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ABSTRACT 
 
Evolutionary algorithms have been successfully applied to various design optimisation 
problems. However, the success of the optimisation is strongly influenced by its components 
which have to be adjusted carefully to the given task. Main ingredients of an efficient 
evolutionary design optimisation are a proper representation and an adequate evaluation tool 
for calculating the performance index of every evolved design. Furthermore a fully automated 
overall process with minimal user interaction is needed in order to allow an efficient usage of 
computational power. 
 
In the present paper an evolutionary optimisation is introduced which takes advantage of the 
concepts of free form deformation (FFD) for an efficient representation and the comfortable 
interface of FLUENT as parallelized flow solver in a computer cluster environment. A special 
focus is given to an autonomous adaptation of the design parameters which is achieved by 
an extension of the FFD method. The proposed methods are illustrated for a two-dimensional 
airfoil optimisation with the focus on the adaptivity of the chosen representation and its 
influence and impact on the evolutionary design optimisation process. 
 
 
1. INTRODUCTION 
 
The efficient development of optimal shape geometries plays a key role in every product 
design process. The integration of computational simulation methods into this process 
supports the designers and engineers. More and more additional information is available and 
mathematical models speed up the design process. In many cases, we can observe that 
autonomous design optimisation leads to a further essential reduction of development time. 
However, these methods are only applicable if certain requirements are fulfilled. At first it is 
important to guarantee the reliability of computer software, e.g. CFD or FEM simulators, 
which model the behaviour of developed designs in real world situations. Furthermore, the 
methods which drive the whole optimisation process have to be as efficient as possible to 
reduce the total number of optimisation steps and hence optimisation time while finding at 
the same time an optimal or suboptimal solution even in case of complex quality functions.   



A multitude of methods and algorithms has been proposed in the past to find a design 
solution which performs best with respect to the technical and geometrical constraints of a 
given task. Besides deterministic approaches like gradient based methods, evolutionary 
algorithms have become more and more popular for the optimisation of complex systems. 
This is mainly due to their ability to overcome local optima and to allow the optimisation of 
noisy quality functions. Furthermore, the considerable increase of available computing power 
made the use of population based search methods like evolutionary algorithms more feasible.  
Evolutionary algorithms which mimic the concepts of biological evolution can be applied to 
standard design optimisation problems where a fine tuning of an existing parameter set is the 
target of optimisation. Due to their properties they are also able to discover new and 
unexpected solutions which are not necessarily based on heuristical experiences of 
engineers and designers any more. This is only possible if the underlying representation 
allows for those changes. In the beginning of each optimisation process the design with the 
maximum performance is unknown. Therefore, it is often difficult to define suitable 
parameters, i.e., a representation of the shape, with sufficient degree of freedom. This 
problem could be solved by including as many parameters as possible with the drawback 
that the dimensionality of the design space increases leading to a high number of 
optimisation steps and hence a high degree of computational resources and time. The main 
focus of the presented method is put on an adaptation method which allows to add 
parameters during the optimisation process. The result is a higher degree of shape flexibility 
and locality while keeping a low number of optimisation parameters and in the same way 
keeping the amount of necessary a priori knowledge as small as possible. 
 
In the first part of this paper, we will introduce the theoretic concepts of evolutionary 
algorithms focusing on a special variant of Evolution Strategies, the covariance matrix 
adaptation (CMA-ES). Additionally, the chosen representation, the free form deformation, is 
briefly described focusing on the proposed extension which allows the adaptation of the 
representation as well as its consequences for the optimisation. With respect to the parallel 
fitness evaluation the integration of FLUENT for an automized flow calculation in a computer 
cluster is shown. In the second part of the paper, the basic applicability of the proposed 
methods is illustrated by an example of a two-dimensional airfoil design optimisation which is 
based on a FLUENT tutorial case.   
 
 

 
Figure 1. Airfoil Geometry [1] 

 
 
2. EVOLUTIONARY OPTIMISATION OF COMPLEX SYSTEMS 
 
Evolutionary algorithms belong to the group of stochastic optimisation algorithms. They 
mimic the concepts of biological evolution by applying operators for reproduction, mutation 
and/or recombination and selection. Prominent examples are Evolution Strategies (ES) and 
Genetic Algorithms (GA). Among the advantages of evolutionary algorithms are robustness 
against noisy or discontinuous quality functions, the ability to escape from local optima and to 
enable global search. In this paper, a special variant of Evolution Strategies, the Covariance 
Matrix Adaptation (CMA), is applied which provides the advantage of a high convergence 
rate for real-valued problems compared to other evolutionary algorithms. This characteristic 
is of special importance in the case of very time consuming evaluations like CFD simulations. 
The successful application of this type of algorithm has been shown previously e.g. for a 
turbine blade optimisation [2].  



 
The remainder of this section is organized as follows: An overview about evolutionary 
algorithms is given in 2.1, followed by a brief discussion of the special type of the CMA-ES in 
2.2. In Section 2.3 the design representation is explained in more details which is chosen in 
the airfoil optimisation, followed by an explanation of its combination with the applied flow 
solver FLUENT in a computer cluster environment in Section 2.4. Finally, the extension of 
the representation which allows its online adaptation and its consequences for the 
evolutionary optimisation are shown in Section 2.5.   
 
2.1 Concepts of Evolutionary Optimisation 
 
A typical evolutionary design optimisation procedure is depicted in Figure 2 using the airfoil 
example. First, the initial design which is the starting point of the optimisation is 
parameterized and its significant parameters are determined. These parameters are encoded 
as the so-called genotype in the parent’s chromosome. In the reproduction phase parents 
are chosen randomly and copied to form the offspring population. The generated offspring 
individuals which are exact copies of their parents are randomly mutated without any 
recombination. In Evolution Strategies this is done by adding a normally distributed random 
vector with zero mean. The variance is determined by a set of so-called strategy parameters 
which play the role of a step size for the variations. In order to adapt the step size optimally 
to the topology of the search space they are subject to the same process of evolutionary 
optimization as the object parameters. Thus, the search strategy is adapted during search, 
this type of meta-evolution is usually referred to as self-adaptation.  
 
The strategy parameters determine the search strategy. At the same time they provide 
information about the state of the whole optimisation process. A large step size indicates a 
more macroscopic search whereas a smaller one suggests a local search in a limited region 
of the search space. Finally, very small step-sizes also indicate the convergence of the 
optimisation. This behaviour will also be illustrated in the airfoil optimisation example. For the 
adaptation of the strategy parameters several different methods have been proposed which 
will be mentioned below. 
 

 
Figure 2. The generation cycle in evolutionary design optimisation 

 



After the mutation of the offspring the genotype is mapped to the phenotype, i.e., the actual 
designs are created based on the encoded parameter set and prepared for the evaluation. In 
this phase a fitness value is assigned to each design which determines the performance with 
respect to realistic conditions. When optimizing a fluid dynamical system, typically a CFD 
calculation is performed and a selected result, e.g. a force, pressure or temperature, is taken 
as the controlling fitness value. Based on the calculated fitness the best offspring is picked 
according to the chosen selection method. For Evolutionary Strategies two different kinds of 
selection operators exist, one is called (µ+λ)-selection, the other (µ,λ)-selection [3]. They 
differ in the way of choosing the offsprings which form the parent generation of the next 
generation. In a (µ+λ)-strategy the new parents are selected from the sum of the parents and 
the offsprings of the current generation whereas in a (µ,λ)-strategy only the offsprings are 
considered. In the first case a constant increase of the performance index is guaranteed 
because the best individual is kept in every generation but likewise it includes the danger that 
the evolution gets stuck in a local optimum. In the airfoil optimisation a (µ,λ)-strategy is 
applied, i.e. the selection takes place only on the offsprings. After this selection the process 
starts with a new reproduction cycle until the algorithm terminates when a certain stop 
criterion, e.g. a convergence threshold for the step size, is fulfilled.   
 
2.2 Covariance Matrix Adaptation (CMA-ES) 
 
For the performance of Evolution Strategies a crucial aspect is the adaptation of the strategy 
parameters which highly influence the behaviour of the search and finally the convergence 
speed of the algorithm. As explained in the previous section the strategy parameters mainly 
define the variance(s) of the normally distributed random vector which is added to the object 
parameter during the mutation phase. In the simplest case, one single strategy parameter 
determines the variance of all elements of the random vector. The strategy parameter itself 
can be adapted by a self adaptation process. Therefore, the same process of evolution is 
applied to it as to the object parameter. Instead of one single strategy parameter the CMA 
algorithm adapts the covariance matrix of the distribution of the random vector. Furthermore, 
the path of the evolution is observed in order to predict favourable mutations based on the 
history of the optimisation. The theoretical concepts of the CMA-ES and its successful 
application in test scenarios as well as in a CFD optimisation environment have been 
discussed in various papers [2], [4], [5]. A detailed description of the algorithm can be found 
in [6] and an implementation in a software library in [7]. To summarize, there are mainly three 
features of the CMA-ES which are important. Firstly, the stochastic influence in the mutation 
step is reduced by introducing only one stochastic source which is used for modifying both, 
the object as well as the strategy parameters. The actual mutation of a selected and 
successful individual which is responsible for the mutation of the object parameter is used for 
the adaptation of the strategy parameter. Secondly, the so-called cumulative step-size 
adaptation is applied which extracts information from past generations to speed up and 
stabilize the adaptation of the strategy parameter. Thirdly, an adaptation of the full 
covariance matrix of the probability density vector takes place instead of independent 
variances for each single parameter. Therefore correlated mutations can be realized which 
can significantly increase the convergence speed of the algorithm [3], [6]. 
 
2.3 Free Form Deformation as Representation 
 
The choice of an adequate shape representation, i.e., the set of object parameters, is crucial 
for the optimisation for various reasons. First, the representation defines the properties of the 
map from the genotype space (the object parameter space) to the phenotype space (the 
space of actual designs). The properties of this map are important because they can change 
the difficulty of the search process; one frequently quoted such property is strong causality 
[3]. Another one is completeness which is closely coupled to compactness. As mentioned 



previously, the representation should be very flexible, allowing to encode any feasible design. 
At the same time, the dimensionality of the search space should be kept minimal, i.e. the 
representation should be compact. Lower dimensionality will – in general – lead to faster 
convergence while only completeness guarantees that the optimal solution (whatever it might 
look like) can be represented by the chosen parameterization or representation. To 
overcome this trade-off between compactness and completeness we propose an adaptive 
extension of free form deformations which is explained in Section 2.5. 
 

 
Figure 3. Free Form Deformation [10] 

 
The concept of free form deformation has been introduced by Sederberg et al. [8] in the field 
of solid and surface modelling and has been extended and generalized by Coquillart [9]. 
Geometries are embedded within an arbitrary control volume which is defined by a set of 
control points. By modifying these control points deformations can be applied to the 
geometry and the resulting shape is calculated based on a system of trivariate Bernstein 
polynomials or B-splines respectively as mathematical foundation. Additionally, if this kind of 
representation is combined with evolutionary optimisation which requires CFD evaluations for 
determining the performance of designs another advantage can be identified. Because of the 
possibility to represent not only the surface mesh of a body but also all grid knots within the 
control volume, shape designs and CFD grids can be evolved simultaneously so that a costly 
mesh generation process can be omitted [10]. This property is especially important for 
complex systems because the CFD mesh can be directly deformed while keeping its 
structural composition.  
 
In the context of design optimisation two aspects of a free form deformation representation 
should be noted. On the one hand, the initial chromosome which is needed for the start up of 
the optimisation loop has to be prepared by encoding the initial geometry. On the other hand, 
directly before the evaluation phase the chromosomes have to be extracted and mapped to 
the geometric definition (genotype-phenotype mapping).    
 
Concerning the first aspect a lattice of control points has to be constructed which encloses 
either the whole object or the part of the object which will be modified during optimisation. In 
the second and most important step the geometry and grid coordinates have to be 
transferred into the parameter space of the lattice, a procedure which is also called “freezing”. 
When freezing an object the u, v and w coordinates of the geometry in spline parameter 
space are calculated. This is usually done by Newton approximation which is regarded to be 
the fastest approach but it can also be done by similar gradient based methods [9], [11]. 
Finally, the positions of the control points which are chosen for the deformation of the object 
are encoded in the parent’s chromosome as optimisation parameters. Practically, when this 
method is combined with CFD, at first the initial design is meshed. In a second step the part 
of the design which is subject to optimisation and its surrounding part of the CFD mesh is 
embedded within an adequate control volume. The arrangement of the control points should 



be chosen carefully to keep the number of parameters as low as possible. Additionally, the 
objective control points should be fixed close to the surface of the design to maximize their 
influence. After the control points have been selected the coordinates in parameter space 
can be calculated by freezing the geometry and the CFD mesh.  
 

 
Figure 4. Set-up of the control volume 

 
After the mutation step the new coordinates of the control points are extracted from the 
chromosome and the deformations are transferred to the design geometry as well as to the 
CFD mesh. By solving the B-spline equations using the new spatial coordinates of the control 
points the x, y and z coordinates of the design surface and the grid knots are updated. In 
case of combining this method with FLUENT as CFD solver the new grid coordinates are 
calculated and the case-file is modified by replacing the original grid coordinates with the 
new ones. This guarantees that the mesh is modified while the structural composition is kept 
the same. Via the possibility of journal files the whole evaluation with FLUENT is fully 
automized which is the subject of Section 2.4.  
 
2.4 Evaluation using Fluent as parallelized Flow Solver in a Cluster Environment 
 
While working with evolutionary design optimisation a high degree of process automation is 
desired to reduce manual interaction which can be error prone. In order to assign 
performance indices to each design, in every generation each of the λ offspring has to be 
evaluated. If CFD simulations are used the design has to be meshed, the case-file has to be 
produced, the numerical analysis has to be performed and a file containing the results has to 
be processed.  These procedures have to be carried out for each design in the population, 
i.e., the set of designs. The inherently parallel structure of evolutionary algorithms allows the 
straightforward coarse-grained parallelization of the optimization process. All individuals can 
be evaluated in parallel using the Parallel Virtual Machine (PVM) framework in a 
master/slave configuration [12], [13]. In the pre-evaluation phase the meshes are modified 
using the free form deformation technique and the case-files for each offspring are produced. 
For each case a FLUENT journal file is automatically generated which contains all required 
information about path’, case-setups and data storage. In the evaluation phase, each single 
computer node is notified by the master process to start-up a FLUENT solver and to initiate 
the numerical calculations using the corresponding FLUENT journal file. When the flow 
results are available the master process filters the fitness value from the transcript file and 
assigns it to each offspring so that the selection phase can be started. In the present airfoil 
design optimisation a total number of 377 generations à 14 offspring has been evaluated. 
Additionally 8 subpopulations à 14 offspring have been calculated in each of the two 
adaptation phases which are the subject of Section 2.5 resulting in 7238 flow solver calls. 
 



 
Figure 5. Parallelized computing in a cluster environment. We distinguish the Mutation (M), 

Evaluation (E), Reproduction (R) and Selection (S) phases. 
 
2.5 Adaptation of the Representation  
 
In order to solve the previously mentioned trade-off between compactness and completeness 
of the representation of the design, we will introduce in this section an adaptive 
representation [14], i.e., a representation which can change during optimization. During 
optimization new control points are introduced, thereby increasing the dimensionality and the 
design variability step by step during search. At the same time, the self-adaptation process 
has the tendency to decreases the strategy parameters, the variances of the normal 
distribution. Thus, while increasing the dimensionality of the search space with the adaptive 
representation, the search also becomes more and more local due to the decreasing strategy 
parameters. Therefore, we can interpret the process in the following way: Firstly, the whole 
design space is searched for promising areas. Secondly, the dimensionality is increased, 
thereby opening up new variation opportunities. However, due to the decrease of the “old” 
strategy parameters, the new degrees of freedom are restricted to the previously identified 
promising region. In other words, previously optimized control points will only experience 
slight changes whereas newly added control points will change more dramatically. This way 
a search in sub-spaces is organized by the search process itself. While in practice old 
strategy parameters nearly always decrease, theoretically – if necessary for the success of 
the search – even old strategy parameters can increase again. Thus, the whole process is 
much more flexible compared to a more straightforward approach to simple keep old 
parameters fixed when new ones are introduced. 
 
Having this behaviour in mind one can argue that only a rough description is necessary in the 
first phase of the optimisation. This can be realised by only a few parameters. Later on, the 
description should be more and more precise and focus on a region near a found sub-
optimum. Here a high number of parameters is needed but the search space is limited due to 
the local search.  
 
Free form deformations can be extended by adding additional control points without 
changing the actual shape in the design process. Thereby, we can change the design space 
and the representation of each solution without changing its shape and quality. In biology, 
this effect that a change in genotype space (the parameter space) does not lead to a change 
in phenotype space (the shape space) is called neutrality and the corresponding change a 
neural change. Neutrality is a very important property of the spline representation and 
therefore also of the free form deformation. Neutrality allows to change the design space 
without running the risk that the performance of the shapes is decreased.  
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The choice in which direction to increase the dimensionality of the design space or in other 
words where to insert an additional control point is crucial for the success of the adaptive 
representation. It can be done manually, e.g. using expert knowledge to determine where an 
increase of variability might be particularly beneficial for the optimization process. An 
alternative is to integrate the adaptation process into the evolutionary search. First, a number 
of different variations of the representation of an individual are generated by introducing 
additional points at random positions. In a second step all of these individuals are optimized 
in sub-populations in order to determine which search space extensions offer the most 
promising quality increase. The best changes of the representations are kept and integrated 
again into the overall search process. The target of this sub-population framework is to 
determine the potential of representational changes not necessarily to increase the overall 
performance. 
 

   
Figure 6. Workflow of an evolutionary strategy with adaptation  

 
In the present airfoil optimisation the representation is adapted as follows. At first the initial 
design is optimized until the step size converged in generation 100. The resulting design 
D100 with a corresponding set of control points which is stored in the parent’s chromosome 
is used for the adaptation process. To refine the representation eight sub-populations are set 
up which differ by the position of the inserted control points. In each sub-population a random 
number determines the position in the control volume where a new row of control points is 
inserted. The coordinates of these control points are calculated by a linear interpolation 
between the two neighbouring control points. Based on the extended control volume the 
coordinates of the geometry D100 are calculated in parameter space so that the current best 
design is unaltered. To proceed with the optimisation the chromosome of the parent is 
modified by adding the coordinates of the new control points. After these modifications took 
place the optimisation of each sub-population is continued for ten generations and the best 
design is determined by a comparison to the current performance index. The best one is 
selected and is the subject of the continuing optimisation process. Using this method the 
most promising design candidate is selected because the insertion of the new row of control 
points resulted in the biggest performance increase and hence these control points seem to 
have a major influence on the design. The adaptation phase is followed by another 120 
generations before a second adaptation phase is carried out using the same pattern as 
described above. This optimisation method results in an optimized design which will be 
presented in section 3. 
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3. Test Scenario: 2D Airfoil Optimisation  
 
The test scenario which is selected for illustrating the described evolution strategy is based 
on the example 3 in the FLUENT Tutorial Guide “Modelling External Compressible Flow” [1]. 
In Section 3.1, a short description of the configuration, constraints and assumptions is given, 
for more detailed informations on the set-up of the CFD calculation please see also [1]. The 
two-dimensional airfoil has been chosen because the relatively low number of cells and grid 
points limits the computation time needed to evaluate each design in the population which is 
the most critical factor in an optimisation involving CFD simulations. An average calculation 
took about 4 minutes using a PIII Xeon, 2.0 Ghz node, initialized with a pre-converged flow 
field. Therefore, the two-dimensional task provides a good middle course between showing 
the workflow of the optimisation and a resource friendly example. The proposed methods can 
be straightforwardly extended to three-dimensional design optimization tasks with more 
complex constraints. Additionally, we should note, that the final result of the optimisation is 
more or less artificial and does not claim to be of any practical relevance; it merely serves us 
as a demonstration of the feasibility of our optimization framework. 
 
3.1 Problem Description and Constraints 
 
Subject to the optimisation is the airfoil whose cross-section can be found in Figure 1. The 
velocity of the air is given by a mach number of 0.8 and the angle of attack is 4°. Before 
starting the evolutionary optimisation the wing is embedded in a control volume as shown in 
Figure 4 and Figure 7. In order to increase the influence of each control point the ones 
numbered 1, 2, 3 and 4 are positioned close to the geometry. These four points, i.e. their x 
and y coordinates are taken as object parameters and hence, they are encoded in the 
chromosome of the parent. The remaining four points shown in Figure 7 are kept constant 
because a movement of these points implies a strong deformation of the leading edge of the 
airfoil. If these points would be optimized too, the whole position of the wing would 
dramatically change and consequently the angle of attack. Therefore, the final result could 
hardly be compared to the initial settings. 

  
Figure 7. Definition and encoding of the initial control points 

 
As optimisation criteria the total lift of the wing is chosen which initially equals 15500 N. As 
additional constraints for the new evolved designs a minimum cross-section area and a 
minimum thickness have been introduced to prevent the airfoil from becoming too thin. 
 
3.2 Optimisation Results 
 
Based on the initial design a total number of 377 generations have been calculated. The 
course of the fitness and the global step size can be found in Figure 8. As stated above the 
whole optimisation falls into three sub-optimisations. Based on the initial definition 100 
generations have been calculated which lead to an increase of the fitness by 10700 N. As a 
good indicator about the state of the calculation the global step size can be analyzed. A 
larger step size (strategy parameters) indicates a large mutation of the object parameters 
whereas a lower one implies small mutations. It can be seen that in the beginning the step 
size increases fast because of the high rate of fitness changes. When the plateau is reached 
the step size converges towards zero indicating that an optimal solution has been identified, 
which we termed D100 and which is shown in Figure 9. The width of the design increased 
and the trailing edge moved upwards.  
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Figure 8. Course of fitness and step size during optimisation 

 
By adapting the representation, i.e. inserting new control points, a higher degree of flexibility 
is achieved. New control points allow local deformations to increase the overall performance. 
As a consequence the lift increases to 48500 N and a strong correlation between the fitness 
increase and the increase of the step size can be observed. Simultaneously, to the increase 
of the global step size we observe a high variance in the fitness values which reflects the 
increased search dimension and variability. The resulting design is similar to the final result 
D377 in Figure 9. Both designs feature a bend in the middle section which is only possible 
because of the insertion of new control points in this region. After the second adaptation the 
fitness increase is comparably small, approx. 3000 N. Therefore, the adaptation process has 
been stopped and the optimisation loop has been terminated. 
 
Initial Design D0     Design D100            Design D377 

 
Figure 9. Designs D0, D100 and D377  

 
 
4. CONCLUSIONS 
 
In the present paper, an evolution strategy has been combined with an extended free form 
deformation technique. This method has – especially for a design optimisation of fluid 
dynamical systems – various advantages. For many complex systems the number of 
parameters can be drastically reduced using free form deformation. Especially, the required 
additional process of grid generation which can take several days for complex shapes can be 
integrated into the optimization framework. Since the mesh is deformed together with the 
shape no re-meshing is needed. For evolutionary optimisation a high degree of automation 
and parallelization is needed which can easily be realized by running FLUENT via journal 
files in a cluster environment and via the exchange of computational grids by modifying case 
files.  
 
The method to adapt the representation allows an increase of flexibility during the 
optimisation process which is integrated in and governed by the process itself. As shown in 
the test scenario the performance of the design can be increased by introducing new control 
points which increase the dimensionality of the design space while allowing a higher degree 
of locality. However, there are also some limitations when using free form deformations with 
CFD which have to be considered carefully. With respect to the computational grid large 
modifications of the coordinates of the control points imply consequently large deformations 



of the cells. Therefore, it has to be guaranteed that the CFD mesh is still valid after 
deformation. The ratios of cell width to cell height have to be observed and changes in the 
order of the control points have to be prevented. In case of very large deformations the 
design has to be re-meshed and the optimisation has to be re-started based on the updated 
mesh.  
 
Improving the adaptive representation will be one of our future research focus, in particular 
the question when to increase the variability of the design during the optimization process 
requires additional analysis.  
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