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Abstract. We present two new methods which extend the traditional
sparse coding approach with supervised components. The goal of these
extensions is to increase the suitability of the learned features for clas-
sification tasks while keeping most of their general representation per-
formance. A special visualization is introduced which allows to show the
principal effect of the new methods. Furthermore some first experimental
results are obtained for the COIL-100 database.

1 Introduction

Sparse coding [4] searches for a linear code representing the data. Its target is
to combine efficient reconstruction with a sparse usage of the representing basis,
resulting in the following cost function:
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The left reconstruction term approximates each input xi = (xi1, xi2, . . . , xiK)T

by a linear combination ri =
∑

j cijwj of the weights wj = (wj1, wj2, . . . , wjK)T ,
where ri is called the reconstruction of the corresponding xi. The coefficients cij

specify how much the jth weight is involved in the reconstruction of the ith data
vector. The right sparsity term sums up the cij . The nonlinear function Φ (e.g.
Φ(·) = |·|) increases the costs, the more the activation is spread over different cij ,
and so many of them become zero while few are highly activated. The influence
of the sparsity term is scaled with the positive constant γ.

An adaptation of the sparse coding is the nonnegative sparse coding [7]. In
this approach the coefficients and the elements of the weights are kept positive.
This forces the weights to become more distinct and produces a parts-based
representation similar to that obtained by nonnegative matrix factorization [2]
with sparseness constraints [1].

In Sect. 2 we introduce two new class-specific extensions of the nonnegative
sparse coding. We visualize their principal effect with a simple 2D example to
analyze the influence of certain parameters of the cost functions. Furthermore
some first experimental results are obtained for the COIL-100 database [3] in
Sect. 3. Section 4 gives a short conclusion of the results.
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2 Class-Specific Sparse Coding

The sparse coding features are useful for general image representation but lack
the property of being class-specific, and so their use in classification tasks is
limited. Our two new approaches extend the nonnegative sparse coding with
supervised components. In the first approach the class information has direct
effect on the coefficients and it will therefore be referred to as coefficient coding:
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The right coefficient term causes costs if coefficients belonging to the same weight
wj are active for representatives xi and xı̃ of different classes Qi and Qı̃ respec-
tively. Qi stands for the class of a data vector xi. The influence of the coefficient
term is scaled with the positive constant α. In the second approach the class in-
formation has a more direct effect on the weights and it will therefore be referred
to as weight coding:

PW =
1
2

∑

i

⎛

⎝xi −
∑

j

cijwj

⎞

⎠
2

+ γ
∑

i,j

cij +
1
2

β
∑

j

∑

i,ı̃
Qi �=Qı̃

(
xT

i wj

) (
xT

ı̃ wj

)
. (3)

The right weight term is similar to a linear discriminator and causes costs if a
wj has a high inner product with representatives xi and xı̃ of different classes
Qi and Qı̃ respectively. The weight term is scaled with the positive constant β.

The minimization of both cost functions is done by alternately applying
coefficient and weight steps as described in [7]. In the coefficient step the cost
function is minimized with respect to the cij using an asynchronous fixed-point
search, while keeping the wj constant. The weight step is a single gradient step
with a fixed step size in the wj , keeping the cij constant.

In Fig. 1 we introduce our special visualization schematically and apply it
to the nonnegative sparse coding, and in Fig. 2 it is used to compare coefficient
and weight coding.

The coefficient coding restricts the use of features through different classes.
This means that each feature concentrates on a single class and so the influ-
ence of other classes is weakened. There is no increase in discriminative quality,
because this would require a strong interaction of different classes. The weight
coding instead has a more direct effect on the features and removes activation
from them, that is present in different classes. So the features represent more
typical aspects of certain objects and so their suitability for object representa-
tion and recognition is increased. The cost function shows similarity to Fishers
linear discriminant and the MRDF approach [5] but does not minimize the intra
class variance. The advantage of the weight coding is that it can produce an
overcomplete representation while the number of features in the Fisher linear
discriminant is limited by the number of classes and in the MRDF by the num-
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Fig. 1. a) Schematic description of visualization. In the visualization the positions of
the data vectors, their reconstructions and the weights are plotted for different values
of a control parameter of the cost function, e.g. γ = γmin . . . γmax. The data vectors
xi lie on the unit circle. The shown �wj = dwj are the weights which have been scaled
by a factor d = (γmax − γ)/(γmax − γmin). Similarly the �ri = dri = d

�
j cijwj are

the reconstructions scaled by the same factor. The scaling causes the �ri and the �wj to
move towards the origin with increasing γ. This simply should increase the ability to
distinguish the points belonging to different values of γ (see b). Because the weights
wj are normalized, the distance of the �wj from the origin is as big as the scaling factor
d. The distance of the �ri from the origin is also influenced by the cost function itself.
In the nonnegative case it is always shortened, since low values of the basis coefficients
cij are enforced. From the position of the �ri and the �wj it is possible to determine the
coefficients cij and hence to judge the sparsity of the reconstructions of certain xi. For
example x2 is reconstructed sparsely, because it only uses w2. In the visualization the
linear combinations will not be plotted and there will be points for each �ri and �w1, �w2

for each value of γ. The points belonging to the same value of γ could be determined by
counting, preferably from the unit circle to the origin. b) Visualization of the influence
of the parameter γ on the nonnegative sparse coding. Two scaled weights and the
scaled reconstructions of 10 data vectors are plotted for 31 different influences γ of the
sparsity term. The scaling factor is d = (γmax −γ)/(γmax −γmin). The reconstructions
belonging to successive values of γ are connected. For γ = γmin → 0 the algorithm
searches for the sparsest perfect reconstruction. And since d = 1 in this case the �ri

lie directly on the xi. The corresponding �wj are aligned with the outermost xi. With
increasing γ the points move towards the origin. Each �ri gives up the use of the less
suitable weight and therefore the �ri unite to two main paths. Each �wj aligns to the
center of the �ri which are assigned to it.

ber of dimensions in the data. The two parameters have to be chosen carefully.
When the influence of the sparsity term is too weak, many features tend to
represent the same activation.
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Fig. 2. Visualization of the influence of the parameters α and β on the coefficient and
weight coding. The 10 data vectors are now assigned to 2 classes and again are recon-
structed using two weights. The influence of the sparsity term is the same constant
value γ = 0.05 in both cases. a) In the coefficient coding the influence α of the coef-
ficient term varies in a defined range. The scaling is d = (αmax − α)/(αmax − αmin).
With increasing α the points are pulled to the origin. Each weight is forced to specialize
on a certain class and therefore moves to the center of this class. There is no gain in
discriminative power. b) In the weight coding the influence β of the weight term varies
in a defined range. The scaling is d = (βmax − β)/(βmax − βmin). With increasing β

the points are pulled to the origin. The suitability of the weights for different classes
is reduced and each aligns to activation which is most typical for the class it is repre-
senting. So one weight moves towards the x-axis and the other one towards the y-axis.
In the nonnegative case this can be referred to as a gain in discriminative power.

3 Experimental Results

To underpin the qualitative difference between coefficient coding and weight
coding both approaches have been applied to a more complex problem. Nine
car objects and nine box objects from the COIL-100 database [3], each with 72
rotation views, were combined to two classes (see Fig. 3). Fifty features were
trained using the same influence γ = 0.1 of the sparsity term and relative high

Cars

Boxes

Fig. 3. Two class problem. Nine cars and nine boxes were combined to two classes.
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Table 1. The table shows the values of the different terms, neglecting their actual
influences (γ, α, and β )to the cost functions. Note that values in brackets were not used
for optimization, but are shown to highlight qualitative differences between features.

Reconstruction Sparsity Coefficient Weight

Nonneg. Sparse Coding 4.182 · 104 4.293 · 104 (1.726 · 107) (1.428 · 1010)
Coefficient Coding 4.682 · 104 3.872 · 104 5.709 · 105 (1.731 · 1010)
Weight Coding 4.031 · 104 4.976 · 104 (2.393 · 107) 1.035 · 1010

Coefficient Coding Weight CodingNonnegative Sparse Coding

Fig. 4. Features for three approaches. For the visualization, we arranged the features
in the following way: Each feature is assigned to the class in which it is most often
detected. A feature is detected if its normalized cross-correlation with an image ex-
ceeds a feature-specific threshold. This threshold was determined as to maximize the
mutual information conveyed by the detection of the feature about the classes (see [6]).
The more car-like features start at the top-left and the more box-like features at the
bottom-right. The features in one class are arranged by descending mutual information.
Therefore the least informative features of the two classes meet somewhere in the mid-
dle. The features of the nonnegative sparse coding and the coefficient coding are very
similar to each other. The features of the weight coding are sparser and concentrate on
more typical class attributes, like certain parts of the cars or the vertices of the boxes.

values for the influence α = 1 · 10−3 of the coefficient term and the influence
β = 5 · 10−7 of the weight term.

The resulting features are shown in Fig. 4. Table 1 lists the values of the terms
of the cost functions after optimization. These values are useful to interpret the
effect of our two new approaches compared to the nonnegative sparse coding:
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Since the coefficient term puts a penalty on the use of features across different
classes, a splitting into partial class problems is to be observed, leading to a
reduced feature basis for each class. As a result, there is an increase of the
reconstruction costs and a decrease of the sparsity costs. The demand for sparsity
of the coefficients in the nonnegative sparse coding has an opposite effect on
the weights, forcing them to become very view-specific and leading to a higher
reconstruction cost. In the weight coding the weight term removes activation
from the features. They become less view-specific, which causes a decrease of
the reconstruction costs, but an increase of the sparsity costs.

4 Conclusion

In this paper two new class-specific extensions of the nonnegative sparse coding
were introduced. It was shown that the coefficient coding, by restricting the use
of features through different classes, does not increase the discriminative qual-
ity of the features, but instead tends to cause a splitting into partial problems,
using a distinct feature basis for representing each class. In contrast to that, the
weight coding directly penalizes the suitability of features for different classes
and so successfully combines representative and discriminative properties. This
combination produces features which are more suitable for object representation
than features with general representative quality only. The advantage of the
weight coding is that it can produce an overcomplete representation, whereas
most other approaches are using the covariance matrix directly, and so the num-
ber of features is limited by the number of dimensions in the data. The drawback
is that two parameters have to be tuned suitably. Also the intra class variance
is not reduced as e.g. in the MRDF approach. The evaluation of the usefulness
of the weight coding features in object recognition will be subject to further
investigations.
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