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Symbols and Embodiment: The perspective of a

neural modeler ∗

Andreas Knoblauch

Honda Research Institute Europe GmbH
Carl-Legien-Str.30, D-63073 Offenbach/Main, Germany

Abstract. We try to contribute to the current debate about symbols
and embodiment by pointing out the perspective of a neural modeler. We
illustrate the default definitions of ’symbol’, ’embodiment’, and ’ground-
ing’ in the context of detailed neural network models, i.e., on a level more
detailed than common connectionist approaches. Our arguments are based
on cortical models of Hebbian cell assemblies. These models have been em-
ployed to implement a large-scale cortical architecture to enable a robot to
perform simple tasks such as understanding and reacting to simple spoken
commands. In the discussion we focus mainly on the first debate about
the relation of Searle’s Chinese room argument to embodiment.

1 Definitions

1.1 Symbols

For a neural network modeler, one simple possible way to discern symbols from
non-symbols is to look at the inner structure of the representational units. Sub-
symbols have an inner structure which can be used to define a similarity metric
relevant for the represented entity. In contrast, symbols have no relevant in-
ner structure (i.e., symbols are abstract and arbitrary). For example, in object
recognition systems, a non-symbol or sub-symbol may be a vector of sensory
features, while a symbol may correspond to a single node representing an object
category. However, these definitions do not seem sufficient for the current debate
which is about language and the representation of meaning.

According to the workshop’s default definition a symbol is a “theoretical
element that is arbitrary, abstract, and amodal” [1]. Before we proceed by
discussing and adapting that definition, it may be useful to be aware of the
different contexts in which we will use the word “symbol”. The situation is
illustrated in Fig. 1. We live in a physical world W where systems or subjects S
are part of that world and interact with the world. Some of the systems (namely
we, the subjects) somehow are able to generate a usually unique psychological
or phenomenological space P, which we can employ, for example, to generate
ideas or theories T about all kinds of issues on all levels W,S,P,T. In particular,
we can make theories about S (predominantly done by biology, neuroscience,
and AI), P (psychology), or T (metamathematics or logics). Ideas or theories
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T consist essentially of a set of symbols (as defined above) and additional rules
determining how the symbols can be “manipulated”.

T
P

S
W

Fig. 1: Different modeling levels: We live in a physical world W. Systems (or
subjects) S are part of that world and interact with the world. The subjects
somehow are able to generate a (usually unique) psychological or phenomnolog-
ical space P, which we can use, for example, to generate theories T about all
kind of issues on all levels W,S,P,T.

Since symbols are part of theories or ideas this implies two aspects of a
symbol, on the one hand side in T, on the other hand the implementation of
the symbol in S. As a neural modeler one is predominantly interested in the S-
level implementation of P in W i.e., in reducing the observable psychological and
behavioral phenomenons as good as possible to detailed neural and synaptic pro-
cesses and finally to the physical laws. (The underlying preliminary naturalistic
working hypothesis assumes that this goal is actually possible.) Since models
about S are finally also T theories, the neural modeler (and any other kind of
S-modeler such as many AI researcher) has obvioulsy to discern between the two
kind of symbols within his theory: Symbols to model the T-symbols of S, and
symbols to model the implementation of the T-symbols of S. Thus, we will refer
to these two kind of symbols as T-symbols and S-symbols, respectively. For ex-
ample, for a cognitive system S capable of understanding language, a T-symbol
is the representation of a word, while S-symbols are finer-grained entities used
for implementing the word representation. For example, an S-symbol could be
a node in a connectionist network (or alternatively, a state or band variable in a
Turing machine) while a T-symbol could be implemented by a set of distributed
S-symbols (and possibly further dynamic processes).

The current debate is about the question whether cognitive systems (such
as we) are or have to be either symbolic or “embodied”. At least the debate
question 2.2 seems to imply this dichotomy where the use of “embodied” appears
to be equivalent to “non-symbolic”. Of course, any kind of cognitive system must
be symbolic in the trivial sense that we have symbolic language and theories T.
Thus the critical question is not about the reality of T symbols, but are about
the implementation of T-symbols in S-symbols. Note that, depending on how
we define “symbol” and “embodiment”, it might be thinkable that T-symbols
could be implemented by non-symbolic processes on the S level (although this
seems counterintuitive since we actually aim at developing a symbolic theory T
about S).



1.2 Embodiment

Also embodiment comes in several different flavors (cf. [2]). The strongest claim
would be that embodiment could extend the qualitative or at least quantitative
computational capabilities of a system S by exploiting the properties of W, e.g.,
described by the physical laws. If true, this would essentially negate the Church-
Turing thesis that (symbolic) Turing machines can compute any “naturally” (or
physically) computable function. (For example, “embodied” analog computers
might be better in simulating physical systems, or in computing real numbers
with infinite precision).

A less strong idea of embodiment is the dichotomy of embodied versus sym-
bolic cognitive systems addressed by the current debate which attempts to clas-
sify cognitive systems according to the interface between the system S itself and
the external world W. Obviously, any cognitive system S that deserves that name
will have to interact with its environment (percept and act) and is therefore em-
bodied in a trivial sense. Similarly, any cognitive system S must be symbolic in
a trivial sense since it must explain our capabilities to use language and think
in symbols (e.g., to develop theories T within our psychological space P). Thus,
in this trivial sense any model of a cognitive system will be both embodied and
symbolic.

Note that any cognitive system can be divided into sensors, actors, and in-
ternal machinery. Our default definition of an “embodied” system demands that
the meaning of a symbol must depend on activity in systems also used for percep-
tion, action, and emotion and reasoning must require the use of those systems.
This form of weak embodiment is stronger than the trivial version of embodiment,
but obviously addresses merely the high-level structure of the internal machin-
ery (e.g., in Marr’s terms, the algorithmic or computational levels, but not the
implementation level). In particularly, this idea of embodiment will probably be
neutral to such questions as whether “ideas are the sole province of biological
systems” (as discussed in [1], p.4). This is since on the implementation level
an “embodied” system then can be translated into a “symbolic” system (e.g.,
a computer program or Turing machine) with the same sensor/actor interface
and vice versa. And, of course, the property of embodiment will be a gradual
property. Nevertheless, this idea of embodiment might still prove useful, e.g., in
building more efficient artificial cognitive systems, or in guiding the analysis of
the brain.

2 A neural modeler’s perspective

When words referring to actions or visual scenes are presented to humans, dis-
tributed networks including areas of the motor and visual systems of the cortex
become active (e.g., [3, 4]. The brain correlates of words and their referent ac-
tions and objects appear to be strongly coupled neuron ensembles in defined
cortical areas. The theory of cell assemblies [5, 6, 7, 8] provides one of the most
promising frameworks for modeling and understanding the brain in terms of
distributed neuronal activity. It is suggested that entities of the outside world



(and also internal states) are coded in groups of neurons rather than in sin-
gle (”grandmother”) cells, and that a neuronal cell assembly is generated by
Hebbian coincidence or correlation learning where the synaptic connections are
strengthened between co-activated neurons. Models of neural (auto-) associative
memory have been developed as abstract models for cell assemblies.

2.1 Local cell assemblies, associative memory, and “neural S-symbols”

The notion of cell assemblies as strongly coupled neurons leads to the concept
of neural (auto-) associative memory [9, 10, 11]. A particular simple model
of neural associative memory is the one proposed by Steinbuch and Willshaw
[9, 12, 10, 13] consisting of simple McCulloch Pitts like threshold units and re-
current binary synapses (Fig. 2). Thus the activity pattern of the cell population
can be described by a binary vector (i.e., we identify these activity patterns with
the cell assemblies). After learning a number of cell assemblies the network can
be described by a connection matrix A corresponding to a graph, where the
nodes correspond to the neurons, and cell assemblies correspond to k-cliques
of neurons (a k-clique is a subset of size k consisting of completely connected
neurons). Hetero-association works similar to auto-assocation except that the
“memory matrix” describes the synaptic connections between two different neu-
ron populations. Hetero-associative connections can map assemblies of the first
population (or sets or parts of them) to cell assemblies of the second population
(or sets or parts of them).
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Fig. 2: Left: Neural (auto-)associative memory where two cell assemblies of size
k = 4 have been stored (corresponding to the activation patterns u1 and u2)
in the “memory matrix” of synaptic connections. Right : A more realistic im-
plementation of an associative memory [14] modeling a small patch of cortical
tissue. The model comprises several spiking populations of excitatory and in-
hibitory neurons. The “memory matrices” are employed in several afferent and
recurrent connections (cH,cA).



The virtue of the binary model is that it can be easily understood and anal-
ysed, but the main results apply also to more realistic gradual models. Neural
associative memories have a couple of nice features. They achieve pattern com-
pletion, i.e., a cell assembly can be activated not only by the very same inputs
that have been used for learning, but also by modified patterns that are “suf-
ficiently” similar to the original address pattern. For example, assembly u2 in
Fig. 2 will already be activated by addressing an arbitrary subset of size ≥ 3
(and setting the firing threshold equal to the number of active neurons). It can
be shown that the number of storable patterns scales almost with the number of
synapses if the patterns are sparse and have random character (i.e., a population
of n neurons can store almost n2 sparse cell assemblies with k � n). Access
time is essentially independent of the number of stored patterns. The overlaps
of different cell assemblies can be used to express the similarities of the repre-
sented entities. Cell assemblies thereby provide a very natural associative way
of grounding new representations in the sensory inputs by means of bidirectional
associative connections.

Associative memories have been used to model small volumes of cortical
tissue (e.g., 1mm3, corresponding to a macrocolumn or the range where dense
local recurrent connections between any cell pairs are possible). A step towards
more biological realism is to replace the single McCulloch-Pitts population by
more realistic spiking neurons. Indeed, one can show that a network consisting of
several spiking neuron population (one excitatory, two inhibitory) can effectively
implement the simple model. Moreover, this model will inherently make use of
spike timings according to a latency code in that early spikes (relative to an an
external event or an underlying oscillation) are much more relevant than late
spikes for activating an assembly [14, 13].

Local cell assemblies can be seen as elementary neural (S-) symbols which
can be “allocated” or learned to represent the inputs for further processing
in down-stream target populations. The symbolic character is most apparent
in two special cases: (i) if the assembly size is k = 1, i.e., if the assembly
consists only of a single cell then the resulting assembly networks are essentially
equivalent to corresponding node-based common connectionist networks. Or
(ii) if the neurons that constitute a cell assembly are chosen randomly, e.g., by
noise. Then the correlations (or overlaps) between two cells are minimal which
is required, for example, to store a maximal number of activity patterns. Due to
their singular or random character the cell assemblies can be said to be abstract
and arbitrary, whereas the property of amodality depends on the location of the
neuron population. E.g., a local population receiving visual inputs will develop
visual perceptual symbols (cf. [15]).

2.2 Global cell assemblies, language, and T-symbols

We have designed a large-scale model of many interconnected cortical areas
employing spiking associative memories. The model was implemented and tested
on a robotic platform enabling the robot to understand and react to simple
commands (such as “Bot show plum!”) [16]. The language part of the model is



illustrated by Fig. 3, the action part by Fig. 4.
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Fig. 3: The language part of an associative cortex model (see [16]) during pro-
cessing the sentence “Bot put plum to green apple”. Each box corresponds to
a cortical (or subcortical) area modelled as a neural associative memory. The
meaning of the sentence is represented by distributed cell assemblies comprising
“slot areas” for different grammatical roles to implement elementary productiv-
ity and systematicity. Auditory input enters via areas A1 and A3 the central
areas and is distributed across the grammatical slots according to a logic con-
trolled by a grammatical sequence memory (A4) (where basic sentence types are
stored) and subcortical “activation fields” (small boxes).

Each box in the figures corresponds to a spiking neural associative memory
storing local cell assemblies as described above. For illustration purposes, each
area has been labelled according to the current activity pattern. (In general a
superposition of several stored local assemblies can be activated, e.g. to represent
uncertainty or to represent new entities to be learned; the labels correspond to
the cell assembly most similar to the current activation pattern). The resulting
global assembly, for example representing the T-symbol “plum”, stretches over
many cortical areas (involving visual, auditory, action, and goal-related areas)
and changes dynamically during the process of “understanding” and reacting
to the command. Thus, the global cell assembly as a whole works as a sign in
Peirce’s sense, i.e., as a mediator between the idea of a “plum” and the real plum
in the external world. The global assembly consists of parts some of which can be
attributed as “abstract” and “amodal”, e.g., the lexical representation of “plum”
in A3. But these symbolic parts are naturally grounded in the synaptically
connected perceptual and action-related parts of the global assembly.

2.3 Cortical macrocolumns, prediction, and embodiment

Cognitive processes must be able to distinguish between different representa-
tional modi. For example, representational states may refer to present, future
(or prediction), reality, wish, signal (detailed and concrete), or symbol (abstract,
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Fig. 4: Action part of an associative cortex model (see [16]) during performing
the command “Bot put plum to green apple!”. The goal areas (G1-G4) received
their inputs from the grammatical role areas (A5-S, A5-O1, etc.) and divide
the goals into a sequence of subgoals (i.e., seek plum, pick plum, move to the
apple, drop plum). (High-level) motor areas receive inputs from the goal areas in
order to perform the current subgoal. The completion of subgoals and switching
to the next subgoal is controled by “evaluation fields” checking, for example,
the consistency of visual perceptual activity patterns (e.g., in V4) with goal
representations (e.g., in G3). At the shown system state the robot is about to
finish the subgoal of seeking the plum.

amodal), perception or action. Many cognitive architecture take a modular ap-
proach where these different representational modi are segregated into different
cognitive subsystems or modules. (In general, an architecture can be said to
be modular if it can be divided into subsystems such that there is much more
communication between processes inside a subsystem than between processes of
different subsystems.) For example, we could segregate a cognitive system into
different modules for perceptions, actions, goals, memory, rule-based prediction
systems, etc.

In the last section we have indeed argued how global cell assemblies can
implement and ground T-symbols (e.g., words of a language) by distributed
activation stretching over many sensory, motoric, and associative cortical areas
[3]. Thus, although the brain appears to have a modular character in that sense,
hints to possible complementary strategies of grounding may be found when
looking at the microstructure of a single cortical macrocolumn [17].

Although, it is well known for a long time that neocortical anatomy exhibits
a 6-layered structure, modeleres have often neglected this fact when modeling
a cortical patch by a single “monolithical” neuron population (e.g., [7, 18, 14]).



This may be attributable to the wish to focus on a single layer or the lack of
adequate computational resources to simulate more detailed models, but also
to doubting or underestimating the functional significance of discrete within-
or between-layer synaptic connections which appear to have a rather “fuzzy”
character [19, 20].

In accordance with ideas developed earlier in [21] (cf.,[22, 23, 24]), our work-
ing hypothesis assumes that the basic function of a cortical column is to ade-
quately represent and predict (or generate) its sensory inputs. To achieve this
in a self-organizing, autonomous way, it is necessary to have access to (at least
some of) the different representational modi described above. We propose that
different representational modi of the same entity are located in different layers
within the same macrocolumn rather than monolithically in different columns
or areas.

How can such a generative model look like? We can assume that the model
represents external states that produce the observed sensory inputs. Thus at
each time the model must represent a state v from the state space V (or more
generally, a probability distribution on the state space describing in which state
the columnar system “believes” to be in). Then the system should be able to
use sensory input s to update the state v according to a function f ,

v(t+ ∆t) = f(v(t), s(t)) (1)

It makes sense to divide the state variable v = (w, a) into two rather independent
entities, one variable w describing “external” entities from the outside world, and
another variable a describing a local “internal actor”. In addition to updating
a state, the system should also be able to predict a future state w′ (without
accessing sensory input) and sensory inputs s′,

w(t+ ∆t) = f(w′(t), s(t)) (2)

a(t) = fa(w(t), . . .) (3)

w′(t) = g(w(t), a(t)) (4)

s′(t) = h(w′(t)) (5)

Fig. 5 illustrates this functional model and our current implementation employ-
ing spiking associative networks similar as discussed in section 2.1. Note that the
proposed circuitry provides the basic ingredients for simulating (or predicting
over) larger time intervals.

By comparison with known anatomical facts we can match our functional
model (Fig. 5) with the layered organization of neocortex ([21, 24, 17, 20]; see
Fig. 5). We believe that the forward recognition function f is located in the
middle and upper layers, while the remaining functionality, related to behavior
and predictions, is located in the lower layers 5 and 6. Furthermore, we believe
that the recognition system of the middle and upper layers is split up into two
subsystems, one for fast bottom-up recognition (A system, layer 4 and upper 3)
and another for refined recognition employing feedback (B system, layers 2 and
3).
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Fig. 5: Left: Basic functional circuit of a cortical column. Sensory input s is
used to update the current world state w. This is used to choose an appropriate
action a. World state and action can be used to predict the next world state
w′ and next sensory input s′. Right: Implementation of a cortical column
by spiking associative memories (see [25]; cf. [21]). Sensory input activates
signal-like representations (based on basis vectors) in the middle cortical layers
(A1,A2), a symbol-like prototypical cell assembly in the upper layers (B), and
finally action and prediction related representations in the lower layers (C1,C2).

As an example we have implemented a model of several cortical and subcor-
tical areas for learning sccadic object representations (including several visual
cortical areas and the superior colliculus; [25]). In that particular case the rep-
resentational world states are object views (e.g., the retinal image when fixating
on a particular key feature of a visual object) and the actions correspond to
saccades.

What does this has to do with embodiment and grounding? Our model sug-
gests that actions are grounded in perceptions already at the level of a single
cortical macrocolumn (cf. [22, 21, 24, 26]). Thus, recognition of incoming signals
will automatically induce an action related process in the same macrocolumn.
In our model, the perceptual representation w is on the one side really symbolic
in cortical layers II/III, it is grounded in sensory input and a signal-like (basis
vector based) representation in layer IV, and it is also the result of a prediction
(wt−1, a)− > w; layer VI) such that it is also grounded in action (layer V).
Vice versa, for the same reason the produced action will be grounded in pre-
ception. Furthermore, the proposed circuitry provides the basic ingredients for
simulating (or predicting) the represented state (w) over larger time intervals
(at a microlevel), which has been suggested to be required for understanding
meaning on the (P,T-) macro-levels (cf. [15]).



3 Comments on the debate topics

In the following I would like to focus on the first debate about “Searle’s Chinese
room versus embodiment”, where most of my arguments also apply to the second
debate about “Embodiment and the brain”. In general I am inclined to accept
the major claims of the embodiment proponents, for example that understanding
the meaning of a sentence requires the ability to simulate or predict the situation
described by the sentence (but I see no reason why a symbolic system such as
a Turing machine should not do that job) Also I believe that many so-called
symbolists would finally also agree with these positions, and that probably much
of the remaining disagreement results rather from imprecise definitions about
what exactly is a symbol and what is embodiment.

In my opinion the whole embodiment debate is neutral to Searle’s arguments.
This is because Searle’s argument is finally about Turing machines, i.e., the im-
plementation level, while embodiment vs. symbol systems as intended to be
discussed in the upcoming debate appears to be about the higher-level struc-
ture of cognitive systems. Of course, any kind of higher-level structures (e.g.,
the particular way T-symbols are finally implemented in S, see Fig. 1) can be
implemented on a Turing machine. In particular, all ingredients required by the
embodiment proponents can, of course, also be incorporated in the translation
book used by the Englishman in the Chinese room. For example, there is no
reason to doubt that the implementation of index-like symbols and affordances
(as proposed to explain the on-the-fly understanding of sentences such as “The
woman crutched the goalie the ball.” containing innovative denominal verbs;
see [27]) could be implemented on a Turing machine, and the canny translation
book is essentially equivalent to a Turing machine. Nevertheless, it may well be
that the embodiment approach turns out to be the most efficient way (in terms
of memory, speed, and learning on the implementation level) to design cognitive
systems which can be said to represent meaning and understanding.

The debate aims at elucidating to what degree particular kinds of (T-) sym-
bols should be embodied, e.g., by refering to action and simulation structures. As
to my knowledge the current experiments rather demonstrate that understand-
ing the meaning of a sentence interferes to some degree with the generation of
actions (e.g, as in the ACH experiments of [27]). But it appears unclear whether
this is merely a side effect of associative connections. (For a cell assembly mod-
eler it seems quite natural that understanding a sentence will activate many
related associated structures such as action representations, and therefore cause
interferences). Thus the critical questions is whether these effects are really
functional relevant, and if so, in what respect. I.e., would we still understand
the meaning of a sentence if all action related representations could somehow
be switched off. Even we could do such experiments (and had a precise defi-
nition what means “action related”) the question would remain whether action
representations are a necessary part for understanding meaning in any cognitive
system or just a side effect of the fact that some brain systems (such as the mirror
system [28] in monkeys which has been brought in close relationship to Broca’s



area in humans) are used both for perception and action. E.g., it might then
be possible to construct a cognitive system where the multiply used modules
are duplicated such that one twin is used just for perception and understanding
and the other one just for action (see Fig. 6). This new cognitive system might
be behaviorally equivalent to the old one, but we would not detect any mean-
ing/action interferences as described by [27], and the processes in the new twin
are purely (S-)symbolic. Thus, would you call such a system still embodied?

W
S

sensors actors

mirror2

mirror1
W

S

sensors actors

mirror
goals

goals

Fig. 6: Left: a presumed embodied system: There is a meaning (“mirror”)
system that tightly connects the understanding of language (or also of a vi-
sual scene) with corresponding actions. The concurrent use of the M-system by
perceptual, understanding-related, and action-related processes explains exper-
imentally observable effects such as the ACE. Right: By duplicating a sufficient
portion of this system, we get a behaviorally equivalent cognitive system that
do not show the interference effects such as ACE. Is this new system still to be
called embodied?

If no, then, under the hypothesis that meaning requires embodiment, it is
not clear why we should attribute meaning to the first system, but not to the
second. If yes, then we have to modify the definition of embodimnet from “...
meaning [...] depends on activity in systems also used for perception, action, and
emotion...”, to something like “... meaning [...] depends on activity in systems
which are structurally similar to systems used for action, and emotion...”. This
would considerably weaken the definition of “embodiment”, in particular, if the
“structurally similar” processes could also be implemented in a symbolic way.

Another flaw to the current
Furthermore, the experimental findings of interference in systems apparently

used both for understanding (or perception) and action have apparently another
flaw. For example, the interference effects of understanding and action [27] can
have two different interpretations with respect to the embodiment hypothesis:
(a) understanding hinders action; (b) action hinders understanding. Note that
only (b) would support the embodiment hypothesis. Thus, further experiments
should contribute to clarify this question.



References

[1] A. Glenberg, M. De Vega, and A. Graesser. Framing the debate. The
Garachico Workshop on Symbols, Embodiment, and Meaning, 2005.

[2] M Wilson. Six views of embodied cognition. Psychonomic Bulletin & Re-
view, 9(4):625–636, 2002.

[3] F. Pulvermüller. Words in the brain’s language. Behavioral and Brain
Sciences, 22:253–336, 1999.

[4] F. Pulvermüller. The neuroscience of language: on brain circuits of words
and serial order. Cambridge University Press, Cambridge, UK, 2003.

[5] D.O. Hebb. The organization of behavior. A neuropsychological theory. Wi-
ley, New York, 1949.

[6] V. Braitenberg. Cell assemblies in the cerebral cortex. In R. Heim and
G. Palm, editors, Lecture notes in biomathematics (21). Theoretical ap-
proaches to complex systems., pages 171–188. Springer-Verlag, Berlin Hei-
delberg New York, 1978.

[7] G. Palm. Neural Assemblies. An Alternative Approach to Artificial Intelli-
gence. Springer, Berlin, 1982.

[8] G. Palm. Cell assemblies as a guideline for brain research. Concepts in
Neuroscience, 1:133–148, 1990.

[9] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins. Non-holographic
associative memory. Nature, 222:960–962, 1969.

[10] G. Palm. On associative memories. Biological Cybernetics, 36:19–31, 1980.

[11] J.J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of
Science, USA, 79:2554–2558, 1982.

[12] K. Steinbuch. Die Lernmatrix. Kybernetik, 1:36–45, 1961.

[13] A. Knoblauch. Neural associative memory for brain modeling and informa-
tion retrieval. Information Processing Letters, 95:537–544, 2005.

[14] A. Knoblauch and G. Palm. Pattern separation and synchronization in
spiking associative memories and visual areas. Neural Networks, 14:763–
780, 2001.

[15] L. Barsalou. Perceptual symbol systems. Behavioral and Brain Sciences,
22:577–609, 1999.



[16] A. Knoblauch, R. Fay, U. Kaufmann, H. Markert, and G. Palm. Associat-
ing words to visually recognized objects. In S. Coradeschi and A. Saffiotti,
editors, Anchoring symbols to sensor data. Papers from the AAAI Work-
shop. Technical Report WS-04-03, pages 10–16. AAAI Press, Menlo Park,
California, 2004.

[17] R.J. Douglas and K.A.C. Martin. Neuronal circuits of the neocortex. Annu.
Rev. Neurosci., 27:419–451, 2004.

[18] R. Ritz, W. Gerstner, U. Fuentes, and J.L. van Hemmen. A biologically
motivated and analytically soluble model of collective oscillations in the
cortex. II. Applications to binding and pattern segmentation. Biol. Cybern.,
71:349–358, 1994.

[19] M. Abeles. Corticonics: Neural circuits of the cerebral cortex. Cambridge
University Press, Cambridge UK, 1991.
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