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Abstract We study the use of neural networks as ap-
proximate models for the fitness evaluation in evolution-
ary design optimization. To improve the quality of the
neural network models, structure optimization of these
networks is performed with respect to two different crite-
ria: One is the commonly used approximation error with
respect to all available data, and the other is the ability
of the networks to learn different problems of a common
class of problems fast and with high accuracy. Simulation
results from turbine blade optimizations using the struc-
turally optimized neural network models are presented
to show that the performance of the models can be im-
proved significantly through structure optimization.
Keywords: Design optimization, neural networks, evo-
lutionary algorithms, fitness approximation

1 Introduction

In many real-world applications of evolutionary compu-
tation, fitness evaluations are highly time-consuming.
One attempt to reduce the computation time is to re-
place the original fitness function, at least in part, by
an approximate model with a much lower computational
cost [10]. Such models are also known as meta-models or
surrogates in optimization. In [9] a framework for evo-
lutionary optimization using approximate models with
application to design optimization has been proposed. In
this framework, the approximate model is combined with
the original fitness function to control the evolutionary
process, i.e., to decide how often the approximate model
should be used instead of the original fitness function, to
ensure the convergence of the evolutionary algorithm to
a correct optimum of the original problem and to reduce
the computational expense as much as possible. The ba-
sic idea is that the higher the quality of the model is, the
more often it should substitute the original fitness func-
tion. This has been termed as evolution control in [9],

also known as model management in design optimiza-
tion with approximate models [2].

In many applications fully connected feed-forward
neural networks have been used as approximate models,
although it is well known that the approximation qual-
ity and learning efficiency of neural networks strongly
depend on their architecture. The learning capability
of the neural networks becomes particularly important
when online learning needs to be performed during opti-
mization. In this paper, structural optimization of neu-
ral networks is carried out before they are employed for
fitness evaluations in evolutionary design optimizations.
Since structure optimization based on the approximation
error does not explicitly deal with the learning capabil-
ity of neural networks, a method for learning problem
classes suggested in [6] is also investigated.

The quality of the neural network models is usually
evaluated with the quadratic approximation error. How-
ever, the approximation task in the context of a meta-
model is not the same as in the context of optimal predic-
tion. For a meta-model a qualitative approximation is of-
ten sufficient, whereas prediction needs a minimal quan-
titative difference. The examples in Figure 1 (a) and (b)
clarify what we mean by “qualitative”. The approxima-
tion accuracy of the neural networks shown might be
quite unsatisfying, but nevertheless, these approximate
models are still able to lead an optimization algorithm
to the correct minimum of the fitness function. In this
sense, the quality of the model as a meta-model is suffi-
cient, although the approximation error is high. Thus, it
is worth considering other quality measures to evaluate
neural networks that are used as surrogates in design
optimization.

The remainder of the paper is organized as follows. In
Section 2, the framework for model management in de-
sign optimization used in this paper is reviewed briefly.
Several measures for the model quality are discussed
in Section 3. Thereafter, two approaches to structure
optimization of neural networks are presented in Sec-
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Fig. 1 Although the approximation errors of the neural net-
work models are quite large, the optimization by means of
the approximate models leads to the desired minimum of the
fitness.

tion 4. The optimized networks are applied as approxi-
mate models in the design optimization of turbine blades
in Section 5, where comparative studies are carried out
to show the influence of the different strategies for neural
network structure optimization on the design optimiza-
tion outcome. A brief discussion and the conclusion of
the paper is provided in Section 6.

2 The Framework for Model Management

It is not trivial to decide when to use the computa-
tionally efficient approximate model instead of the time-
consuming original fitness function during the optimiza-
tion. There are two basic issues that must be taken into
account in applying approximate models in optimiza-
tion. First, the optimization algorithm should converge
to the global optimum of the original fitness function.
As the empirical study in [8] indicates, the original fit-
ness function should usually be used in over 50% of the
fitness evaluations to guarantee the correct convergence
of the evolutionary algorithm. Second, the approximate
models should be used as often as possible to reduce the
computation time.

To this end, a framework for model management in
design optimization has been proposed in [9, 10]. The
basic idea of the framework is that the higher the model
quality, the more often the approximate models should
be used. As shown in Figure 2, the evolutionary design
optimization process is divided into succeeding control
cycles consisting of a sequence of ζ generations. In the
figure, individuals evaluated using the original fitness
function are denoted by a shaded rectangle, whereas the
individuals evaluated using the approximate model are
represented by an unfilled rectangle. In the first η gener-
ations of the control cycle, the individuals are evaluated
using the original fitness function, in the remaining gen-
erations, fitness evaluations are performed using the ap-
proximate model. The individuals in these η generations
are denoted as controlled individuals. During the first
η generations, the model output is compared with the
original fitness function to evaluate the model quality
to adapt the frequency value η. Moreover, the generated
data of the original fitness function can be used to train
the neural network models during the design optimiza-
tion.

i+xi

. . .

Model

update

Model quality

estimation

i+eta+1i+eta

. . .
eta

i+1i

Fig. 2 A framework for model management in evolution-
ary design optimization. The gray and white boxes indicate
individuals that are evaluated by means of the original fit-
ness function or the approximate model, respectively. Each
column of boxes indicate one generation.

3 Measures for the Quality of Approximate
Models

As previously mentioned one of the main issues in the
design and use of approximate models is their quality.
However, quality is not inevitably equivalent to a close
quantitative approximation of the fitness function, but
should reflect the purpose in the design of the model, i.e.,
to ensure the selection of the best individuals in terms of
the original fitness function, see Figure 1. In the follow-
ing, we define different measures based on these consid-
erations. Some of these measures rely on the particular
selection scheme of evolution strategies. However, the
basic idea can straightforwardly be applied to any kind
of evolutionary algorithms.

3.1 Definition of Quality Measures

The most popular measure for model quality is the mean
squared difference between the individual’s original fit-
ness function φ(orig.) and the output of the approximate
model φ(model)

E(mse) =
1
n

n∑
j=1

(
φ

(model)
j − φ

(orig.)
j

)2

. (1)

Here, the mean squared difference is averaged over n
different individuals taken into account for the estima-
tion of the quality measure, e.g., the n = λ offspring
individuals in one generation or the n = η λ controlled
individuals in one control cycle. When using (1) dur-
ing training, additional mechanisms to avoid overfitting
should be applied.

Generally speaking, a model with good approxima-
tion quality ensures the correct evaluation and conse-
quently the correct selection of the individuals. However,
from the evolutionary optimization point of view, only
the correct selection is of importance. In the following,
we define a number of measures that focus primarily on
the correct model-based selection and not on the approx-
imation accuracy. The exact definitions of the first two
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measures depend on the selection method. Although we
only give expressions for the case of the (µ, λ)-selection
with λ ≥ 2µ, which is of particular relevance in our de-
sign optimization algorithm, it is in principle possible
to extend the ideas and expressions to other selection
schemes.

The first measure we suggest is based on the number
of individuals that have been selected correctly using the
approximate model:

ρ(sel.) =
ξ − 〈ξ〉
µ − 〈ξ〉 , (2)

where ξ (0 ≤ ξ ≤ µ) is the number of correctly selected
individuals, i.e., the number of individuals that would
have also been selected if the original fitness function
had been used for fitness evaluation. The expectation

〈ξ〉 =
µ∑

m=0

m

(
µ
m

)(
λ−µ
µ−m

)
(

λ
µ

)

=
µ2

λ
. (3)

of ξ in case of random selections is used as a normaliza-
tion in (2). It can be seen that if all µ parent individuals
are selected correctly, the measure reaches its maximum
of ρ(sel.) = 1, and that negative values indicate that the
selection based on the approximate model is worse than
a random selection.

The measure ρ(sel.) only evaluates the absolute num-
ber of correctly selected individuals. However, in case of
ρ(sel.) < 1 the measure does not indicate, whether the
(µ + 1)-th or the worst offspring individual has been se-
lected, which may have significant influence on the evo-
lution process. Therefore, the measure ρ(sel.) is extended
to include the rank of the selected individuals, calcu-
lated based on the original fitness function. A model is
assumed to be good, if the rank of the selected individ-
uals based on the approximate model is above-average
according to the rank based on the original fitness func-
tion. The definition of the extended measure ρ(∼sel.) is
as follows: The approximate model gets a grade of λ−m,
if the m-th best individual based on the original fitness
function is selected. Thus, the quality of the approxi-
mate model can be indicated by summing up the grades
of the selected individuals, which is denoted by π. It is
obvious that π reaches its maximum, if all µ individuals
are selected correctly:

π(max.) =
µ∑

m=1

(λ − m)

= µ

(
λ − µ + 1

2

)
. (4)

In analogy to (2) the measure ρ(∼sel.) is defined by trans-
forming π linearly, using the maximum π(max.) as well

as the expectation 〈π〉 = µλ
2 for the case of a purely

random selection:

ρ(∼sel.) =
π − 〈π〉

π(max.) − 〈π〉 . (5)

Besides these two problem-dependent measures for
evaluating the quality of the approximate model, two
established measures — the rank correlation and the
(continuous) correlation — partially fit the requirements
formulated above. The rank correlation [13], given by

ρ(rank) = 1 − 6
∑λ

l=0 d2
l

λ(λ2 − 1)
, (6)

is a measure for the monotonic relation between the
ranks of two variables. In our case, dl is the difference
between the ranks of the l-th offspring individual based
on the original fitness function and on the approximate
model. The range of ρ(rank) is the interval [−1; 1]. The
higher the value of ρ(rank), the stronger the monotonic
relation with a positive slope between the ranks of the
two variables. In contrast to ρ(∼sel.), the rank correlation
does not only take the ranking of the selected individ-
uals, but also the ranks of all individuals into account.
This is more than needed for the model-based selection,
however, it gives a good estimation of the ability of the
model to distinguish between good and bad individuals,
which is the basis for a correct model-based selection.

Another possibility to quantify the idea that the ap-
proximate model should ensure correct selection, but not
necessarily reproduce the correct fitness values, is given
by the (continuous) correlation between the approximate
model and the original fitness function:

ρ(corr.) =
1
n

∑n
j=1

(
φ

(model)
j − φ̄(model)

) (
φ

(orig.)
j − φ̄(orig.)

)
σ(modell) σ(orig.)

.

(7)
Here, φ̄(model) and φ̄(orig.) are the mean values and σ(modell)

and σ(orig.) the standard deviations of the approximate
model output and original fitness function, respectively.
The properties of the correlation is related to both the
rank based measures introduced above and the mean
squared error. It is not a measure for the difference be-
tween model output and original fitness, but evaluates a
monotonic relation between them. In addition, the range
of this measure is known and therefore ρ(corr.) is easier
to evaluate than E(mse). Besides, ρ(corr.) is differentiable,
which allows to use gradient-based methods for the adap-
tation of the model.

4 Evolutionary Optimization of Neural
Networks

The performance of neural networks does not only de-
pend on the choice of the weights, but also strongly
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on the choice of the architecture or structure1, i.e., the
graph describing the number of neurons and the way
the neurons are connected. In particular, the task of
fast learning or learning with a small amount of data
demands a suitable architecture [5]. Evolutionary struc-
ture optimization of the neural networks has proven to
be a very efficient approach to choosing the architecture
as well as the weights, refer to [15] for a survey. In prin-
ciple, it is possible to embed the structure optimization
of the approximate model into the design optimization
algorithm. In this work, we perform structure optimiza-
tion of the neural networks offline, i.e., before the neu-
ral networks are employed as meta-models in the design
optimization algorithm. The data for this offline opti-
mization stems from previous design optimization runs.
Only the weights will be adapted in every single control
cycle during the design optimization as outlined in Sec-
tion 2. Further details about the structure optimization
of the neural networks, in particular the incorporation
of life-time learning are given in the following.

4.1 Accuracy-Based Structure Optimization

We employ a direct encoding scheme for the structure
optimization of neural networks, i.e., every connection
and the value of every weight of the networks are en-
coded in the individual’s genome. Taking into account
the characteristics of the structure of neural networks,
specific mutation operators have been chosen. Single con-
nections and neurons can be inserted or deleted. Weights
are mutated by adding normally distributed random num-
bers. After mutation, τ iterations of gradient-based learn-
ing are introduced using iRprop+ [7], an improved ver-
sion of the Rprop-algorithm [12]. The purpose of the gra-
dient learning is to fine tune the weights based on the
mean squared error of the neural network. The modified
weights are encoded back into the individual’s genome
after learning, following the effective Lamarckian paradigm
[14]. Finally, we use EP-tournament-selection based on
fitness values representing the mean squared error of the
individuals after learning. To avoid overfitting we use
early stopping during learning as well as different data
sets for learning and for fitness evaluations.

A schematic illustration of the Lamarckian mecha-
nism is shown in Figure 3. Note that the architecture aj

of the network encoded by the j-th individual does not
change during life-time learning, but that the weights
do; here wj and w′

j denote the weights before and after
learning, respectively. The variable P denotes the prob-
lem the networks should learn.

This kind of optimization searches for neural net-
works that represent the input-output mapping induced
by a given set of data of the problem P with a mini-
mum error, including the ability to generalize towards

1 We will use the terms architecture and structure synony-
mously throughout the paper.
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Fig. 3 The Lamarckian mechanism for evolutionary
structure optimization of neural networks. The variable
NN(aj , wj) stands for an individual encoding a neural net-
work with architecture aj and weight vector wj .

other data stemming from the same problem P . There-
fore, the result is one approximation model with one ar-
chitecture and initial weight configuration for the whole
fitness landscape, i.e. for the mapping from the design
space into the performance space.

4.2 Structure Optimization for Problem Classes

As discussed in Section 1, the learning capability of neu-
ral networks can be as important as the pure perfor-
mance, the approximation error. This is particularly the
case when neural networks are learned online based on
a small amount of data, like in the design optimization
application where the data is taken from single control
cycles. Here the neural networks serving as approximate
models are trained at the end of each control cycle, as
illustrated in Figure 2. It is intuitive, that the optimal
models for the data from one control cycle to the next
will share some common architectural aspects, since the
population of the design optimization algorithm moves
slowly compared to the duration of one control cycle.
Furthermore, it can be seen that even different design
optimization runs share common aspects.

In the last section, the different local approximation
problems in each single control cycle were treated as one
complex problem. The basic idea behind the approach
outlined in this section is firstly to regard each single
problem as unique and secondly to group these different
problems in a problem class. Note that in general the
definition of problem classes is difficult; no appropriate
metric exists to define a proper notion of relatedness. In
our application, we can circumvent an explicit definition
by using the implicit one which we gain from the control
framework outlined in Section 2. The approximation in
each single control cycle is one problem, the group of
all problems defines the class. The advantage of keeping
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the problems separate is to give a clear definition to what
we mean by the network’s capacity to learn: How good
is the network prepared by the structure optimization
task to learn new problems from the class. Thus, if the
network meets new areas of the fitness landscape, which
is very likely to happen during optimization, the struc-
ture which reflects the common aspects of the problem
class, allows the network to adapt to this new approxi-
mation problem fast and based only on few data. This
type of generalization has been termed second order gen-
eralization in [4] because instead of generalizing between
different data sets, the network has to cope with varying
problems.

In [4], the authors investigate different structure op-
timization approaches in order to integrate common as-
pects of the problem class in the network’s structure
such that the network is well prepared for learning the
different particular problems, i.e. the models in different
control cycles. We extend and apply these methods to
the domain of approximate modeling. Assume that data
from ν control cycles are available for offline structure
optimization of the neural networks. Instead of learning
the whole problem P during life-time in one generation
of the structure optimization, the problem is divided into
ν subproblems P1,P2, . . . ,Pν according to the ν evolu-
tion control cycles. During the life-time learning of the
j-th individual (1 ≤ j ≤ λ) the network represented by
this individual is first trained on the data of the problem
P1 for τ iterations, resulting in the weight vector wj,1

and the approximate error Ej,1. Thereafter, this network
with weight configuration wj,1 is further trained on the
problem P2, resulting in the weight vector wj,2 and the
approximation error Ej,2. This process continues until
the j-th network has been trained on all ν problems. A
schematic illustration of the algorithm is shown in Fig-
ure 4.

1 2
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NN  1 1(a  , w ’)
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λ λ

NN(a  , w  )
11

NN(a  , w )
λλ

Mutation

w 1,1w1 w1,2 w1,ν

Life−time Learning

Averaging

Life−time Learning

P 1 P 2 Pν

w’
1

t := t  + 1

NN NN νNN

Fig. 4 Evolutionary structure optimization of neural net-
works for problem classes with averaged Lamarckian inheri-
tance.

This kind of structure evolution is supported by means
of the averaged Lamarckian inheritance, which is ex-
plained in the following. As learning deals with a num-

ber of different problems, some kind of average weights
have to be coded back [6]. Since in the next generation
these weights will be the starting configuration in the
first control cycle, the influence of the learned weights
wj,i should decline with increasing index i of the control
cycle:

w′
j =

1 − γ

1 − γν

ν∑
i=1

γi−1wj,i ; 0 < γ < 1 , (8)

where γ is a coefficient that balances the influence of the
different problems. The j-th individual’s fitness is given
by the average training error on the different problems:

φj =
1
ν

ν∑
i=1

Ej,i . (9)

There are two main features in the Lamarckian evolu-
tionary optimization. First, the weights learned during
life-time learning on a given problem (P ) are encoded
back to the chromosome. Second, the approximation er-
ror on all data after learning is assigned to the fitness.

The main difference between the structure optimiza-
tion algorithms outlined in this and in the previous sec-
tion is the target of the optimization. In the first one,
all problems are grouped together into one approxima-
tion task is defined; target of the structure optimization
is minimal approximation error on this problem. In the
second set-up, all problems are kept separately defined
by the partition of the design optimization into control
cycles; target is the fast and efficient learning of each
new problem based on a common architecture. This dif-
ference is reflected by the different algorithms illustrated
in the Figures 3 and 4 and the different usages of the
Lamarckian inheritance.

5 Application and Results

In this section, we apply approximate modeling to the
domain of aerodynamic design optimization, in particu-
lar the optimization of transonic gas turbine blades. The
performance of each blade is evaluated based on com-
putational fluid dynamics (CFD) simulations. Navier-
Stokes equations with the (k − ε) turbulence model are
used in the two-dimensional CFD simulation [1].

Evolutionary algorithms have proven to be very promis-
ing for the optimization of these complex shapes [11].
However, thousands of performance evaluations are usu-
ally needed before a satisfactory solution can be ob-
tained. Unfortunately, CFD simulations are very time-
consuming. To cope with this difficulty, computationally
efficient approximate models can be used to substitute
for some of the CFD simulations.
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5.1 Experimental Setting

In this work, a (µ, λ) evolution strategy with covari-
ance matrix adaptation [3] without recombination is em-
ployed to minimize the normalized pressure loss Ω and
the deviation of the outflow angle α at the trailing edge
of a turbine blade from a desired angle of α0 = 69.7◦.
The fitness function of the evolution strategy is given by

φ(orig.) = c1 |α − α0| + c2 Ω + P , (10)

where P is a penalty term from mechanical constraints;
c1 and c2 are weighting factors for the pressure loss and
the deviation of the outflow angle, respectively. They
should be properly chosen so that the preference of the
designer over the two terms can be reflected correctly. In
this study, we set c1 to 10 and c2 to 1000. If the mechan-
ical requirements, for example the minimal thickness of
the blade, are not met, a very large penalty term is added
to the fitness. Recall that we try to minimize the fitness
in this application.

The sizes of parent and offspring populations are µ =
2 and λ = 11, respectively. Since the length of a control
cycle is ζ = 6 generations, a maximum amount of λ (ζ −
1) = 55 data points is available in each control cycle
for learning. One feed-forward neural network is utilized
for the approximation of each of the two performance
indices Ω and α. We consider a two-dimensional opti-
mization and the shape of the blade is represented with
non-uniform rational B-splines with 26 control points.
Therefore, there are 52 inputs, describing the shape of
the blade, to the approximate models.

5.2 Optimization Results with Neural Networks

Three types of approximate neural network models are
used in the design optimization and compared with re-
spect to their ability to increase the performance of the
design optimization. The model of the first type (ApxNN(1))
use a fully connected architecture. The weights are ini-
tialized by means of offline learning, using a number of
given training data collected in a comparable blade opti-
mization trial (e.g., different initialization but the same
number of control points of the spline and the same fit-
ness function). The second type of network model (ApxNN(2))
is obtained with regard to the approximation accuracy of
all data points collected during the seven control cycles
of a different evolutionary run. The corresponding struc-
ture optimization algorithm was outline in Section 4.1.
The third type of model (ApxNN(3)) results from using
structure optimization with respect to its learning ca-
pability for ν = 7 different problems stemming from
the first control cycles of a different design optimization
trial. The structure optimization algorithm for problem
classes was outlined in Section 4.2. We use the value
γ = 0.5 in the averaged Lamarckian inheritance, equa-
tion (8). For all types of models, after η generations of

Table 1 Best results achieved with the different types of
approximate models.

α Ω f

ApxNN(1) 69.70◦ 0.061 61.59

ApxNN(2) 69.70◦ 0.0542 54.20

ApxNN(3) 69.68◦ 0.057 57.38

each control cycle in the design optimization the weights
are adapted online for τ = 50 iterations using iRprop+.

In each design optimization trial, a maximum num-
ber of 3000 evaluations of the CFD simulation was al-
lowed, so that the design optimizations with the three
different approximate models roughly need the same amount
of computational costs. It is assumed that the computa-
tional time for fitness evaluations using the neural net-
work model and for training the network is negligible
compared to the CFD simulation, which is reasonable
in our application. Since the evolution control frequency
is adjusted during optimization, the number of fitness
evaluations becomes different in different optimizations,
although the number of CFD calls are the same. Table 1
summarizes the performances of the best blades obtained
with the different kinds of approximate models, showing

(a) ApxNN(1): standard neural network
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(b) ApxNN(2): neural network optimized with regard to error
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(c) ApxNN(3): neural network optimized with regard to learning

0 4000
0.05

0.06

0.07

0.08

Number of fitness evaluations

P
re

ss
u
re

lo
ss

Ω

2000 6000 0 4000
69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

O
u
tfl

ow
a
n
g
le

α

2000 6000

Fig. 5 Results of the blade optimization using three differ-
ent types of approximate neural network models
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that the use of a fully connected architecture seems to
be the worst choice. Figure 5 depicts the evolution of
the pressure loss and the outflow angle. In Figure 5 (b),
we notice a number of extreme oscillations during the
optimization. They result from individuals that are pe-
nalized, as the CFD simulation has not converged within
a prescribed number of iterations, which is an undesired
situation for the evolution. These oscillations are caused
by the CFD simulation and are independent of the qual-
ity of the neural networks. Their occurrence varies be-
tween different runs and have been observed for all three
set-ups. It is also noticed that the pressure loss goes up
at the end of the optimization in Figure 5 (c). This is
due to the fact that no elitism is introduced in the op-
timization. For a clearer comparison, Figure 6 depicts
almost the same values, but averaged over all individu-
als in one generation; as only the controlled generations
(i.e., the generations in which the CFD simulations are
conducted) are considered, the horizontal axis approxi-
mately scales with the amount of computation.
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Fig. 6 Results normalized to the number of controlled gen-
erations (i.e., proportional to the number of CFD evalua-
tions)

5.3 Comparison and Evaluation of the Measures

So far, the approximation error, i.e. the mean squared
error, has been used as the quality criterion in our opti-
mization. As discussed in Section 3, accuracy is not the
only criterion for model quality when the model is used
for fitness evaluations. For this reason, several measures
have been suggested. To illustrate the relation between
the different measures of the quality of the approximate
model, we evaluate structurally optimized models for in-
dependent runs of the design optimization. In Figure 7
we compare ρ(∼sel.), the measure that seems to be of par-
ticular relevance for practical purposes, with the other
four measures. First of all a mainly linear relation be-
tween the measures ρ(corr.), ρ(rank), ρ(sel.) and ρ(∼sel.)

becomes obvious, Figure 7 (a)-(c). Moreover, the rela-
tion between ρ(∼sel.) and ρ(rank), Figure 7 (a), as well
as ρ(∼sel.) and ρ(corr.), Figure 7 (c) looks very similar,
which is also emphasized by the high correlation between
ρ(corr.) and ρ(rank) (not depicted). Compared with this
result, the measure ρ(sel.), Figure 7 (b), seems to be too
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Fig. 7 Scatter plots to illustrate the relation between the
different measures. Each circle corresponds to one model,
evaluated based on the data of one generation.

coarse-grained to serve as a suitable basis for evaluating
the different models.

As the range of E(mse) strongly depends on the shapes
of the blades, Figure 7 (d) is based only on the data
from the same generation of the design optimization,
evaluated with differently optimized models. For small
values of E(mse) the measure ρ(∼sel.) is decreasing with
increasing E(mse), for larger mean squared error ρ(∼sel.)

is mainly fluctuating with a mean of approximately 0. In
particular these strong fluctuations indicate, that E(mse)

is only weakly related to the ability to select the correct
individuals. Due to the strong linear relation between
ρ(∼sel.), ρ(sel.), and ρ(rank), this result can be carried over
to the other measures.

One should keep in mind, that these results are based
on models optimized with respect to E(mse). Therefore
they might change in case of a model selection based on
other measures, preferably based on the relevant mea-
sure ρ(sel.). The fact that E(mse) is only weakly related
to the important selection based measures, seems to indi-
cate that the online training or at least the structure op-
timization algorithms should better employ one of these
measures instead of E(mse). The answer is “maybe”; in
fact simply replacing E(mse) by ρ(sel.) does not work,
since the information is too indirect, i.e. the relation be-
tween weight changes and changes in ρ(sel.) is not obvi-
ous. On the other hand, one could imagine to employ a
combination of E(mse) and ρ(sel.), e.g. to achieve a coarse
approximation at first and in a second stage to evalu-
ate the selection-based performance. Such an integrated
approach to the evaluation of meta-models is currently
under investigation.
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6 Conclusions

Three types of neural network structures have been used
for fitness approximation in evolutionary design opti-
mization. It can be seen that both types of structurally
optimized networks exhibit better performance than stan-
dard neural network models. This is of particular inter-
est because the structure optimization of approximate
models used for fitness evaluations in evolutionary com-
putation is still often overlooked.

We introduced two different types of structure opti-
mization algorithms, one which emphasizes the approxi-
mation quality of the optimized network and one which
emphasizes the learning capability. As a result, the accuracy-
based optimization outperformed the learning-based ap-
proach. This result was at first surprising for us, because
the second set-up seems to fit more naturally into the
problem decomposition offered by the design optimiza-
tion algorithm. There are several possible explanations.
One reason might be the fact that the data for the off-
line structure optimization of the networks are generated
with a fixed evolution control frequency, whereas the
control frequency during online optimization is adapted
according to the approximation error. In order to better
compare both approaches the control frequency should
be kept constant during the application as well. These
experiments are currently under their way. An alterna-
tive explanation would be that the difference between
the different problems is simply too small, therefore, the
learning capability is not really “needed”. Moreover, it
will be interesting to investigate the performance of the
neural networks when the optimization is carried out un-
der different parameter settings. In that case, the third
type of networks is expected to have better performance
than the second type of networks.

Finally, we discussed several alternative measures for
the quality of neural networks following the observation
that networks with a limited accuracy can nevertheless
serve as excellent meta-models during the design opti-
mization, recall Figures 1 from the introduction. The
surprising result was that the proposed selection-based
measure, which is much closer to the task of the meta-
model, is only weakly correlated to the standard approx-
imation error. As a result, means have to be found to in-
tegrate both measures into a new approach for the eval-
uation of meta-models.
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