
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Associative Language Processing in Cortical
Areas

Heiner Markert, Andreas Knoblauch, Günther Palm

2005

Preprint:

This is an accepted article published in Proceedings of the IEEE SMC UK-RI
Chapter Conference 2005 on Applied Cybernetics. The final authenticated
version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Associative Language Processing
in Cortical Areas

Heiner Markert1, Andreas Knoblauch2 and Günther Palm1

1Abteilung Neuroinformatik, Fakultät für Informatik, Universität Ulm,
Oberer Eselsberg, D-89069 Ulm, Germany

Tel: (+49)-731-50-24151; Fax: (+49)-731-50-24156
{markert,palm}@neuro.informatik.uni-ulm.de

2Honda Research Institute Europe GmbH
Carl-Legien-Str. 30

D-63073 Offenbach/Main, Germany
Tel: (+49)-69-89011-761; Fax: (+49)-69-89011-749

andreas.knoblauch@honda-ri.de

Abstract – We have implemented a system that can
learn to associate words with objects, properties like
colours and form as well as actions. The model is
based on associative memories using sparse distributed
representations. The system is used in a robotics sce-
nario where a robot has to respond to spoken or typed
commands like “bot show plum” or “this is cup”. This
involves parsing and understanding of simple sen-
tences and relating nouns to concrete objects sensed
by the camera. The model is able to learn new objects
at run time.

Keywords: associative memory, sparse patterns, dis-
tributed representation, neural assemblies, Hebbian
learning, language understanding, global brain mod-
elling

1 Introduction
When humans are processing language referring to

actions or visual scenes, distributed cortical networks
including motor areas and parts of the visual systems
become active [1]. There appear to be strongly cou-
pled neuron ensembles in the brain, correlating be-
tween words and their referred actions and objects.
The theory of cell assemblies [2–5] provides one of the
most promising frameworks for modelling and under-
standing the brain in terms of distributed neuronal
activity. It is suggested that entities of the outside
world as well as internal states are coded in groups of
neurons and that a neural cell assembly is generated
by Hebbian coincidence learning [6] where the synap-
tic connections are strengthened between co-activated
neurons. Thus models of neural associative memory
have been developed as abstract models for cell as-
semblies.

In this work we describe a neurobiologically plau-
sible model of language processing based on cell as-
semblies [2–4]. We have developed a system that can
learn to associate words with objects, properties like
colours, and actions. This system is used in a robotics
context to enable a robot to respond to spoken or
typed commands like ”bot show plum” or ”bot put
apple to yellow cup”. This involves parsing and un-
derstanding of simple sentences and relating nouns to
concrete objects sensed by the camera and recognised
by a neural network from the visual input.

2 Neural associative memory
We decided to use the Willshaw associative memory

[7, 8, 3] as a single framework for the implementation
of cell assemblies in cortical areas. The idea of cell
assemblies goes back to Hebb [2], and we have chosen
the Willshaw model mainly because it is a biological
plausible while still simple implementation of the idea
of cell assemblies. The Willshaw model seems more
realistic than e.g. the Hopfield model [9] as in the
latter single synapses need to change from inhibitory
to excitatory behaviour during learning, which does
not happen in biological systems. It is also the most
effective associative memory mechanism in terms of
storage capacity and information efficiency [10–13].

A cortical area consists of n binary neurons which
are completely connected by binary synapses. A cell
assembly or pattern is a binary vector of length n
where k one-entries in the vector correspond to the
neurons belonging to the assembly. Usually k is much
smaller than n. Assemblies are represented autoas-
sociatively in the synaptic connectivity such that any
two neurons of an assembly are bidirectionally con-
nected.

Instead of classical one-step retrieval we use the
spike counter model, an improved architecture based
on spiking associative memory [14]. The model is
explained in detail in section 3. A cortical area is
modelled as a local population of n neurons which re-
ceive input from other areas via Hebbian learnt hetero-
associative connections. The model is simulated in
global time steps with relatively low temporal resolu-
tion. Within each global step, each area computes ex-
actly one pattern retrieval which requires only local in-
formation and therefore can be simulated with higher
temporal resolution. Basically, the neurons receiving
the strongest heteroassociative external input will fire
first, and all emitted spikes are fed back immediately
through Hebbian learnt auto-associative connections.
Depending on the so called threshold parameter α of
the model, this can lead to activation of single as-
semblies as well as activating all assemblies similar to
the address pattern. In comparison to the classical
model, this model has a number of additional advan-
tages. For example, assemblies of different size k can
be stored and input superpositions of several assem-
blies can more easily be separated. Even more, the
model allows for automatic detection of the address
quality. This could for example be used to adjust the
threshold parameter according to the input quality.
The systems behaviour will then change depending on
the address quality: If there is an assembly which is
addressed more “consistent” than all others, this and
only this assembly will be activated. If a decision for
one single assembly is not possible, the threshold will
be decreased leading to the parallel activation of sim-
ilar assemblies, representing uncertainty or ambiguity
in that specific area.

3 The spike counter model
This section will describe the spike counter model,

which is the underlying principle of the whole system,
in greater detail.

Let N be the number of neurons in the whole net-
work. Our architecture divides the network in to sev-
eral disjoint areas, which we will call P1, P2, . . . , PM .
Note that each neuron must belong to exactly one pop-
ulation Pi. For simpler notation, we also enumerate
the neurons according to the population they belong
to, e.g. the first |P1| neurons belong to population P1,
the neurons |P1|+ 1, . . . , |P1|+ |P2| belong to P2 and
so on.

There is an autoassociative connection matrix APi

for each population Pi where the synaptic weights of
the autoassociative feedback of the area onto itself are
stored. Furthermore, any two populations Pi and Pj

can be heteroassociatively connected to each other via
a coupling matrix Hk

PiPj
. A non-negative delay matrix

Dk
PiPj

is assigned to each heteroassociation. The en-
tries of the delay matrix are integral numbers and give

the delay in global time steps (see below). The index
k allows for several heteroassociative connections be-
tween the same populations, e.g. with different delay
values.

The matrices APi
can be written into one large au-

toassociative feedback matrix for the whole system by
putting each APi on the i-th position of the diago-
nal and zeros elsewhere. Similarly, heteroassociative
matrices Hk with corresponding delay matrices Dk

are constructed from the sets (Hk
PiPj

)ij and (Dk
PiPj

)ij

(put Hk
PiPj

at position (i, j) of the matrix Hk).
Before the above notation can be used to formu-

late the differential equations the system is based on,
we need to introduce a special notation of time. For
efficiency reasons, the model uses two different time
scales, a global discrete time s and during each global
time step a relative continuous time t. Let the global
time steps be s1, s2, Then, in each global time
step the following operations are performed:

• All output values are fixed in the whole system
and each population is performing exactly one
pattern retrieval. As the retrieval itself is a dy-
namical process, we introduce a relative time tsi

in each global time step si, which will be used
to calculate spike times of the neurons relative to
the global time step.

• If all retrievals are finished, we propagate the new
spike activity through the heteroassociative con-
nections.

Let x denote the membrane potential of one specific
neuron (with some index i ∈ {1, . . . , N} which we do
not always write down to keep the equations simpler).
Then, in global time step s, the model is given by
xs(0) = 0 and

ẋs(ts) = a1 ·I
(
cH
s−1, c

F
s−1

)
+a2 ·F

(
cH
s−1, c

F
s−1, c

A
s , cΣ

s

)
,

(1)
where a spike is emitted as soon as x exceeds thresh-
old Θ. Here, I is the initialisation function which only
depends on the heteroassociative input and autoasso-
ciative feedback input and is constant over the whole
time step s. F is called input integration function
and is the most important term characterising the re-
trieval dynamics. The values ai are simply real valued
weighting factors. The cX

s -parameters are real-valued
functions of t which describe different state aspects of
the system at a given global time step s and relative
time t. If t is infinite, the value usually refers to the
complete global time step s.

Before we give a detailed description of I and F
below in equations (10) and (11), we first introduce
the idea of spike counters. Basically, the parameters
cH , cF , cA and cΣ (we dropped the index s here for
simplicity) all count several spikes that happened in
a specific time step until a given time. What makes

them different is the set of neurons they count spikes
on and the weight a spike gets. In more detail, cH is
counting the number of heteroassociative input spikes
a neuron gets, i.e. if we look at cH

s−1(∞) in time step
s for a neuron with index i, the counter value is the
number of neurons that emitted a spike in time step
s − 1 and that are connected heteroassociatively to
neuron i. Additionally, cH is a weighted sum where
early spikes are more important. Similarly, cF counts
the number of autoassociative feedback spikes, i.e. the
number of spikes that a neuron received via its autoas-
sociative feedback matrix from the previous time step,
weighted in the same way as cH . These two are mainly
used for initialising the retrieval, as they correspond
to the external input of a population. The parame-
ter cA is used during retrieval. For each neuron i in
a time step s at relative time t, it gives the number
of neurons that already spiked in time step s before
time t and that are connected to neuron i autoassocia-
tively. The counter cΣ is similar to cA, but instead of
counting only the neurons that have a connection to a
specific neuron i, it counts all spikes that occurred in
the population of neuron i at time step s before time
t, i.e. cΣ gives a measure of the total activity in the
population. Both cA and cΣ are non-weighted sums
over the active neurons.

Formally, the spike counters are given by

(cH
s)j(t) =

∑
k

∑
i

Θ(
T (s−Dk

ij , t)
)
i

·Hk
ij (2)

(cF
s)j(t) =

∑
i

Θ
(T (s, t))i

·Aij (3)

(cA
s)j(t) =

∑
i

yi(t) ·Aij (4)

(cΣ
s)j(t) =

∑
i∈P (j)

yi(t) (5)

where P (j) is the population containing the neuron
with index j. In the above equations, we made use of
the state variables

ys
i (t) = 1{xs

i
(t)≥Θ}(t) (6)

(T (s, tmax))i = min{t ≤ tmax : ys
i (t) = 1}. (7)

The value y is 1 if the neuron i already emitted a spike
in global time step s before time t, zero otherwise. The
value T is derived from y and is the time of the first
spike of neuron i in the global time step s before time
tmax. In (7), the minimum over an empty set is ∞,
i.e. (T (s, tmax))i = ∞ if {t ≤ tmax : ys

i (t) = 1} = ∅.
We now define two helper functions:

hs
w(t) = cH

s−1(t) + w · cF
s−1(t) (8)

ks(t) = cH
s−1(∞) ·

(
cA
s (t)

cΣ
s (t)

· (a6 − a5) + a5

)
,(9)

where ks(t) = 0 if cΣ
s (t) = 0. Finally, we can define

the initialisation function I and the input integration

function F as follows:

I(cH
s−1, c

F
s−1) = hs

a3
(∞) (10)

F (cH
s−1, c

F
s−1, c

A
s , cΣ

s) = hs
a4

(t) + α · ks(t) (11)

Here, α ∈ [0, 1] and a3 to a6 are real-valued weight or
scale factors. For our simulations, a6 has a small pos-
itive value (typically 0.02), while a5 is around −50.
The values of a3 and a4 control how strong the au-
toassociative feedback of a population is and depend
on the population under consideration. Typical val-
ues for both a3 and a4 are in the range of zero to 100,
where zero means no feedback at all, while 100 means
very strong feedback.

Note that at a given time step s there is a finite
relative time ts where no more neurons are able to
spike, as we allow every neuron to spike at most twice.

The input integration function (11) plays a major
role during retrieval. It calculates some sort of confi-
dence measure for each neuron whether it belongs to
the addressed assembly (F positive) or not (F small
or negative). If F is negative with high absolute value,
ẋ in equation (1) will become negative and the neuron
will not reach threshold Θ at all, so it will not spike. If
F is positive with high absolute value, ẋ will be very
large and the neuron will fire very soon. F basically
is high, if cA is about as high as cΣ for a neuron and
negative if cA << cΣ. The parameter α determines
how fast F decreases with decreasing ratio of cA to
cΣ, which in turn has an influence on the separation
strength of the population: a lower α allows multiple
assemblies to spike during one retrieval, while high
values of α allow only one assembly to become active.

As we demonstrate in the following sections our
model can be used to adequately process ambiguous
inputs and, if necessary, learn new representations.
For this it is necessary to recognise “bad” retrievals.
By allowing the neurons to spike twice in each re-
trieval (reset x to zero after a spike) we determine the
retrieval quality as follows: If exactly one assembly
was addressed, it will spike twice, very early and al-
most synchronously with no other neurons spiking in
between the two spikes. If the input quality becomes
worse (e.g., when addressing with a superposition or
noise), more neurons not belonging to one assembly
will fire before the earliest second spikes appear. Also,
only the overlap of the addressed patterns will belong
to the earliest second spikes and not a whole assem-
bly. By exploiting this information the basic confi-
dence measure can be calculated.

Additionally, a simple retrieval with high α can be
done for control purposes and allows for a larger vari-
ance in assembly size. The control retrieval can be
used to determine the assembly with strongest input.
Instead of counting the number of neurons which par-
ticipated in the first spikes and comparing this value
to the optimal assembly size, the control retrieval can

af−A5−O2af−A5−S af−A5−P af−A5−O1

A2 A3A4

A5−S A5−P A5−O1−a A5−O1 A5−O2−a A5−O2

A1

af−A4

e.g., "Bot show plum!"
auditory input,

goal areas

Figure 1: The language system consisting of 10 corti-
cal areas (large boxes) and 5 thalamic activation fields
(small boxes at bottom). Straight arrows correspond
to inter-areal connections, while circular arrows corre-
spond to short term memory.

be compared against the first spikes in the main re-
trieval.

Our basic model has a nice correspondence with well
known neurobiological mechanisms which have been
studied previously in a simpler but biologically more
realistic model variant [14]. In particular, the spike
counters can be interpreted as excitatory (cA, cH , cF)
and inhibitory (cΣ) synaptic conductances, and the
different weighting of early and late spikes corresponds
to a spike-latency code relative to an underlying oscil-
lation.

4 Cortical language model
Figure 1 gives an overview of our model for cortical

language processing. The model mainly consists of 10
cortical areas, each of which is implemented using the
spike counter model described in section 3. The sys-
tem can understand simple sentences like ”bot show
red plum” or ”bot lift apple”. The combination of a
sequence detector unit (called A4) used to store gram-
matical information and additional areas (A5-X) for
storing the grammatical function of previously pro-
cessed input words allow the model to parse regu-
lar grammars. For a more detailed description, see
[15,16].

The system is able to detect and correct ambigu-
ous input on the single word level as long as enough
context information is or becomes available (see also
[15]). For example, the sentence “bot lift red bwall”
with ambiguous input between “ball” and “wall” will
be correctly interpreted as “bot lift red ball” by this
model, because a wall is not a liftable object. Sim-
ilarly, the sentence “bot show/lift green wall”, with
an artificial ambiguity between “show” and “lift”, is
correctly understood as “bot show green wall”. This
shows that even if the disambiguating context infor-
mation arrives after the ambiguous input and even af-

ter an intermittent word (“green”), the system is still
able to disambiguate the input. This works by con-
trolling the threshold parameter of each single area by
its retrieval quality as described in section 2.

5 Online Learning
The estimation of the retrieval quality enables the

model to decide whether a presented pattern is already
known to the system or if it is something completely
new. We will show that this can be used to learn new
objects online. The scenario for this is a robot close
to one or two tables on which there are certain kinds
of fruits and/or other simple objects [15]. The robot
is given spoken or typed commands like “bot show
red plum”, on behalf of which it will have to search
its vicinity for a red plum and point to it, if it found
one. A task like this also requires attention control
and object detection mechanisms in the system, for
further details on that see e.g. [15].

Learning of new patterns will be initiated by a com-
mand like “this is cup”. In a simplified scenario, giv-
ing this command requires that only one object is cur-
rently in the robots visual field, in a more complex sce-
nario, the robot will have to look for gestures pointing
to an object. The language processing system then re-
alises the command “this is” and prepares the system
for learning. This means that bad retrieval quality in
the language areas will now not be interpreted as un-
certainty in the auditory input, but as evidence that a
previously unknown object is going to be learnt. If the
latter is the case, new representations for the object
will be generated in the corresponding language areas.
New assemblies will be generated from the strongest
activated neurons, while a certain percentage of ran-
domly chosen neurons may also be added to add some
variability to the patterns. In parallel, the system uses
its object classification to see whether the visual in-
put is already known and if not, it extends its object
recognition system by a new class for “cup”. Finally,
it associates the output of the object recognition sys-
tem with the representations in the language areas to
bind the different modalities for the new object.

After successful learning, the new object can be
used like any of the previously stored objects, e.g. the
robot can correctly respond to commands like ”bot
show cup”.

6 Results
We have implemented the system described above

on a robot. Running only the language system on a
standard laptop machine (P4 1.5 GHz), it is able to
process sentences much faster than one can actually
speak or type the commands. Currently, the language
model consists of 18000 neurons divided into 18 pop-
ulations. The associative memories have a vocabulary
of about 50 words. In our current implementation

we do not have a speech recogniser, so input must be
typed in with the keyboard or alternatively one can
directly activate some neurons in the input popula-
tions.

Figure 2: The language system after processing the
input word “bot” as start of a new sentence.

Figure 3: The language system after almost process-
ing “bot show/lift”, where “show/lift” is an artificial
ambiguity between the words show and lift.

In the following we will show how the system deals
with the sentence “bot show/lift green wall” with an
artificial ambiguity between show and lift (parts of
both representations are equally strong activated in
the input). Figure 2 shows the system after the first
word “bot” has been processed. Area A1 is the input
area where the assembly representing the word “bot”
is active. For convenience, the name of the active rep-
resentation is displayed instead of neural activity. The
activation is then forwarded to area A2/A3 which sep-
arate between simple grammatical structure elements
(syntax) and their meaning (semantic). Thus, A2 has
activated the “word” assembly while A3 represents the
meaning “bot” again. As this is the first word of a sen-
tence and currently all sentences have to start with a
subject, area A5-S became activated and binds the
word to its grammatical meaning in the current sen-
tence.

In figure 3 the ambiguous input “show/lift” is pre-
sented. Area A1 has a “showlift” representation
stored (which is actually a mixture of the show and
lift assemblies), this is just for convenience to see that

Figure 4: The language system after processing “bot
show/lift green”, where the final word “wall” is about
to be activated in area A5-O1.

Figure 5: The language system while disambiguat-
ing “bot show/lift green wall”. The disambiguation is
already starting to be effective, the “show” represen-
tation moved up in A5P, which means that it spiked
earlier than all the others.

really a mixture of both representations has been acti-
vated. All other populations only have representations
for “show” and “lift” but do not know anything about
a mixture of the both. Thus, as the activation gets for-
warded to A3, the population notices ambiguity, low-
ers its α-parameter and activates multiple assemblies
(here, “lift”, “pick”, “drop”, and “show” are fully ac-
tivated, as all four of them have large enough overlap
with “lift” and “show”). As before, the activation is
then processed and stored finally in area A5-P, as it
is the predicate of the sentence.

In A5-P, the ambiguity is held while the input
“green” is processed, figure 4 shows the system when
already the last word “wall” comes in. In the next
step, the “wall” assembly is activated in A5-O1, the
object area of the language system. If this is the case,
the disambiguation connection from A5-O1 to A5-P
will give additional multiplicative input on area A5-P,
where it privileges action verbs that can be done with
large objects like a wall. Obviously, this is not the
case for “lift” and therefore, “show” is going to win

Figure 6: The language system after successfully in-
terpreting the ambiguous input “bot show/lift green
wall”.

the battle. The disambiguating input is very weak,
so it takes several time steps until area A5-P can do
a final decision, figure 5 shows the system while the
disambiguation takes place. In figure 6, the final state
of the machine is depicted, showing that it correctly
decided for “bot show green wall”.

7 Conclusion
The neural implementation of the language under-

standing system presented here not only shows that
this comparatively intricate logical task can be mas-
tered by a neural network architecture in real time,
it also gives some additional advantages in terms of
robustness and context-awareness. Indeed the system
can correct ambiguous input on the single word level
due to the context of the whole sentence and even the
complete sensory-motor situation. Similarly the lan-
guage input could be used to disambiguate ambiguous
results of visual object recognition.

This demonstrates the usefulness of a close inter-
play between symbolic and subsymbolic information
processing (also known as “symbol grounding”) in au-
tonomous robots, which can be easily achieved by bi-
ologically inspired neural networks.

8 Acknowledgements
This work was partially supported by the MirrorBot

project of the European Union, award #IST-2001-
35282.

References
[1] F. Pulvermüller. Words in the brain’s language.

Behavioral and Brain Sciences, 22:253–336, 1999.

[2] D.O. Hebb. The organization of behavior. A neu-
ropsychological theory. Wiley, New York, 1949.

[3] G. Palm. Neural Assemblies. An Alternative Ap-
proach to Artificial Intelligence. Springer, Berlin,
1982.

[4] G. Palm. Cell assemblies as a guideline for brain
research. Concepts in Neuroscience, 1:133–148,
1990.

[5] G. Palm. On the internal structure of cell as-
semblies. In A. Aertsen, editor, Brain Theory.
Elsevier, Amsterdam, 1993.

[6] G. Palm. Local rules for synaptic modification in
neural networks. Journal of Computational Neu-
roscience, 1990.

[7] D.J. Willshaw, O.P. Buneman, and H.C.
Longuet-Higgins. Non-holographic associative
memory. Nature, 222:960–962, 1969.

[8] G. Palm. On associative memories. Biological
Cybernetics, 36:19–31, 1980.

[9] J.J. Hopfield. Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the National Academy of
Science, USA, 79:2554–2558, 1982.

[10] G. Palm. Local learning rules and sparse coding
in neural networks. In R. Eckmiller, editor, Ad-
vanced Neural Computers. North-Holland, Ams-
terdam, 1990.

[11] G. Palm. Memory capacities of local rules
for synaptic modification. A comparative review.
Concepts in Neuroscience, 2:97–128, 1991.

[12] G. Palm. On the information storage capacity of
local learning. Neural Computation, 4:703–711,
1992.

[13] G. Palm and F.T. Sommer. Information capac-
ity in recurrent McCulloch-Pitts networks with
sparsely coded memory states. Network, 3:177–
186, 1992.

[14] A. Knoblauch and G. Palm. Pattern separation
and synchronization in spiking associative mem-
ories and visual areas. Neural Networks, 14:763–
780, 2001.

[15] R. Fay, U. Kaufmann, A. Knoblauch, H. Markert,
and G. Palm. Combining visual attention, object
recognition and associative information process-
ing in a neurobotic system. In Wermter et al.
[17].

[16] H. Markert, A. Knoblauch, and G. Palm. Detect-
ing sequences and understanding language with
neural associative memories and cell assemblies.
In Wermter et al. [17], pages 106–116.

[17] S. Wermter, G. Palm, and M. Elshaw, edi-
tors. Biomimetic Neural Learning for Intelligent
Robots. Springer, Heidelberg, New York, 2005.

