has been a new paradigm shift in 
science and engineering towards the utilisation of 
increasingly high-fidelity and accurate analysis codes in 
the design analysis and optimisation processes. In many 
application areas such as photonics, electromagnetics, 
aerospace, biomedical, micro-electro-mechanical 
systems and coupled-field multidisciplinary system, the 
design process generally requires a Computational 
Structural Mechanics (CSM), a Computational Fluid 
Dynamics (CFD) or a Computational Electronics & 
Electromagnetics (CEE) simulation procedure. Here, a 
single analysis of the design involving CFD, CSM or 
CEE could take up many minutes to hours or even days 
of supercomputing time [11-13]. The high 
computational costs associated with the use of high-
fidelity simulation models thus poses a serious 
impediment to the successful application of 
evolutionary algorithms (EAs) to engineering design 
optimisation since EAs typically require many 
thousands of function evaluations to locate a near 
optimal solution. Hence, when computationally 
expensive high-fidelity simulation models are used for 
predicting design improvements, the use of EAs may be 
computationally prohibitive. Moreover, solving 
computationally expensive design optimisation 
problems using a parallel EA may be regarded as 
impractical since this often requires a huge amount of 
computational power that is extremely costly for any 
single organisation to take full ownership of.  Hence, 
the use of Grid computing presents a viable and cost 
effective option to large-scale and computationally 
expensive design optimisation problems. 

Recent technologies in Grid computing [14-16] 
have therefore offered a fresh solution to this problem 
by enabling collaborative computing on an 
unprecedented scale via leveraging from geographically 
distributed computing resources. These computing 
resources can belong to a single or to a number of 
different organisations.  Here, we harness the idea of 
employing heterogeneous computing resources 
distributed in different design teams at disparate 



geographical locations as a powerful and inexpensive 
technology to facilitate parallelism in evolutionary 
optimisation. Due to the large design spaces often 
considered, usually stochastic optimisation algorithms 
such as parallel GA and its variants are employed in the 
aerodynamic search in order to arrive at a near optimum 
design efficiently. 

The use of Grid technologies in optimisation can be 
found in [17-19]. The Grid Enabled Optimisation and 
Design Search for Engineering (GEODISE) [17] of the 
e-science group, UK, represents one of the recent 
initiatives of Grid computing for engineering design 
search and optimisation. Other works includes using 
Grid computing to demonstrate optimisation speed-up 
in data-driven reservoir studies [18], and earth system 
modelling [19]. However, many existing studies on 
Grid optimisation frameworks were not targeted on 
multi-clusters within a distributed Grid environment, 
but are rather limited to single clusters. 

In this paper, we present a scalable parallel 
evolutionary optimisation framework for engineering 
design problems in a Grid infrastructure which we refer 
to as Grid Enabled Evolution (GEE). In particular, we 
consider the parallel evolutionary design optimisation 
of 2D aerodynamic airfoil using the proposed GEE, 
where an optimal solution is sought for a particular 
configuration of flight speed given by the Mach number 
M∞, and the angle of attack (AOA). The 2D 
aerodynamic airfoil design problem represents one of 
the most frequently tackled computationally expensive 
design problems in aeronautics. 

One major feature of GEE is the ability to harness 
computing clusters that spans across international 
boundaries, i.e., computing clusters in Asia and Europe 
may be used simultaneously in the GEE. This is 
achieved by using standard Globus [20] and NetSolve 
[21] toolkits. In the GEE, the parallel evolution of 
multiple subpopulations are conducted across all 
computing clusters available on the Grid. The use of 
multiple subpopulations not only facilitates possible 
parallelism in the EA search, it at the same time 
generates greater diversity in the final design solutions.  

The rest of this paper is organised as follows. In 
section 2, we present a brief overview on parallel GAs. 
Section 3 provides a brief description of the 
aerodynamic airfoil design problem we consider in this 
work while section 4 describes the GEE framework. 
The empirical study of GEE for hierarchical parallel 
evolutionary optimisation of a realistic 2D aerodynamic 
airfoil structure is presented in section 5. Analysis of 
the multi-cluster GEE for hierarchical parallel 
evolutionary design optimisation based on the result 
obtained from the experiments are also presented in the 
section. Finally section 5 concludes this paper. 

2 Parallel Genetic Algorithm 

A well-known strength of GAs is the ease of extensions 
to incorporate parallelism. For instance, parallel GA 

represents an extension of the canonical GA (also 
known as simple or standard GA). Since the algorithm 
works with sets of populations, instead of a single 
individual, the basic concept of parallel GA is a simple 
division of the tasks in the GA across different 
processors. The other benefit of parallel GA is that it 
facilitates speciation, a process where subpopulations 
evolve in different directions simultaneously. They 
have been shown to speed up the search process as well 
as to obtain higher quality solutions when dealing with 
complex design problems. In general, the various types 
of parallel GAs may be classified into three main 
categories [8-9], i.e. the global single-population 
master-slave, single population fine-grained, and multi-
population coarse-grained parallel GAs. 

2.1 Master-slave PGA 
In master-slave PGAs, it is assumed that there is only a 
single panmictic population, i.e., a simple GA. Like the 
simple GA, each individual competes and reproduces 
with any other in the master-slave PGA. However, 
unlike the simple GA, evaluations of individuals are 
distributed by scheduling fractions of the population 
among the processing slave nodes. In addition, master-
slave PGA uses parallel computing to speed up the 
operation of the simple GA without changing the basic 
operations of the sequential GA. Such a model has the 
advantage of ease of implementations and does not alter 
the search of the canonical GA, i.e., the existing theory 
of simple GA still applies. Further, it poses as an 
efficient method of parallelisation when evaluation of 
the fitness functions is computationally expensive. A 
motivating example for us is aerodynamic wing design, 
where one function evaluation involving the solution of 
the Navier–Stokes equations can take many hours of 
computer time [4-5]. 

2.2 Fine-grained PGA 
Fine-grained parallel GA consists of only a single 
population, which is spatially structured. It is designed 
to run on closely-linked massively parallel processing 
systems, i.e. a machine consisting of a large number of 
processing elements and that is connected in a specific 
high-speed topology. For instance, the population of 
individuals in a fine-grained PGA may be organised as 
a 2-Dimensional grid, since many massively parallel 
computers have processing elements that are connected 
using this topology. Consequently, selection and mating 
in a fine-grained parallel GA are restricted to small 
groups. Nevertheless, groups overlap to permit some 
interactions among all the individuals so that good 
solutions may disseminate across the entire populations. 
Sometimes, fine-grained parallel GAs are also termed 
cellular models.  

2.3 Multi-population PGA 
The multi-population (or deme) GA is more 
sophisticated, as it consists of several subpopulations 
that exchange individuals occasionally. This exchange 
of individuals is called migration and it is controlled by 
several parameters. Hence, the important characteristics 



of a multi-population GA are in the use of multiple 
subpopulations and migration. Multi-population PGAs 
are known by different names. Besides, since multi-
population PGA resembles the “island model” in 
population genetics that considers relatively isolated 
demes, it is often also known as “Island GA”. 

Here in the proposed GEE, we consider a hybrid 
of the multi-population coarse-grained and master-slave 
type which we call it PHGA in short. In particular, we 
consider a multi-population coarse-grained GA model 
at the first level of the hybrid, where the multiple 
subpopulations are deployed across the pool of 
computing clusters available on the Grid. Subsequently, 
we consider the master-slave model at the second level, 
i.e., the subpopulation level, where all individuals in 
each subpopulation are farmed across all processing 
nodes onto the cluster where evolution of the 
subpopulation resides. 

3 Grid Enabled Evolutionary Framework   

In this section, we present the architecture of the 
proposed GEE for complex engineering design 
optimisation. Like any Grid computing setups, it would 
be necessary to first enable the software components as 
grid services so that they may be accessed within the 
Grid environment. Here, two grid services are created 
using our extended GridRPC technologies proposed in 
[22] for ‘gridifying’ existing applications. The first 
‘subpopulation-evolution’ service is a composition of 
the standard GA evolutionary operators for evolving a 
GA subpopulation. On the other hand, the other ‘airfoil-
analysis’ grid service is the gridified aerodynamic 
airfoil analysis code or the objective function of the GA 
for evaluating the subpopulation of chromosomes. 
Further for security reasons, we restrict the 
‘subpopulation evolution’ service to be executed only 
on the master node of each cluster. This implies that the 
‘subpopulation-evolution’ is developed as a Globus grid 
services capable of remote execution across unlimited 
computing clusters. In contrast, we consider the ‘airfoil-
analysis’ as a Netsolve services that resides on all 
processing nodes of the clusters. This ensures all 
evaluations of the chromosomes are evaluated within 
the cluster of processing nodes where the 
‘subpopulation-evolution’ executes in. 

As described briefly in, previous section, we 
employ two levels of parallelism in the GA search: the 
first level consists of the parallelism of subpopulation i 
onto the computing cluster i (here we consider the case 
where the number of subpopulations is defined to be 
equal to the number of computing clusters), while the 
second level involves the parallelism of all evaluations 
of chromosomes in subpopulation i across the 
processing nodes in cluster i only. A PHGA algorithm 
using the GEE framework is outline in Figure 1. Before 
the search starts, the services are deployed onto the 
clusters on the grid and registered with the resource 
agent. This enables the latter to search for the available 

computing resources and ‘airfoil-analysis’ service. The 
workflow of the Grid enabled evolutionary optimisation 
framework is also depicted in Figure 2.  
 

 
 
 
 
 
 
 
 
 

 
 
 

 
T
n
s
1

2

Hiera
Paral
with m
opera
 

 
 

 

START PHGA 
Initialise GA 
while termination condition not met 
     for each subpopulation 
            Globus function call of ‘subpopulation-reproduction’ 
           start “subpopulation-reproduction” 
 for each chromosome 
                       NetSolve function calls of ‘airfoil-analysis’
  end for 
                  GA specific operations 
 end ‘subpopulation-reproduction’ 
     end for 
     chromosomes migration 
end while 
END PHGA 
 

 
Figure 1. PHGA algorithm using GEE framework. 
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Figure  2. Workflow of the Grid enabled evolutionary 
optimisation framework 

he detailed workflow of the GEE can be outlined as 
ine crucial stages and is depicted in Figure 3. The nine 
tages are described as follows:  
) Prior to the start of the evolutionary search, the 

grid enabled PHGA contacts the meta-scheduler, 
requesting for services and resources necessary 
required for conducting the evolution of the GA 
subpopulations. 

) The metascheduler [22] then obtains a list of the 
available resources together with their status of 
availability. Such status information is acquired 
from services provided by the Globus Monitoring 
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and Discovery Service (MDS) and Ganglia 
monitoring toolkit [22-24]. The populations of 
design analysis requests may then be farmed out 
to the available grid resources accordingly to the 
workload and resource information provided by 
the monitoring services. It is worth noting that 
whenever a new computing resource or software 
service, for instance the ‘airfoil-analysis’ service, 
is added, they get reflected in the monitoring 
services automatically, since mechanisms are 
provided to ensure any new resources are 
registered to the Globus MDS before they are 
allowed to join the Grid environment. 

3) These resources information and services are then 
provided to allow the PHGA to proceed with the 
parallel evolutionary search. 

4) Upon obtaining the information in relation to the 
resources and services, the Grid Security 
Infrastructure (GSI) [25] credentials are 
subsequently generated. This forms the 
authentication or authority to use the computing 
resources available in the system. 

5) The GridFTP [26] mechanism provided in the 
GEE then transfers the subpopulations in the form 
of ASCII data files to the computing clusters that 
have the correct services to perform genetic 
evolution and fitness evaluation. 

6) Parallel evolution of the multiple subpopulations 
is then started at the remote computing clusters 
using the Globus job submission protocol. 

7) Whenever the Globus Resource Allocation 
Manager (GRAM) [27] gatekeeper of a cluster 
receives a request to start the ‘subpopulation-
evolution’ service, an instance of this service gets 
instantiated on the master node of the cluster. 
Subsequently, the nested set of ‘airfoil-analysis’ 
service requests within the ‘subpopulation-
evolution’ service can then be farmed across the 
processing nodes within the cluster using any 
cluster level local scheduler, for example, 
NetSolve, Sun Grid Engine [28], Condor [29] or 
others. The responsibility of the local agent in 
each cluster is to perform local scheduling and 
resource discovery across the processing nodes 
within a cluster. 

8) When the ‘airfoil-analysis’ services completed 
execution, the fitness values of the chromosomes 
are conveyed back to the ‘subpopulation-
evolution’ service so that standard GA operations 
such as mutation, crossover and selection can take 
place. 

9) Similarly when the ‘subpopulation-evolution’ 
services deployed across the remote clusters 
completes, the resultant evolved subpopulations 
are then marshalled back to the main PHGA 
program using the Global Access to Secondary 
Storage (GASS) [30]. The migration operation of 
the PHGA then proceeds. The process repeats 
until the termination condition is met. 

 

 
 

Figure 3. GEE Workflow. 

4 Aerodynamic Airfoil Design Problem 

In this section, we present a 2D aerodynamic airfoil 
design problem, particularly, the subsonic inverse 
pressure design problem used in our present study. The 
target pressure profile is generated from the NACA 
0012 airfoil, which itself is the baseline shape. The 
airfoil geometry is characterised using 24 design 
variables as depicted in Figure 4. Hence, there exists for 
this problem a global solution corresponding to 

0241 === zz … . The free-stream conditions in this 
problem are subsonic speed of Mach 0.5, and zero angle 
of attack (AOA), corresponding to symmetric pressure 
profiles on the upper and lower walls.  

It is worth noting that the inverse problem 
constitutes a good test problem for validating the 
convergence property of GEE, since the optimal design 
is known in advance. At the same time, it facilitates our 
study on complex engineering design optimisation 
problems of variable-fidelity. Secondly, the inverse 
design problem also has a practical purpose, as the 
designer generally has an idea of the desired pressure 
profile that yields good aerodynamic performance. For 
example, in transonic design, a shock front on the upper 
surface generally leads to undesirably high pressure 
drag that degrades the efficiency of the airfoil. A typical 
approach to inverse pressure design is to ‘smoothen’ the 
pressure distribution on the upper-surface in a way that 
maintains the area under the curve, so as to maintain the 
lift force generated by the airfoil. Thus, the inverse 



pressure design problem can be formulated as a 
minimisation problem of the form: 
 

σdppSwI d∫ −=
wall

2)(
2
1),(               (1) 

subject to constraints. 

 

Figure 4. A 2D airfoil geometry characterised using 24        
design variables with the NACA 0012 as baseline. 

5 Empirical Study 

In this section we present an empirical study of the 
PHGA using the GEE framework for complex 
engineering design, particularly, aerodynamic airfoil 
design optimisation. 

5.1 Experimental Setup 
 
The control parameters of the PHGA are configured as 
follows: population size for every subpopulation is 80, 
crossover probability is 0.9, mutation probability is 0.1, 
migration period is for every 10 generations with 1 
chromosome per migration phase, linear fitness scaling, 
elitism, and termination upon maximum number of 
generation 100. Further, three computing clusters are 
used in our study and are listed in Table 1, where we 
provide the processing power of these computing 
clusters measured based on the commonly used Linpack 
benchmark problem [31].  The processing power here 
refers to the Millions of Floating-Point Operations per 
Second (MFLOPS). 

 
Cluster 
Name 

No. of 
CPUs 

CPU Clock Memory MFLOPS 
(average) 

pdcc 28 PIV Xeon 

3.6GHz 
10G 920 

pdpm 20 PIV Xeon 

2.6GHz 
10G 800 

surya 21 PIII 450MHz 
PIII 550MHz 
PIII 733MHz 

6G 150 

 
Table 1. Specifications of the clusters used. 

 
It can be observed that all the three clusters we 

considered here have very different MFLOPS values. 
The pdcc cluster has a significantly higher MFLOPS 
than the surya cluster. Clearly they are heterogeneous 
clusters and pdcc and pdpm are much more powerful 
than surya. 
 

5.2 Experimental Results and Analysis 
 
Using 24 design variables and the cost function in 
equation 1, the PHGA with the GEE framework is 
applied for the optimisation of the subsonic inverse 
pressure design problem described in Section 4. Further 
we consider two separate analysis codes or variable-
fidelity in our study. The low-fidelity and moderate-
fidelity analysis codes considered here represent 
realistic computationally inexpensive and expensive 
design problems, respectively. The exact wall clock 
time for a single airfoil analysis on the three 
heterogeneous clusters is summarised in Table 2. A 
single moderate-fidelity analysis of the airfoil geometry 
using an Euler CFD solver takes around 110 seconds on 
a Pentium III processor, while a low-fidelity takes 
around 10 seconds. From Table 2, it may also be 
observed that the time taken for each clusters to 
complete an analysis is clearly significantly different on 
the moderate-fidelity analysis code. 
 

 
Variable 
Fidelity 

 
Low-fidelity 

Analysis code 

 
Moderate-fidelity 

Analysis code 
 

Cluster surya pdpm pdcc surya pdpm pdcc 
Wall 
Clock 
Time 

10 s 9 s 8 s 110 s 54 s 37 s 

 
Table 2. Wall clock time to conduct a single of the variable-

fidelity airfoil code on clusters on the clusters 
 
For each set of experimental study, 10 PHGA runs 

using the GEE framework were conducted and the 
average of the runs are reported. The average wall clock 
time taken by the PHGA to complete a maximum of 
100 generations on a GEE with single cluster or 
multiple clusters for 2 subpopulations is depicted in 
Figure 5. From these results, the PHGA with 2 
subpopulations and a GEE a single pdcc cluster appears 
to complete the maximum of 100 generations much 
earlier than all other single-cluster or two-cluster 
combinations. Specifically, all two-cluster 
combinations of the three clusters have longer wall 
clock time than using the pdcc alone to complete the 
evolution of two subpopulations in parallel. This is a 
consequence of our present restriction on the GEE 
which enforces a one-to-one mapping between 
subpopulations and computing clusters. This implies 



that we assign the same workload to all clusters 
regardless of their specifications, i.e., CPU clock, 
number of processing nodes, memory, MFLOPS, etc. 
This effect is more evident in Figure 5(b) than (a), due 
to the larger differences between the execution time to 
perform a single analysis of the moderate-fidelity code 
on the three clusters. In addition, the extremely poor 
performance of the PHGA-two subpopulations 
optimisation runs on the surya cluster, i.e., 10 times 
slower than pdcc alone, is a result of overloading due to 
mismatch between the low memory specification of 
surya as opposed to the heavy memory requirement of 
many moderate-fidelity analysis code executing in 
parallel.  
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(a) Low-fidelity analysis code 
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(b) Moderate-fidelity analysis code 

 
Figure 5. Average wall clock time for PHGA-2 

subpopulations using the GEE framework for variable-
fidelity analysis code. 

 
Besides, due to the large differences in completion 

time by the clusters to complete the evolution of a 
subpopulation, all subpopulations have to wait for the 
slowest cluster to complete evaluations of all 
chromosomes and evolution before any migration 
operation may take place and proceed with the next 
generation. Hence, it appears proper parallelism and 
division of the subpopulations and chromosomes 
evaluations is crucial to the performance of the PHGA 

and GEE when operating on a heterogeneous 
computing cluster environment such as the grid. It may 
not always be the case that using greater computing 
resources would provide significant speed-up of the 
optimisation search of PHGA. 

Clearly, a GEE that enforces a one-to-one mapping 
between subpopulations and computing clusters limits 
the potential of the PHGA to attain high performance in 
optimisation efficiency. Here, to fully utilise the grid 
computing cluster resources for complex engineering 
design of computationally expensive optimisation 
problems, dynamic bundling of chromosomes is 
proposed. Here we pool all chromosomes in the 
subpopulations together and submit chromosomes to 
clusters according to their specifications, for instance 
based on their MFLOPS and CPU numbers. In this way, 
more chromosomes are sent to the high-end clusters 
than to its lower-end counterparts. In our case, as the 
number of CPUs are all almost the same, i.e. varying 
from 20-28 CPUs for the three clusters (see Table 1), 
we consider only MFLOPS as the criterion for dynamic 
bundling. For instance, using the MFLOPS of the three 
heterogeneous clusters defined in Table 1, dynamic 
bundling is carried out as follows:  
 

Pop

C

C
R

n

i
i

i
i ×=

∑
=1

        (2) 

where  Ri = Ratio of chromosomes sent to the 
    cluster i. 

Ci   = MFLOPS of cluster i. 
 n = Total number of clusters to be used. 
 Pop = Population size. 

 
Using the GEE with dynamic bundling, the PHGA 

with 2 subpopulations is once again used for optimising 
the airfoil design problem. Note that all other 
parameters are kept the same as in previous 
experiments. Using two-cluster, pdcc:surya and 
pdcc:pdpm, the chromosomes are bundled as shown in 
Table 3 using equation (2). 

 
Cluster Name MFLOPS  

Ratio 
Chromosomes 
Distribution 

Ratio 
pdcc : surya 920:150 138:22 

pdcc : pdpm 920:800 86:74 

 
Table 3. Chromosomes distribution ratio based on the 

MFLOPS of the clusters for 2 subpopulations (a total of 160 
chromosomes). 

 
The average wall clock time of the experiments are 

depicted in Figure 6 and 7. It can be observed that with 
the use of the dynamic bundling GEE for PHGA 
optimisation, the wall clock time is significantly 
improved on all the two-cluster combinations, see 
Figure 7. This is because chromosomes are now sent to 



more powerful clusters for evaluations than their less 
powerful counterparts on the grid. In effect, it is 
possible to conclude that the use of the Grid and hence 
the proposed GEE for facilitating parallelism in PHGA 
can provide significant speed-up on the optimisation 
search.  
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Figure 6. Average wall clock time for PHGA-2 
subpopulations with and without using the dynamic bundling 

GEE framework for moderate-fidelity analysis code. 
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Figure 7. Average wall clock time for PHGA-2 
subpopulations using the dynamic bundling compared to 

without using dynamic bundling in a single fast cluster (pdcc). 

5 Conclusion 

In this paper, we have presented the Grid Enabled 
Evolution framework, which employs Grid computing 
technologies for facilitating parallelism in multi-
population parallel GA optimisation of computationally 
expensive design problems. Using a multi-level 
parallelisation strategy of hierarchical parallel GAs in a 
Grid environment, we present the evolutionary 
optimisation of a realistic 2D aerodynamic airfoil 
structure. Based on the experimental results obtained, 
an assessment and analysis of the GEE is performed. 
The negative consequences of using heterogeneous 

clusters in a realistic grid environment based on a GEE 
with one-to-one mapping between subpopulations and 
computing clusters is discussed.  Further, dynamic 
bundling based on the MFLOPS metric of the clusters is 
also proposed and demonstrated to provide significant 
speed-up in the PHGA optimisation search. From our 
analysis, it is possible to conclude that a grid enabled 
hierarchical parallel evolutionary algorithm is not mere 
hype but does offers as a credible alternative for 
providing significant speed-up to complex engineering 
design optimisation. 
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