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Abstract— We present a novel method for the separation of
monaurally recorded speech signals based on pitch. Our method
is inspired by the ability of some auditory neurons to phase lock
with the excitation signal. After applying a Gammatone filter-
bank on the original signal we compare the distances between
zero crossings of possible harmonics and decide upon the result
of this comparison if they share the same fundamental and hence
originate from the same sound source. For higher frequencies we
use the amplitude modulation property of unresolved harmonics
to determine their fundamental frequency. When comparing our
method to standard autocorrelation based methods we see that
the pitch can be tracked more precisely and especially opens
the way to extract also the pitch contour of a second speaker or
other sound sources which can be of importance for the robots
behavior. Tests in sound source separation of our algorithm on a
database with several speakers and a large set of intrusions show
that our algorithm performs slightly better than the commonly
used autocorrelation at lower computational costs.

Index Terms— Monaural Sound Source Separation, Zero
Crossing Distances, Histogram, Amplitude Modulation

I. INTRODUCTION

The interaction with a robot like Asimo by speech is
especially difficult due to the long distances between the
speaker and the microphones installed on the robot. The-
refore, additionally to the desired speech signal interfering
speech signals and background noise are captured. Hence
sound source separation is an important aspect in robot
audition. Todays speech recognition systems show dramatic
performance impairments in such scenarios. However, it is
well known that humans can cope with such situations
surprisingly well [1]. This finding has stimulated tremendous
research in the domain referred to as Computational Auditory
Scene Analysis (CASA), which sets itself as a target to achieve
human performance by computational means [2], [3], [4].

In particular the goal of our algorithm is to separate
speech signals in monaural recordings even in very adverse
conditions when significant background noise and additional
speakers are present at the same time. Particularly we try to
decide for each time frequency region which of the different
sound sources dominates and then build for each sound
source a binary mask which is one at those time frequency
regions where the sound source dominates and zero at the
others. This makes the assumption that only those regions
should be retained where the desired signal dominates and
all others should be rejected, an assumption commonly made

in CASA like systems and leading to very good separation
results [5], [6]. The separation in our algorithm is based
on common fundamental frequency, whose percept is called
pitch [7]. A separation based on fundamental frequency is
only possible in voiced speech segments. To demonstrate the
performance of our algorithm we therefore use completely
voiced sentences.

II. MODEL OVERVIEW

The first step in our sound source separation system is the
division of the input signal into different frequency bands via
a Gammatone filterbank.The aim of the separation is to label
the different frequency channels for each instant in time with
the pitch they emanate from. Our algorithm does not impose
blocks in the time domain but they rather arise signal driven.
Nevertheless we want to use the term time-frequency (TF)
units for these blocks in a given channel. Once all channels
are labeled the possible sound sources in the signal have to
be identified and their evolution over time has to be tracked.
In the case of voiced segments the different sound sources
can then be separated by grouping channels with a common
pitch.

For the implementation we used a 128 channel Gammatone
filterbank with frequencies in the range from 80-5000 Hz. The
implementation of the Gammatone filterbank is according
to [8]. In order to reduce the phase distortions introduced
by the filterbank in each channel the delay for the center
frequency is calculated and a delay is introduced so that
at the end all center frequencies have the same delay. The
range of possible fundamental frequencies for our algorithm
was set to 80-500 Hz, which is in accordance with the pitch
variation found in the database used for testing. However this
is not a limitation of the proposed algorithm an can easily
be extended to allow e.g. also music perception.

III. PITCH ESTIMATION

The starting point for the sound source separation is the
determination of the fundamental frequencies of the signals
present in the acoustic scene. Based on these fundamental
frequencies the TF units can then be labeled and allocated
to the corresponding sound source. Most pitch estimation
algorithms in the literature are based on the autocorrelation
function. Either on autocorrelation of the complete signal or



by combining the autocorrelations of different channels [9].
It is noteworthy that the subdivision in different channels
only leads to an improvement if a nonlinear processing is
performed for each channel [9].

The autocorrelation is very time consuming and biological-
ly rather implausible. Therefore, we propose to use a different
mechanism to determine if two filter output signals originate
from one common fundamental frequency. Our approach is
inspired by the phase locking property of some neurons in
the auditory system and relies on the distances of the zero
crossings of the filter signals. These distances are evaluated
for each channel of the Gammatone filterbank and then
compared over different channels.

A. Using zero crossings

When signals stem from the same fundamental frequency
they have zero crossings in common. How many zero cros-
sings they share depends directly on their harmonic order
relative to the fundamental frequency. For example the first
order harmonic shares each second zero crossing with the
fundamental. Hence the distance between two zero crossings
of the fundamental occurs again as the distance between three
zero crossings of the first harmonic and so forth. We want
to refer to these distances between multiple zero crossings
as higher order zero crossings. Due to the frequency and
articulation dependent phase delay introduced by the vocal
tract not the absolute occurrence of the zero crossings is
identical between harmonics of the same fundamental but
rather their distance (compare Fig. 1). We use only the

Fig. 1. Visualization of the identical distance between zero crossings for
the fundamental and its first harmonic. In the upper plot the fundamental
frequency in the 116 Hz channel and its first harmonic in the 266 Hz channel
are shown. The lower figure only shows their zero crossings visualized by
bars. In the lower half of the plot the zero crossings for the 116 Hz channel
and in the upper half those of the 266 Hz channel are displayed.

zero crossings with positive slope (from negative to positive)
but those with negative slope could be used as well. The
reciprocal of the zero crossing distance in time is of course
the frequency of the signal under investigation. In this sense
this distance can be used to measure the frequency of the
signal. The measurement is performed completely in the
time domain but can be only updated with each period of

the signal. Therefore a signal driven blocking of the signals
determined by the zero crossing distances arises.

From biological studies it is known that certain neurons in
the auditory system fire in phase with the basilar membrane
movement, which is denominated as phase locking. The zero
crossings are a way to mimic this phase locked spike firing.

B. Zero crossing distance histogram

As the distance of the fundamental reoccurs in the higher
order distances of the harmonics a histogram over all distan-
ces shows peaks at the distance value of the fundamental. The
energy of the filter signals is represented in the histogram by
weighting the values with the energy. This means distance
values stemming from a TF unit with high energy have
more weight in the histogram. In order to further enhance
the formation of peaks at the fundamental, different weights
are put on the different orders of the zero crossings. The
weighting function chosen is 1/(n + 1), where n is the
order with the fundamental having the order 0. This takes
into account that usually the lower order harmonics have
more energy than the higher ones. Additionally a comb
filter is used in the calculation of the histogram. In a loop
over the range of possible zero crossing distances of the
fundamental only the channels whose center frequencies can
be in a harmonic relation to the fundamental currently under
investigation are used for the calculation of the histogram.
To allow for some overlap in the channels each comb in
the comb filter has a width of 3 channels. In Fig. 3 a) the
resulting histogram for the mixture of two male speakers,
where one utterance is completely voiced, displayed in Fig. 2,
is shown. The maxima in the distance direction clearly
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Fig. 2. Amplitude of the envelope at the output of the Gammatone filterbank
of the mixture of an all voiced male foreground utterance and a second male
utterance as intrusion. The SNR of the signal was 7dB.

correspond to the zero crossing distances of the fundamental
of the foreground utterance. Additionally side maxima occur
at harmonics of the fundamental. These side maxima can be
eliminated when the main maximum is determined and hence
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Fig. 3. Zero crossing distance histogram of the signal displayed in Fig. 2 is shown in a). The peak found at the fundamental is clearly visible. Additional
peaks from the voiced parts of the background utterance, indicated by arrows, can be seen. The harmonics of the fundamental form parallel curves to the
correct fundamental. In b) the sum of the autocorrelation function over all channels for the same sound file generated by the implementation in [6] which
additionally implements a model of the outer hair cells is shown. The second sound source is completely covered by side maxima.

the saliency of the second utterance can be enhanced. When
comparing the distance histogram to the widely used sum of
the autocorrelation function (e. g. [6]) in Fig. 3 b) it can be
seen that the fundamental of the foreground utterance is much
less visible as in the distance histogram and the fundamental
of the second sound source completely vanishes.

C. Unresolved harmonics

For high frequencies the zero crossings get very close
together and hence can only be used in a limited way to
identify the pitch. This problem can be solved by exploiting
a property of the filters of the Gammatone filterbank [6].
The filters have, similar to the filters formed by the basilar
membrane in the human ear, a constant relative bandwidth.
As a consequence for higher harmonics several harmonics
fall into one filter channel, which is termed as unresolved
harmonics in opposition to low order harmonics, where only
one harmonic is present in a filter channel [10], [7]. Due
to the coherent interaction of these unresolved harmonics
the resulting signal shows amplitude modulation with the
underlying fundamental. Therefore we demodulate the signal
by rectification and low pass filtering. The cut off frequencies
of the low pass filters are set to the minimum between half
the center frequency of the underlying Gammatone filter
and twice the maximum pitch value. In order to determine
the modulation frequency we feed the envelope signal in a
second Gammatone filterbank with identical bandwidth as
the first one but where only the channels up to twice the
maximum pitch are used (compare Fig. 4). For each of these
signals the first and second order zero crossing distances are
calculated. Based on these a histogram as described in Sec.
III-B is calculated, where only the first and second order
zero crossing distance is used. Here the property that the
energy of the modulation envelope is mainly concentrated

Fig. 4. The middle plane shows the result of the demodulation of the
unresolved harmonic in the top plane. In the bottom plane the effect of the
application of the second filterbank on the envelope signal in the middle
plane is shown. The main peak at the modulation frequency as well as the
harmonics of it are clearly visible in the bottom plane.

on the fundamental frequency and to a lesser degree on its
first harmonic is used. From the maximum in the histogram
the fundamental of the underlying unresolved harmonic can
be determined. We want to refer to this algorithm to extract
the zero crossing distances as Amplitude Modulation (AM)
criterion. The resulting distance value weighted with the
energy of the channel is added to the distance histogram
described in Sec. III-B. Additionally values obtained this way
from unresolved harmonics are weighted with 1/3 taking into
account that unresolved harmonics usually carry less informa-
tion about pitch than low order resolved harmonics [7]. The
distance histogram in Fig. 3 is the result of the combination of
the distance values from resolved and unresolved harmonics.

When white noise at very low SNR levels is present as
intrusion the distances calculated from the amplitude modu-
lation show a high variation and reflect in most parts only the



distances of the noise. To overcome this problem we calculate
the variance of the distance values and reject those with a
high variance as in speech segments the distances change
only rather slowly. The variance is calculated by a high
pass filtering of the distance values. The cut-off frequency
of the high pass was set to 20 Hz. The resulting signal is
demodulated by rectification and low pass filtering where
the low pass also has a cut-off frequency of 20 Hz. When
this distance envelope signal has an amplitude of more than
0.7 ms the corresponding sample is rejected. This procedure
largely rejects distance values stemming from white noise and
leaves the remaining values mostly unchanged. Consequently
the tracking of the pitch in white noise is improved and works
even at SNR levels of -8 dB successfully.

In contrast to [6] we also use the unresolved harmonics
for the determination of pitch. Therefore our algorithm is
also able to detect pitch correctly for speech parts where all
harmonics are unresolved as it is the case when people speak
with very low pitch.

D. Pitch tracking

From the beforehand calculated zero crossing distance
histogram now the course of the pitch over time can be
tracked. A critical decision in the tracking is which sound
source should be tracked. As the focus of this article is not
the actual tracking of the pitch but rather to develop a new
method to determine the pitch and segregate sound sources
based on pitch, we make some restricting assumptions during
the tracking. The strongest assumption is that the desired
sound source is all voiced. Therefore we know that the
desired pitch track has no interruptions. Firstly we calculate
the maxima in the distance histogram and build the five
longest segments of connected maxima, where connected
means that the distance value does not change more than 5%
from one sample to the other. As the desired pitch does not
always correspond to the maximum in the distance histogram
these previously determined tracks only span part of the
utterance. Next we grow each of these five tracks at either
end. For this purpose we weight the values in the histogram
with a Gaussian like window centered at the distance position
corresponding to the linear extrapolation of the slope of the
track. By doing so we enhance distance values in the expected
direction of the track and reduce those outside this direction.
This slope is calculated from the previous 20 ms of the track.
The actual window is given by:

w = 1+6 · exp

(
− d̂2

2σ2

)
. (1)

The Gaussian in Eq. 1 is centered at the distance value in
the expected direction d̂ where σ is calculated according to

σ =

√
0.1d̂
25

, (2)

All values outside the 5% search region region around d̂ are
set to zero. The growing of the tracks finishes when no values
in the search region are above a threshold defined by twice
the mean of the histogram. Tracks spanning less than 60% of
the utterance are rejected. For each remaining track the sum
of all histogram values covered by the track is calculated and
then divided by the length of the track. The final pitch track
is the one where this mean histogram value is the highest.

IV. PITCH LABELING

A crucial step in the desired sound source separation is
the labeling of the TF units with the fundamental frequency
they originate from so as to later group TF units according
to common fundamental frequency. The common approach
for the labeling of TF units with pitch is again the use of the
autocorrelation of the TF unit under concern [6].

As for the determination of the pitch, we also use for
the labeling of the TF units the zero crossing distances.
The closer the zero crossing distance of the channel under
investigation is to that found for the found pitch, the more
likely it is that it belongs to the same sound source. This
difference can hence be mapped to a reliability measure. We
calculate these difference values independently for distances
obtained directly from the filter signal and those obtained
by the amplitude modulation criterion. As both criteria are
evaluated over the full frequency range, we do not classify
TF units into resolved or unresolved harmonics a priori
but rather make this decision based on which of the two
criteria shows the minimum difference to the distance value
of the found pitch. In the case of the resolved harmonics the
resulting difference value is the minimum of the difference
between the zero crossing distance of the found pitch and the
distances calculated at all orders of zero crossing distances.
For the unresolved harmonics the resulting difference value is
simply calculated as the difference between the zero crossing
distance of the found pitch and the distance calculated from
the AM criterion. When introducing a threshold we can make
a decision if a given TF unit belongs to the found pitch or
not. This threshold can be set independently for the resolved
and unresolved harmonics.

In Fig. 5 a) the mask resulting from the labeling is shown.
The mixture is the same as in Fig2 containing a male target
utterance and a male utterance as intrusion. Black regions
were grouped to target speech and white regions to the
intrusion. In Fig. 5 b) also the ideal binary mask is shown.
Given that we have the signals before mixture at our disposal
we can calculate for each instant in time in the mixture if
the target speech or the intrusion has more energy. Regions
where the target speech dominates are marked in black and
those where the intrusion dominates in white. By comparing
the two masks it can be seen that our algorithm correctly
assigns most parts of the signal to either target or intrusion.
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a) b)

Fig. 5. In a) the mask generated by our algorithm is shown, where black regions are assigned to target speech and white regions to the intrusion. The ideal
binary mask is visualized in b), where dominance of target speech is represented by black and white regions indicate the dominance of the intrusion.

V. RESULTS

In order to asses the performance of our algorithm we
evaluated it on a database collected by Cooke which was
frequently used to test CASA systems [3], [11], [6]. The
database consists of 10 utterances of a male speaker mixed
with 10 intrusions yielding a total of 100 utterances [2]. All
of these utterances are completely voiced (e. g. ’Why were
you all weary’) and hence have a continuous pitch. To these
utterances different intrusions were mixed. Amongst these

TABLE I

LIST OF THE SIGNALS USED AS INTRUSIONS IN THE COOKE DATABASE

Name Type Name Type

N0 1 kHz pure tone N5 siren
N1 white noise N6 trill telephone
N2 noise bursts N7 female speech
N3 ’cocktail party’ noise N8 male speech
N4 rock music N9 female speech

are white noise, music, and male and female speakers (see
Tab. I for a full list). The sampling rate of the database
is 16 kHz. For resynthesis of the signals we first undo
the phase compensation of the center frequencies and then
invert the filter signals in time, pass them again through the
Gammatone filterbank and then invert them again in time.
By this backward filtering the phase delay introduced by the
Gammatone filterbank is compensated [12].

The maximum order of zero crossings of resolved harmo-
nics was set to 7. Distance thresholds for the acceptance or
rejection of a TF unit were set to 0.3125 ms (or 5 samples)
for resolved and 0.625 ms (or 10 samples) for unresolved
harmonics.

As performance measure we have chosen the Signal to
Noise Ratio (SNR). Enven though the SNR has its drawbacks

when measuring CASA system performance it is still com-
monly used. We measured the SNR of the output signal as
follows:

SNRres(V,N) = 10log

(
∑K

k=0 vV(k)2

∑K
k=0 (vV(k)− rV,N(k))2

)
, (3)

where vV is the original target utterance and rV,N(k) the
target utterance reconstructed from the mixture of utterance
V with intrusion N. The SNR enhancement is defined as the
difference between the resulting SNR and that of the original
mixture. The SNR values of the original mixture, the resulting
signal after separation and those of the system by Hu and
Wang [6] averaged over all speakers for a given intrusion are
given in Tab. II. In order to make results more comparable
in the case of the Hu and Wang system also no segmentation
was used. As can be seen the two models perform in ave-
rage similar, but the proposed algorithm achieves overall an
improvement of 9%. Due to the high standard deviations this
performance difference is not statistically significant, though
the standard deviation also is 9% lower for our algorithm
(compare Tab. II). For some intrusions the differences are
rather big, but no clear trend can be identified where one
or the other algorithm works better as no systematic relation
between the intrusions where this happens could be identified.

VI. DISCUSSION

We presented a novel method to identify the pitch in a
mixture of sound sources and to separate the sound sources
based thereupon. The presented algorithm is inspired by
biological and psychological mechanisms. An important dif-
ference to the mainly used autocorrelation function is that
we obtain a constant resolution over frequency. Independent
of signal frequency this resolution is only determined by
the distance between the sampling points. In contrast to
this the resolution of the autocorrelation is only weak for



TABLE II

SNR RESULTS IN DB AND STANDARD DEVIATION (SD) FOR AVERAGE

Intrusion N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Average (SD)

Mixture -4.3 -1.9 12.5 4.2 3.9 -6.7 3.5 7.1 12.9 5.9 3.7 (6.5)
Hu-Wang system 10.0 4.3 15.1 8.0 8.6 4.1 10.0 11.5 16.4 7.4 9.5 (4.6)
Our Model 8.2 6.8 15.4 8.3 10.4 3.8 15.5 11.3 14.7 9.8 10.4 (4.2)

low frequencies as low frequencies form wide peaks in
their autocorrelation function. Additionally, our algorithm
does not work with predefined blocks, rather blocks emanate
signal driven with the fundamental period of the signal under
investigation. This way changes in the fundamental frequency
can be much easier tracked as they also directly influence
the analyzing block length. Also the calculation of the zero
crossing distances is less costly as the autocorrelation. We can
not provide any clear numbers here as our algorithm is only
partly implemented in C, but it seems that an improvement
of factor 3-5 in calculation time is likely. Furthermore the
autocorrelation is physiologically rather implausible whereas
a simple zero crossing detection and integration seems much
more likely.

The zero crossing distance is a robust measure as we apply
it to bandpass signals, resulting from rather narrow bandpass
filters. This way noise overlaid to the signal is filtered out and
the resulting signal is very close to pure sinusoidal signals. A
detailed analysis of the noise robustness of the zero crossings
is given in [13].

The aforementioned noise reduction property of the band-
pass filterbank is what we also utilize for the treatment of
unresolved harmonics. By applying an identical filterbank
as used for the original signal on the modulation envelope
of unresolved harmonics we spread the noise over different
channels whereas the modulation bearing channel retains the
largest energy and is clearly identifiable.

The introduced zero crossing distance histogram takes all
harmonics up to a certain order of a signal into account.
This way, similar to humans, the fundamental can also be
tracked, when the actual fundamental is not present [7].
When comparing the distance histogram to the summed
autocorrelation function the actual pitch is much more visible
in the distance histogram. This is why a rather simple tracking
algorithm in contrast to the multi stage tracking algorithm
used in [6] suffices to track the target signal. Especially
additional sound sources are much better observable in the
distance histogram as in the autocorrelation.

The very challenging problem of tracking the pitch contour
was not in the focus of this paper though. We made, in
a similar way to [6], simplifications for the tracking and
adapted it to the database used for testing. In a realistic
scenario voiced segments alternate with unvoiced segments,
where no pitch is present, making the tracking quite difficult.

To solve this problem additional cues like sound source
localization and onsets are certainly necessary.

We further showed that the zero crossing distances can
also be used efficiently to separate the sound sources once
the pitch is identified. For this purpose we used a database
with different speakers with a wide variety of intrusions. The
separation results by our algorithm were slightly, but not
significantly better than those obtained by the autocorrelation.

Recapitulating we showed that zero crossings, being bio-
logically more plausible, can be used very efficiently to
identify pitch and separate sound sources based on pitch. The
resulting algorithms are much simpler as those commonly
deployed when using the autocorrelation function and lead
in the case of the estimation of the pitch of multiple sound
sources to significantly better results.
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