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Abstract. Usually, optical flow computation is based on grayscale images and
the brightness conservation assumption. Recently, some authors have investigated
in transferring gradient-based grayscale optical flow methods to color images.
These color optical flow methods are restricted to brightness and color conser-
vation over time. In this paper, a correlation-based color optical flow method
is presented that allows for brightness and color changes within an image se-
quence. Further on, the correlation results are used for a probabilistic evaluation
that combines the velocity information gained from single color frames to a joint
velocity estimate including all color frames. The resulting color optical flow is
compared to other representative multi-frame color methods and standard single-
frame grayscale methods.

1 Introduction

The optical flow is an approximation for a 2D motion field of the velocity vectors of
each pixel of an image, with every vector being a projection of the real 3D velocity
of a corresponding surface point [4]. In the literature, the term optical flow is usually
related to image motion fields that are computed purely based on luminance informa-
tion. To the contrary, color optical flow fields are image motion fields that are estimated
based on color images which is also often termed multi-channel optical flow, image
flow estimation and photometric invariant optical flow etc.

The usual way for motion estimation is using grayscale images and assuming con-
stant brightness over time. The brightness constraint equation is a quite strong assump-
tion which is only appropriate for high frame-rates with small changes between con-
secutive frames, so that it often does not hold for real world sequences. In fact, the
luminance information is highly dependent on moving shadows, varying shading, mov-
ing specularities and fluctuations in the light source intensity [9]. To account for the
luminance problem, some authors have extended standard optical flow estimation al-
gorithms for the use of color images instead of grayscale ones. To do so, they replace
the brightness assumption with a less restrictive constant chromaticity assumption, also
called color invariance assumption, meaning that the color stays constant over time
[6],[9]. Obviously, color images contain more scene information than grayscale images
and therefore an improvement should be expected for color-based optical flow estima-
tion. Nevertheless, the constant color assumption seems to be nearly as restrictive as the
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constant brightness assumption, since the problem of varying information over time is
still present.

A simple experimental examination shown in Fig. 1 indicates that also color infor-
mation varies to a large extent within consecutive images of a real world sequence. A
person holding a yellow book in front of his body is moving towards the camera under
a fluorescent tube illumination. Measuring the RGB/HSV values of two consecutive
images It and It+∆t shows that the color information in the different color channels
within the black circle is 1) not constant across different pixels within the circle, mainly
because of chroma noise, and 2) also not constant for corresponding pixels within a
color frame over time, mainly because of luminance and reflection changes. The vari-
ances for the different color channels within the circle and over the two consecutive
images are listed in the table of Fig. 1.

It It+∆t

It It → It+∆t

RGB

HSV

σr = 13

σg = 14

σb = 21

σr = 12

σg = 7

σb = 3

σh = 5

σs = 22

σv = 6

σh = 8

σs = 13

σv = 4

Fig. 1. Example showing the change of color over time because of independent changes of bright-
ness and contrast within different color channels. The color components of an image pixel can
change over time because of reflection and illumination changes.

Besides varying color information, it is not clear how existing correlations between
the different color channels, mentioned by Madjidi and Negahdaripour in [7], can be
used for optical flow computation and how to handle brightness and color assump-
tions concurrently. In spite of the many open questions regarding color optical flow,
researches in that field are still quite sparse [6],[9],[1],[7],[3].

Looking at standard applications, the optical flow is usually gained by comparing
brightness patterns of two consecutive images It and It+∆t, where It is an image con-
sisting of pixels at locations x at time t. Comparing brightness patterns often leads to
assume brightness invariance of particular patterns under motion. Let Ŵ�Gt,p be a
weighted patch of gray values of image It centered and windowed about p (with �
symbolising the componentwise multiplication of two vectors). Gt denotes the vector
of intensities linked to the particular image and Ŵ defines a window function, which
restricts the pattern size. Assuming brightness conservation the standard correlation-
based optical flow equation can be formulated following [5] as:

Ŵ�Gt,p = Ŵ�Gt+∆t,p+∆p . (1)

In order to obtain color optical flow Golland and Bruckstein [6] used a standard
gradient-based approach with the same assumptions as in Eq. 1 and applied the re-
sulting brightness constraint equation to each channel of the RGB color space. Then
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they solved the resulting overdetermined system of linear equations by a standard least-
squares algorithm. In an alternative approach they propose that in pure color channels
changes in brightness do not appear and the resulting color conservation assumption
would be more appropriate. In this approach, they eliminate the brightness containing
channel, e.g. the Value channel of the HSV color space, and applied the two pure color
channels, e.g. the Hue and Saturation channel, to the mentioned constraint.

Starting from the dichromatic reflection model, van de Weijer and Gevers [9] de-
rive photometric invariants to improve optical flow estimation that in their approach
is independent of shadow-shading and specular reflectance changes. They propose the
combination of a reliability measure that considers instabilities of the photometric in-
variants and optical flow estimation to increase robustness.

Based on Gollands and Brucksteins first proposal, Barron and Klette [2],[3] anal-
ysed different standard differential techniques for computing the optical flow, e.g. the
Lucas and Kanade method or the Horn and Schunck regularization. For more details of
standard methods see [4]. Furthermore, they recast the Horn and Schunck regulariza-
tion adding a directional constraint that depends on one knowing whether the camera is
panning or zooming in the standard minimization formula.

Andrews and Lovell [1] developed some faster algorithms for solving the color op-
tical flow equations proposed by Golland, Bruckstein and Barron, Klette.

In this paper, we investigate the formulation of a local linear generative model that
approximately describes the correlation between colored image patches within two con-
secutive multi-frame color images. This model is used to generate locally as well as
channel independent measurements that are interpreted as discrete conditional proba-
bility density functions (pdfs) holding the probabilities for several motion hypotheses
given two consecutive color patches. The advantage of these pdfs given a set of discrete
velocities is that a number of velocity hypotheses can be tested concurrently. This means
that the velocity information derived from the single color channels can be combined
without loosing information. From these velocity distributions velocity vectors are ex-
tracted to estimate the optical flow of a color image sequence. The main assumptions
are 1) that due to illumination and reflection changes, the color as well as the brightness
and the contrast within an image patch can vary systematically over time, especially
when there are moving objects in a scene and 2) the information in the color channels
can be treated as statistically independent and so can be combined to one joint velocity
distribution for each image location.

In Sec. 2 a short introduction to color spaces and a motivation why we treat the
color channels as statistically independent is given. In Sec. 3 a model that allows for
local value changes over time within the color channels is proposed and a correlation-
based probabilistic interpretation is presented that leads to a contrast and brightness
invariant color optical flow estimation. Finally some quantitative results are given in
Sec. 4 followed by some short conclusion in Sec. 5.

2 Color Spaces

The representation of color in so called color spaces like the RGB, HSV or YCbCr
follows the trichromatic theory of color, whereby every color can be specified by an
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additive composition of appropriate features like, e.g. the quota of red, green and blue
in a particular color. Hence every color can be represented by a linear combination of
those features each presenting a basis vector, since they are linearly independent and
their span describes the whole space.

ci = xiex + yiey + ziez , with 0 ≤ xi, yi, zi ≤ 1 and i ∈ {RGB,HSV,YCbCr} (2)

The vector ci represents a particular color in space i, xi, yi, zi are the corresponding
values of the associated features and ex, ey, ez are the standard basis vectors. Thus, the
whole color picture is described by

Ci = (Xi;Yi;Zi)T , (3)

where Xi, Yi, Zi are the single color channels of the frame.
An example of a typical three channel HSV color frame is given in Fig. 2. Remarkable
are the large differences according to contrastive and homogenous areas between the
channels. Every color space is spanned by a 3D coordinate system which describes the
color gamut of a particular device [8].

Hue Saturation Value

Fig. 2. Example of a three channel HSV color frame with remarkable differences between the
channels

The spectral responsivity of the used sensors for measurement, e.g. of the red, green
and blue component, will overlap in most cases. Thus the measured components will
be correlated. Nevertheless we assume that the measured data of the different channels
are statistical independent, since 1) the spectral overlapping appears only in subareas of
the spectral responses and 2) the measured data is mostly preprocessed with device spe-
cific parameters that differs between the different sensor types meaning the dependence
between the channels is unknown. The assumption of statistical independent spectral
responses seems to be a good approximation, since in most cases knowing the spectral
response of one channel does not allow to draw any conclusions regarding the responses
of the other channels. Even if the value of one pixel in a particular channel is measured,
this does not constrain the set of possible values of another channel.

3 Correlation-Based Color Optical Flow

Our approach for calculating color optical flow bases on a formulation for computing
the optical flow of intensity images [5]. The used notation is illustrated and described in
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Ct,p
i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt,p
i

Yt,p
i

Zt,p
i

︷ ︸︸ ︷
ci = xiex + yiey + ziez

p

p

p

W

Fig. 3. This figure shows the used notation. A
color picture Ct,p

i consists of three color chan-
nels Xt,p

i , Yt,p
i , Zt,p

i with each channel contain-
ing a component, e.g. xi, yi or zi (See Eq. 2),
for each pixel p. A particular weighted 3D-patch
of an image at position p at time t is achieved
with the� operation of the window vector W :=
(Ŵ; Ŵ;Ŵ)T on the vector Ct,p

i in the sense
W�Ct,p

i = (W�Xt,p
i ;W�Yt,p

i ;W�Zt,p
i )T ,

denoting elementwise multiplication.

Fig. 3. Here, extending the brightness constancy assumption of Eq. 1, it is assumed that
during motion the contributions of the single color channels are independently jittered
by noise η and that brightness and contrast variations may occur over time, allowing
for systematic brightness, contrast and in addition color changes. The assumed color
changes imply e.g. changes of brightness or changes of the spectrum of the illumination.
These color changes are accounted for by a scaling vector λi and a bias vector κi. For
the sake of simplicity, we now neglect index i for the different color spaces and arrive
in analogy to Eq. 1 at

W�Ct,p = W� [
λ�Ct+∆t,p+∆p + κ

]
+ η , with (4)

λ := (λx1; λy1; λz1)T , κ := (κx1; κy1; κz1)T and η := (ηx1; ηy1; ηz1)T

In this expression the patch W�Ct,p contains in accordance to Eq. 3 for each pixel a
vector.

Assuming that the image noise of each channel is zero mean Gaussian and statis-
tically independent from the noise in the other channels, with variances σηx, σηy and
σηz , we get a covariance matrix Ση , where only the elements of the leading diago-
nal are different from zero. Thus, the likelihood that Ct,p is a match for Ct+∆t,p+∆p,
given a velocity v = ∆p/∆t and the parameter vectors λ, κ, the window function W
and the covariance matrix Ση , can be written down as:

ρ
(
Ct+∆t,p+∆p,Ct,p | v) ∼ (5)

∼ e
− 1

2

(
W�(λ�Ct,p+κ −Ct+∆t,p+∆p)

)
Σ−1

η

(
W�(λ�Ct,p+κ −Ct+∆t,p+∆p)

)T

We now proceed to make Eq. 5 independent on λ and κ. Thus we maximize Eq. 5 with
respect to λ and κ. This leads to a minimization of the exponent of Eq. 5:

{λ∗, κ∗} := minλ,κ F, with (6)

F :=
(
W�(λ�Ct,p+κ −Ct+∆t,p+∆p)

)
Σ−1

η

(
W�(λ�Ct,p+κ −Ct+∆t,p+∆p)

)T

.

This amounts to solve the homogeneous equation system which we get from setting
the derivatives of Eq. 6 in direction of (λ, κ) to zero:

d

d(λ, κ)
F = 0 ,

d2

d(λ, κ)2
F > 0 . (7)
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In the case that each color channel has an independent λ, this minimization leads
to three independent equation systems each containing two constraints with two un-
knowns, which can be solved separately.

Let λ∗ =
(
λ∗

x, λ∗
y, λ∗

z

)T
, κ∗ =

(
κ∗

x, κ∗
y, κ∗

z

)T
be the parameters which minimize

Eq. 6. Substituting λ = λ∗ and κ = κ∗ into Eq. 5, the final likelihood reads:

ρ
(
Ct+∆t,p+∆p,Ct,p | v) ∼ e

− 1
2

∑
A=X,Y,Z

(
σ
At,p
σηA

)2(
1−�2

At,p,At+∆t,p+∆p

)

, (8)

with σAt,p being the variance of the weighted patch of the momentary channel and
�At,p,At+∆t,p+∆p being the correlation coefficient between two patches of two consec-
utive channels over time. From here on, for the sake of brevity, we now write ρt(p|v) :=
ρ

(
Ct+∆t,p+∆p,Ct,p | v)

, which expresses the joint likelihood of the image data at lo-
cation p at time t given discrete motion hypotheses v for all color channels. We see that
ρt(p|v) factorizes, so that the corresponding probability for the whole image can be
written as

ρt(p|v) = ρt
x(p|v) · ρt

y(p|v) · ρt
z(p|v) , (9)

meaning that they can be calculated separately, with ρt
x(p|v), ρt

y(p|v), ρt
z(p|v) being

the likelihoods of each channel. The final optical flow field can directly be estimated
from the joint likelihood ρt (p|v) and a given prior ρ (v) using Bayes’ rule and the
maximum a posteriori estimator:

ρt (v|p) = ρ (v) ρt (p|v) , and v = max
v

(
ρt (v|p)

)
. (10)

In the following experiments the prior was chosen to be equally distributed.

4 Results

To give a quantitative analysis and a comparison to other existing color optical flow
methods we used two pan and zoom synthetic image sequences generated by John Bar-
ron and Reinhard Klette and added our results to the results presented in [3]. The quan-
titative error measurements can be seen in Table 1 and the corresponding optical flows

Fig. 4. Panning and Zooming color optical flow for the RGB color image
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Table 1. Error measurements reported in [3] including our results for comparison

Panning eM ± σeM
eϕ ± σeϕ Zooming eM ± σeM

eϕ ± σeϕ

Horn-Schunk RGB 24.27% ± 23.62% 4.56◦ ± 6.19◦ Horn-Schunk RGB 13.72% ± 14.92% 6.54◦ ± 7.91◦

Lucas-Kanade RGB 4.90% ± 9.31% 1.00◦ ± 3.44◦ Lucas-Kanade RGB 8.17% ± 12.04% 4.01◦ ± 12.13◦

Barron-Klette RGB 26.21% ± 19.29% 0.0◦ Barron-Klette RGB 15.48% ± 23.89% 0.0◦

Golland-Bruckstein RGB 11.38% ± 17.36% 5.04◦ ± 11.80◦ Golland-Bruckstein RGB 14.74% ± 19.37% 7.56◦ ± 14.87◦

Otha RGB 12.38% ± 18.91% 6.04◦ ± 12.80◦ Otha RGB 18.69% ± 27.87% 9.78◦ ± 15.80◦

Willert-Eggert-Clever RGB 0.0% 0.0◦ Willert-Eggert-Clever RGB 22.17% ± 18.77% 6.34◦ ± 6.33◦

Willert-Eggert-Clever HSV 1.97% ± 13.9% 0.001◦ ± 0.41◦ Willert-Eggert-Clever HSV 26.20% ± 21.39% 7.79◦ ± 8.61◦

Willert-Eggert-Clever YCbCr 0.0% 0.0◦ Willert-Eggert-Clever YCbCr 22.43% ± 18.91% 6.52◦ ± 6.48◦

Horn-Schunk S 43.69% ± 28.94% 10.48◦ ± 11.61◦ Horn-Schunk S 22.83% ± 11.23% 11.23◦ ± 12.81◦

Lucas-Kanade S 6.54% ± 13.19% 1.39◦ ± 4.54◦ Lucas-Kanade S 10.21% ± 14.66% 5.32◦ ± 13.62◦

Barron-Klette S 32.59% ± 20.19% 0.0◦ Barron-Klette S 26.43% ± 39.99% 0.0◦

Golland-Bruckstein S 16.97% ± 22.41% 9.34◦ ± 20.80◦ Golland-Bruckstein S 20.08% ± 24.05% 12.99◦ ± 23.98◦

Willert-Eggert-Clever S 10.77% ± 31.00% 0.002◦ ± 0.70◦ Willert-Eggert-Clever S 37.69% ± 24.68% 16.55◦ ± 21.10◦

Horn-Schunk Y 22.90% ± 24.12% 4.73◦ ± 7.28◦ Horn-Schunk Y 21.47% ± 20.50% 10.35◦ ± 11.73◦

Lucas-Kanade Y 6.14% ± 11.95% 1.63◦ ± 5.23◦ Lucas-Kanade Y 9.46% ± 14.04% 5.05◦ ± 13.61◦

Barron-Klette Y 20.06% ± 20.67% 0.0◦ Barron-Klette Y 23.67% ± 21.18% 0.0◦

Golland-Bruckstein Y 21.08% ± 28.07% 12.59◦ ± 24.99◦ Golland-Bruckstein Y 18.91% ± 23.72% 11.46◦ ± 21.84◦

Willert-Eggert-Clever Y 0.005% ± 0.51% 0.007◦ ± 0.89◦ Willert-Eggert-Clever Y 23.01% ± 18.32% 6.73◦ ± 6.72◦

Fig. 5. Color optical flow for real-world sequences for a YCbCr and a RGB color sequence

are printed in Fig. 4. The same quantitative error measurements reported in [3], that is,
the relative magnitude errors eM = 1/ij

∑
ij ||vc

ij − ve
ij ||2/

∑
ij ||vc

ij ||2 × 100% and
the angle errors eϕ = 1/ij

∑
ij arccos(vc

ij · ve
ij) with their corresponding variances

σeM and σeϕ , are used. Although the test sequences are synthetic sequences with no
illumination and reflection changes at all, which means the extension to a channelwise
contrast and brightness invariant measurement is not necessary, our method compares
quite favourably to the others. Especially for the panning sequence our method outper-
forms the existing ones. Since we use the maximum a posteriori estimator we cannot
reach subpixel accuracy and our results for the zooming sequence are not that convinc-
ing. To give a first impression on how our method works on real world sequences we
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added two further example sequences shown in Fig. 5. The qualitative optical flow re-
sults for an YCbCr (left) color and a RGB (right) color sequence processing only two
consecutive images of the sequence can be seen.

5 Conclusion

We have presented a probabilistic correlation-based color optical flow algorithm that
allows for brighness, contrast and color changes over time. In the case of pixel accuracy
it compares quite favourably to existing gradient-based approaches that assume bright-
ness, contrast and color to be constant over time. Our generative model for color image
formation can be extended straightforwardly to also allow for correlations between the
color channels by adding crossterms to the scaling and bias parameters. To study the
usefulness of such crossterms for optical flow estimation will be the topic of further
research.

Acknowledgements. Special thanks to Prof. John L. Barron from the University of
Western Ontario, Canada, and his college Prof. Dr. Reinhard Klette from the University
of Auckland, New Zealand, who provided us with their test sequences.
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