
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Neural associative memory for brain modeling
and information retrieval

Andreas Knoblauch

2005

Preprint:

This is an accepted article published in Information Processing Letters. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Neural Associative Memory for Brain

Modeling and Information Retrieval. 1

Andreas Knoblauch a,b,2

aDepartment of Neural Information Processing
University of Ulm, Oberer Eselsberg, D-89069 Ulm, Germany

bMRC Cognition and Brain Sciences Unit, Speech and Language Group
15 Chaucer Road, Cambridge CV2 2EF, England

Abstract

This work concisely reviews and unifies the analysis of different variants of neural
associative networks consisting of binary neurons and synapses (Willshaw model).
We compute storage capacity, fault tolerance, and retrieval efficiency and point out
problems of the classical Willshaw model such as limited fault tolerance and restric-
tion to logarithmically sparse random patterns. Then we suggest possible solutions
employing spiking neurons, compression of the memory structures, and additional
cell layers. Finally, we discuss from a technical perspective whether distributed neu-
ral associative memories have any practical advantage over localized storage, e.g.,
in compressed look-up tables.

Key words: Spiking associative memory, neural modeling, algorithms, information
retrieval, fault tolerance

1 Introduction

Associative memories are systems that contain information about a finite set
of associations between pattern vector pairs {(uµ 7→ vµ) : µ = 1, ...,M}, where
uµ and vµ are called address and target patterns, respectively [16]. Given a
possibly noisy address pattern ũ the problem is to find a target pattern vµ for

1 The author is grateful to Günther Palm, Fritz Sommer, Thomas Wennekers, and
Friedemann Pulvermüller for valuable comments, discussions, and support. Spon-
sored by the MirrorBot project of the European Union IST-2001-35282.
2 current address: Honda Research Institute Europe, 63073 Offenbach/Main, Ger-
many; email: andreas.knoblauch@honda-ri.de

published in: Information Processing Letters 95, pp.537-544 c© Elsevier 2005



which the corresponding address pattern uµ is most similar to ũ. This is a vari-
ant of the Best Match Problem in [18] and efficient solutions have widespread
applications, e.g. for cluster analysis, speech and object recognition, or infor-
mation retrieval in large databases [16,23,6]. Interesting performance measures
are (i) storage capacity defined as the maximal amount of stored information,
(ii) retrieval efficiency defined as the time required for retrieving a pattern, and
(iii) fault tolerance defined as the maximal allowed distance between address
patterns ũ and uµ for retrieving vµ.

In neural implementations the information about the associations is stored in
the synaptic connectivity of one or more neuron populations [28,8,22]. Neu-
ral associative memories play an important role in many brain theories (e.g.,
[7,2,21,4]), where the patterns correspond to attractors in the brain’s neuronal
state space. From the technical perspective, neural associative memories can
be advantageous over hash-tables or simple look-up-tables if the number of
patterns is large, if parallel implementation is possible, or if fault-tolerance is
required [20,11,12].

In the following we will review results of a simple binary model, the so-called
Willshaw model, which has been used for brain modeling and which appears to
be most efficient for technical applications [11,13,28,20]. We review and slightly
extend the classical analysis of storage capacity, fault tolerance, and retrieval
efficiency and point out problems such as limited fault tolerance and restriction
to logarithmically sparse patterns without any correlations. We will see how
the problems can be solved by model variants employing spiking neurons,
compression of the memory structures, and additional (“grandmother”-like)
cell layers. Finally, we critically discuss from the technical perspective whether
distributed neural associative memories have any advantage over localized
storage, for example in compressed look-up-tables.

2 Binary Willshaw associative memory

2.1 Learning patterns

An attractive model of neural associative memory both for biological modeling
and applications is the so-called Willshaw or Steinbuch model with binary
neurons and synapses [28,26,19,22]. Each pattern is a sparse binary vector of
length n containing k � n one-entries and n− k zero-entries. The M pattern
pairs are stored hetero-associatively in a binary memory matrix H ∈ {0, 1}n×n,
where

2



Hij = min


1,

M∑

µ=1

uµi · vµj


 ∈ {0, 1} . (1)

The neural interpretation is that of two neuron populations, an address popu-
lation u and a target population v, each consisting of n neurons. The patterns
uµ and vµ describe the activity states of the two populations at time µ, and
Hij is the strength of the Hebbian learned synaptic connection from neuron
ui to neuron vj. For the auto-associative case u = v (i.e., if address and target
populations are identical), the network can be interpreted as an undirected
graph with n nodes and edge matrix H where patterns correspond to cliques
of k nodes.

2.2 Recalling patterns: One-step retrieval algorithm

After learning, the stored information can be retrieved applying an address
pattern ũ containing z :=

∑n
i=1 ũi one-entries. The retrieval result will cru-

cially depend on the retrieval algorithm. The simplest algorithm is one-step
retrieval where all neurons are updated synchronously (in one step) [28,19,25]:
A Vector-matrix-multiplication yields the neural potentials x = ũ ·H of the
target population, and imposing a threshold Θ gives the retrieval result v̂,

v̂j =





1 , xj = (
∑n
i=1 ũiHij) ≥ Θ

0 , otherwise
. (2)

Choosing Θ = z will be referred to as the Willshaw threshold and plays an
important role for spiking associative memory (see section 4). Note that if the
set of one-entries in the address pattern ũ is a subset of the one-entries in uµ,
then the associated pattern vµ will be a subset of the retrieval result v̂.

In the following we briefly review the analysis of one-step retrieval in the
Willshaw model for random patterns [28,19,12]. First we compute the matrix
load p1 which is the fraction of one-entries in the memory matrix H. The
probability that a given synapse is not set by the learning of one pattern pair
is 1− k2/n2, therefore for k � n,

p1 = 1− (1− k2/n2)M , (3)

M =
ln(1− p1)

ln(1− k2/n2)
≈ −n

2

k2
ln(1− p1). (4)

For retrieval we address with a noisy version of pattern uµ containing λ · k
“correct” and κ · k “false” one-entries (0 < λ ≤ 1; 0 ≤ κ; z := λ · k+ κ · k). In

3



the following we assume κ = 0, i.e., no “false” one-entries. Then we can apply
the Willshaw threshold Θ = z = λ · k which will cause no “missing” ones, but
possibly “false” ones in the retrieval result v̂. A zero-entry in vµ will become
a “false” one in v̂ with probability

p01≈ pλk1 . (5)

To obtain good retrieval results we demand a high-fidelity-requirement
p01/(k/n) ≈ 0 and p01 → 0 for n→∞ which states that the relative number of
false ones is near zero. High-fidelity can be obtained by requiring p01 ≤ ε · k/n
for a small positive ε and k/n → 0 which is true for (sublinearly) sparse
patterns. From eq. 5 we have to require

λ≥λHiFi :=
ln(ε · k/n)

k · ln p1

. (6)

The storage and retrieval of the M pattern pairs as described can be thought
of as the transmission of M · n binary digits (of the target patterns vµ) over
a binary channel. For I(p) := −p · ldp− (1− p) · ld(1− p) and small k/n the
information per digit is I(k/n) ≈ −(k/n) · log(k/n). For small ε the totally
stored (trans-)information is

T (n, k;M)≈M · n · I(k/n) ≈ M · k · ld(n/k) (7)

To maximize T for given n, k, and λ, we store as many patterns as possible
such that the hifi-requirement is still fulfilled. This means we can increase
the memory load p1 by storing patterns until λHiFi(p1) = λ. From the hifi-
requirement and eq. 5 we get the maximal matrix load p1,max and with eqs. 4,6
the maximal number of stored patterns Mmax,

p1,max = (εk/n)
1
λk , (8)

Mmax≈−λ2 · (ln p1,max)2 · ln(1− p1,max) · n2

(ln n
ε·k)2

. (9)

Thus we obtain for the (normalized) storage capacity C(n, k) :=
T (n, k;Mmax)/n2 as the maximal stored information per synapse, or equiv-
alently, per physical memory unit (bit for ld = log2),

C(n, k)≈λ · ldp1,max · ln(1− p1,max) · 1

1 + ln ε
ln(k/n)

≤ λ · ln 2 (10)

where the upper bound is reached in the limit n → ∞ for p1,max = 0.5 and
k = (ldn)/λ.

4



Thus in a network of n neurons a large number of M ∼ n2/ log2 n sparse
patterns 3 with k ∼ log n can be stored and safely retrieved using noisy
address patterns where only a fraction λ of the original one-entries are used.
If the address pattern contains z ∼ k one-entries then a stored pattern can be
retrieved sequentially in time tseq = z · n+ n ∼ n · log n, which is much faster
than ∼M required by a “brute force” algorithm looking at all patterns stored
in a look-up table. In a parallel implementation with n processors a retrieval
requires only time tprl = z + 1 ∼ log n.

2.3 Problems of one-step retrieval in the Willshaw model

Although the analysis of the Willshaw model may seem encouraging for tech-
nical applications, the storage capacity C, the number of storable patterns
M , and thus also the advantage over simple look-up-tables may be severely
limited in the following three cases.

(i) The first problem occurs if the patterns have non-logarithmic sparseness,
i.e., k 6∼ log n. From eq. 10 we can see that C → 0 for p1,max → 0 or
p1,max → 1. On the other hand, by taking logarithms we can see from eq. 8
that limn→∞ p1,max 6∈ {0, 1} if and only if k ∼ logn. For sublogarithmic k(n)
we have a sparse memory matrix with p1,max → 0, and for superlogarithmic
k(n) we have a dense memory matrix with p1,max → 1, both cases implying
C → 0.

(ii) The second problem occurs for κ > 0, i.e., if we require fault tolerance
against “false” one-entries or superpositions in the address pattern. This can
be understood by considering the two potential distributions of the “correct”
and the “false” neurons in the target population. To obtain a correct retrieval
result, the two distributions must not have any overlap, i.e., the largest po-
tential of the “false” neurons should be smaller than the smallest potential of
the “correct” neurons. Increasing κ will increase the overlap between the two
distributions and may therefore lead to retrieval errors. The problem is most
serious if the noisy one-entries in the address pattern correlate with one or
several learned patterns. For example, when addressing with a superposition
of two previously learned address patterns the result of one-step retrieval will
always be a superposition of the corresponding target patterns.

(iii) The third problem occurs for non-random patterns. Our analysis is valid
only for uncorrelated (e.g., random) patterns. For non-random patterns the
Hebbian learning rule can lead to superposition effects that effectively ex-
tinct the information about learned patterns. For example, storing auto-
associatively the three binary pattern vectors 1100...0, 0110...0, and 1010...0

3 We write f(n) ∼ g(n) for limn→∞ f(n)/g(n) = c where 0 < c <∞.

5



is sufficient to activate all synapses connecting the first three neurons and
thereby “merging” the individual patterns.

In sections 3, 4, and 5 we will see how these problems can be solved, respec-
tively.

3 Non-logarithmic sparseness: Compressing the memory matrix

In technical applications, the first problem of low storage capacity C for non-
logarithmically sparse patterns can be solved by compressing the memory
matrix applying Huffman or Golomb coding [5,9,11,12]. Optimal compression
of the n×n memory matrix containing a fraction of p1 one-entries will reduce
the required physical memory by a factor of I(p1). Thus, writing p1 for p1,max

for brevity, the storage capacity eq. 10 improves to

Ccmpr≈λ · ln p1 · ln(1− p1)

−p1 · ln p1 − (1− p1) · ln(1− p1)
· 1

1 + ln ε
ln(k/n)

≤ λ (11)

The first fraction on the right side of eq. 11 becomes 1 for p1 → 0 or p1 → 1
and is always larger than ln 2. With eq. 8 it is easy to see that p1 → 0 for
all sublogarithmic functions k(n), and p1 → 1 for all superlogarithmic k(n).
Thus for all sublinear k(n) we can obtain a high storage capacity C > 0.69λ.
In particular, for λ = 1 we can fully exploit the physical memory, which has
previously been thought to be impossible for distributed storage [22].

Compressing the memory matrix not only improves storage capacity, but can
also accelerate retrieval if the sparse matrix entries (either 1s for p1 → 0 or
0s for p1 → 1) are efficiently represented by Golomb coding [5]. Then the
sequential retrieval time is tseq ∼ z ·n ·min(p1, 1− p1) which is superior to the
uncompressed model even when normalizing to the information per pattern,
or the totally stored information [12]. However, for parallel implementations
the uncompressed model remains superior since it seems impossible to fully
parallelize the access to the compressed memory matrix.

4 Improving fault tolerance by using spiking neurons

4.1 Spike counter algorithm

The second problem is how to improve retrieval quality for κ > 0 when the
address pattern contains many “false” one-entries or a superposition of several

6



learned patterns. One possibility is to iterate the retrieval several times auto-
associatively and/or bidirectionally [17,24,25]. A complementary approach is
to improve the one-step algorithm by retrieval with spiking neurons in contin-
uous time [27,10,13,12].

The basic idea is to interpret the potentials ũ · H of the classical model as
initial values for the temporal change ẋ := dx/dt of the potentials. The most
strongly excited neuron (with largest ẋ) will be the first to emit a binary spike
event after reaching an arbitrary but fixed threshold Θ. Each spike is auto-
associatively fed back to the other neurons thereby updating ẋ and biasing
the next spike. For hetero-association (with u 6= v), this requires an additional
auto-associative memory matrix A which can be computed similar to eq. 1.

We can embed the Willshaw threshold strategy of one-step retrieval in the
continuous model such that for any time t neuron vi has a positive potential
change ẋi(t) > 0 if and only if it is connected to all neurons vj with v̂j(t) = 1
that have already emitted a spike. For this we can define spike counter vectors
cH := ũ·H, cA(t) := v̂(t)·A, and cΣ(t) :=

∑n
i=1 v̂i(t) for the auto-associatively,

hetero-associatively, and totally transmitted spikes, respectively. A simple lin-
ear example of ẋi having the desired properties is

ẋi(t) = a · cHi(t) + b · (cAi(t)− α · cΣ
i(t)) (12)

for a � b and α ≈ 1. In our example cHi(t) is independent of t, and cΣ
i(t)

independent of i. a and b are strengths of feedforward and feedback spike
inputs, respectively, and the inhibition parameter α determines the fraction of
auto-associatively received spikes necessary for an excitatory effect of feedback.
The model can be implemented efficiently using the following spike counter
algorithm [12],

(1) cH := ũ ·H; cA := 0; cΣ := 0; x := 0; v̂ := 0;
(2) WHILE 0 < 1 DO
(3) ẋ := a · cH + b · (cA − α · cΣ);
(4) (ts, j) := next spike in {(xi − Θ)/ẋi, i)} (or ts = −1 if none)
(5) IF ts < 0 THEN RETURN v̂
(6) x := x + ẋ · ts;
(7) v̂j := 1; cAj := −∞;
(8) cA := cA + Aj; cΣ := cΣ + 1;
(9) ENDWHILE.

In line 7, cAj := −∞ prevents neuron vj from emitting a second spike or
“bursting”. In line 8, Aj denotes the j-th line of matrix A. A sequential im-
plementation requires tseq ∼ (z + k) · n which is ∼ n · log n for k ∼ logn,
not worse than one-step retrieval. However, a parallel implementation with n
processors requires tprl ∼ z + k · logn ∼ log2 n since computing the minimal

7



predicted spike time ts in line 4 requires time log n for each of the k loop
runs. This is still quite efficient, but slower than one-step retrieval. Even more
efficient could be a direct VLSI analog implementation where “computing”
the next spike would be an intrinsic effect of the electrical dynamics and a
retrieval would be possible in a single “step” [3]. For this the regime with a
sparse memory matrix, p1 → 0, would be most preferable since the number of
p1 · n2 synaptic connections is the limiting factor for on-chip integration.

Note that for κ = 0 (no “false” one-entries in the address pattern) the spike
counter algorithm is equivalent to one-step retrieval since then all target neu-
rons will fire at the same time. Thus the analysis for storable patterns and
storage capacity in section 2 applies also to the spike counter algorithm.

To understand the advantage over one-step retrieval we note that the spike
counter algorithm works as a clique-detector (at least in the regime a � b,
α ≈ 1): A neuron can emit a spike only if it is connected to all other neurons
that have already spiked. Thus the retrieval result will be a maximal clique (of
the graph defined by the auto-associative connections). In contrast to one-step
retrieval this allows the recall of patterns with different numbers of one-entries.
It also means that there is a “built-in” threshold control for noisy address
patterns. Finally, low quality retrieval (due to low quality address patterns)
can be detected and rejected at an early time when only few incompletely
connected neurons have spiked.

This also implies that the spike counter algorithm is much more robust for κ >
0, which can be understood by considering the neurons’ potential distribution
separately for the “correct” and “false” neurons (cf. the remarks in section 2.3)
before the first spike occurs (which is equivalent to the distribution of the
potentials x = ũH for one-step retrieval). While one-step retrieval requires
that all “correct” neurons have a larger potential than any “false” neuron, the
spike counter algorithm requires this only for a small number of highly excited
“correct” neurons. This ensures that the first few spikes are “correct”, which
is sufficient for suppressing the “false” neurons by subsequent feedback. An
asymptotic analysis in [12] shows that for maximal p1 and M as in eqs. 8,9,
n→∞ and sublogarithmic k(n) the spike counter algorithm is robust against
a very large number of κmax ·k “false” one-entries in the address pattern, where

κmax≈
λ2

2
· (εk)1/(λk) · k · n

1/(λk)

lnn
. (13)

This means that κ is allowed to grow faster than any polynomial in log n. Of
course, requiring fault tolerance against missing one-entries with sufficiently
small λ < 1 and κ = 0 will generally (not only for sublogarithmic k(n)) imply
fault tolerance against “false” one-entries with λ = 1 and 0 < κ ≤ κmax,
where κmax depends on n, k, M , and ε. One interesting consequence of this is

8



that iterating (auto-associative) retrieval can further improve the result. For
example, consider addressing in the first step with λ < 1, κ = 0. The result
will be a pattern containing all correct one-entries but possibly additional
false one-entries, i.e., λ = 1 and κ ≥ 0. Addressing with this can finally result
in a perfect retrieval result. Thus, iterative retrieval can in principle improve
the storage capacity eq. 10 of one-step retrieval (or at least the convergence
towards λ · ln 2), but only when addressing with λ < 1 (e.g., see [24] for
auto-associative iteration of one-step retrieval with λ = 0.5).

4.2 Biological variant of the spike counter model

The spike counter algorithm has also a very nice biological interpretation.
(Actually, the spike counter algorithm has been derived from biological models
[10,13].) Consider the membrane potential equation of the Hodgkin-Huxley
type (e.g., see [15]),

τ
d

dt
x(t) =−x(t) + gex(t) · (Eex − x(t)) + gin(t) · (Ein − x(t)), (14)

where x is the membrane potential, τ is the decay time constant of membrane
potentials, Eex and Ein are excitatory and inhibitory equilibrium (reversal)
potentials, and gex and gin are excitatory and inhibitory conductances. Each
time the neuron receives an excitatory spike input this will cause a temporary
increase of gex which will drive x towards Eex. Different inputs from different
synapses sum up in gex if they occur within a sufficiently small time window.
For inhibitory inputs similar arguments hold.

Thus, within a sufficiently small time window, the excitatory conductance
gex approximates the weighted sum of the spike counters cH and cA, and the
inhibitory conductance gin can approximate cΣ if one additionally assumes
an unspecific all-to-all inhibitory recurrent connection within population v,
i.e., each neuron makes synapses with weight -1 to all other neurons. Since
real neurons can make only either excitatory or inhibitory synapses (Dale’s
law) a more realistic equivalent model variant assumes an extra inhibitory
neuron population which receives hetero-associative feedforward and auto-
associative feedback inputs similar to the excitatory population (see [10,13]
for more details).

Simulations with the realistic neuron model show the following points [13,12]:
(i) Biologically realistic networks can exhibit a performance similar to the tech-
nically optimized networks even in a realistic “noisy” regime with balanced
excitation and inhibition. (ii) The precise input spike times on a millisecond
scale play a decisive role for the activation of neurons, in particular if the

9



input addresses superpositions of several patterns. (iii) Plausible durations of
retrieval are 5-10msec alternating with silent inhibitory phases, resulting in
oscillations or irregular fluctuations. (iv) A rank order code relative to the
oscillations or fluctuations is most plausible: Early spikes carry much more re-
liable information than late spikes. (v) Reciprocal connections between neuron
populations can improve performance similar to iterative retrieval.

5 Non-random patterns, look-up tables, and “grandmother cells”

A serious limitation of distributed neural associative memory is that capacity
C and number M of storable pattern associations uµ 7→ vµ can be severely
limited if the patterns are not uncorrelated as it is the case for most real-world
data. The reason for this problem is the distributed way information is stored
in the memory matrix. Each neuron and each synapse codes a large number
of different entities causing unwanted superposition effects. We can avoid this
superposition problem by adding an intermediary “grandmother-cell” layer
w mediating between populations u and v, where neuron wµ codes the µ-th
entity or pattern pair (µ = 1, ...,M). In the following we will refer to this
model variant as the grandmother model (cf. [1]).

The grandmother model corresponds simply to a look-up table and can be
implemented efficiently as follows: Let U,V be M × n matrices such that
Uµ = uµ and Vµ = vµ for µ = 1, ...,M , i.e., each matrix row corresponds
to a pattern vector. The matrices can be compressed analogously to section 3
and will require only space M · n · I(k/n) for patterns with k one-entries. For
retrieval with an address pattern ũ containing z one-entries we first compute
the overlaps x := U · ũT and then the retrieval result v̂ = vmax arg xµ. (For
arbitrary patterns we would use the Hamming distance instead of overlaps.)
The overlaps can be interpreted as the potentials of the grandmother cells w,
where v̂ results from a winner-takes-all competition between the grandmother
cells.

A sequential implementation in analogy to section 3 requires only tseq
G ≈

z ·M · k/n steps for the grandmother model. (Essentially, we have to add z
sparse columns of U.) This compares to tseq

W ≈ z · n ·min(p1, 1− p1) for the
Willshaw model. With M , p1, and p1,max as in eqs. 4,3,8 we obtain

ν :=
tseq

G

tseq
W
≈ − ln(1− p1)

k ·min(p1, 1− p1)
≤ − ln(1− p1,max)

k ·min(p1,max, 1− p1,max)
(15)

≈





1/k , p1,max → 0

λ · ln(λk)−ln ln n
εk

ln n
εk

, p1,max → 1,
(16)

10



where we used 1 − p1,max ≈ − ln p1,max for p1,max → 1. Remember from sec-
tion 2.3 that the memory matrix is sparse, balanced, or dense for sublogarith-
mic, logarithmic, or superlogarithmic k(n), respectively. Thus, even for uncor-
related patterns, the Willshaw model performs worse than the grandmother
model (ν < 1) for almost all parameters. The Willshaw model remains supe-
rior only for dense memory matrix with p1,max → 1 when k is almost linear,
for example k = nd with 1/(1 + λ) < d < 1.

The Willshaw model also remains superior for a parallel implementation if the
patterns are uncorrelated and a limited fault tolerance is sufficient. Then a
retrieval requires tprl

W = z + 1 for the Willshaw model with n processors,
compared to tprl

G = z + logM for the grandmother model with M � n
processors. Note that both the Willshaw and the grandmother model are effi-
cient (tseq/M, tprl/n → 0) only for sparse patterns with k/n → 0. Non-sparse
patterns require additionally a sparse recoding (or indexing) as is done in
multi-index hashing [6]. In summary, although there are quite efficient imple-
mentations, it appears that distributed neural associative memories have no
practical advantage over compressed look-up tables or multi-index hashing, at
least not for solving the Best Match problem on sequential computers.

6 Conclusions

In this work we have reviewed the analysis of different variants of neural asso-
ciative memory [28,19,24,13,11,12] in the context of the Best-Match-Problem
[18]. First we have discussed the classical one-step retrieval algorithm of the
distributed Willshaw model [28,19] and its use for modeling neural networks
of the brain and for applications in information retrieval. On the one hand
side the Willshaw model allows a fast and fault-tolerant access to stored pat-
tern information, much faster than naive implementations of look-up tables
[20]. On the other hand, the classical Willshaw model has three serious prob-
lems: First, a high storage capacity can be achieved only for k ∼ log n, i.e., if
the number k of one-entries in a pattern grows logarithmically in the neuron
number n. Second, one-step retrieval has only a limited tolerance against noisy
one-entries in the address patterns, in particular if the noise correlates with
distracting patterns, e.g., if the address pattern is a superposition of several
learned patterns. Third, the number M of storable patterns may be severely
limited for non-random patterns.

The first problem can be solved by compressing the memory matrix [11] lead-
ing to high storage capacities for any sublinear k(n). To solve the second prob-
lem we have proposed the spike counter algorithm which significantly improves
fault tolerance against noisy one-entries in the address patterns and allows a
fast separation of superpositions by making use of precise spike timing [12].

11



Besides this, the spike counter model has a very natural implementation in
biologically realistic conductance based neuron models and in plausible cor-
tical network models [13,14,12,15]. The third problem of storing correlated
patterns appears to be inherent in distributed storage by Hebbian learning.
One possible solution is to have extremely sparse representations, in the most
extreme case a “grandmother cell” model, where each cell codes exclusively a
single entity [1]. We have worked out the relation between the “grandmother
cell” model, look-up tables, and the distributed Willshaw model. Surprisingly,
it turns out that the “grandmother cell” model, if implemented as a com-
pressed look-up table on a sequential computer, is even more efficient than
the distributed Willshaw model in most cases. For information retrieval in
technical applications the distributed Willshaw model remains superior only
for uncorrelated patterns, if a limited fault tolerance is sufficient, and if the
patterns are almost non-sparse (k ∼ nd, d ≈ 1) or if a parallel implementation
is possible.

References

[1] H.B. Barlow. Single units and sensation: a neuron doctrine for perceptual
psychology. Perception, 1:371–394, 1972.

[2] V. Braitenberg. Cell assemblies in the cerebral cortex. In R. Heim and
G. Palm, editors, Lecture notes in biomathematics (21). Theoretical approaches
to complex systems., pages 171–188. Springer-Verlag, Berlin Heidelberg New
York, 1978.

[3] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, L. Carota,
S. Fusi, and P. Del Giudice. A VLSI recurrent network of integrate-and-
fire neurons connected by plastic synapses with long-term memory. IEEE
Transactions on Neural Networks, 14:1297–1307, 2003.

[4] R. Fay, U. Kaufmann, A. Knoblauch, H. Markert, and G. Palm. Integrating
object recognition, visual attention, language and action processing on a robot
using a neurobiologically plausible associative architecture. Proceedings of the
KI2004 Workshop on NeuroBotics, Ulm, Germany, 2004.

[5] S.W. Golomb. Run-length encodings. IEEE Transactions on Information
Theory, 12:399–401, 1966.

[6] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information
retrieval. Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 722–731, 1994.

[7] D.O. Hebb. The organization of behavior. A neuropsychological theory. Wiley,
New York, 1949.

12



[8] J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Science, USA,
79:2554–2558, 1982.

[9] D.A. Huffman. A method for the construction of minimum redundancy codes.
Proceedings of the Institute of Radio Engineers, 40:1098–1101, 1952.

[10] A. Knoblauch. Assoziativspeicher aus spikenden Neuronen und Synchronisation
im visuellen Kortex (in German). Diploma thesis, Department of Neural
Information Processing, University of Ulm, Germany, 1999.

[11] A. Knoblauch. Optimal matrix compression yields storage capacity 1 for
binary Willshaw associative memory. In O. Kaynak, E. Alpaydin, E. Oja, and
L. Xu, editors, Artificial Neural Networks and Neural Information Processing
- ICANN/ICONIP 2003., LNCS 2714, pages 325–332. Springer Verlag, Berlin,
2003.

[12] A. Knoblauch. Synchronization and pattern separation in spiking associative
memory and visual cortical areas. PhD thesis, Department of Neural
Information Processing, University of Ulm, Germany, 2003.

[13] A. Knoblauch and G. Palm. Pattern separation and synchronization in spiking
associative memories and visual areas. Neural Networks, 14:763–780, 2001.

[14] A. Knoblauch and G. Palm. Scene segmentation by spike synchronization
in reciprocally connected visual areas. I. Local effects of cortical feedback.
Biological Cybernetics, 87(3):151–167, 2002.

[15] C. Koch and I. Segev, editors. Methods in neuronal modeling. MIT Press,
Cambridge, Massachusetts, 1998.

[16] T. Kohonen. Associative memory: a system theoretic approach. Springer, Berlin,
1977.

[17] B. Kosko. Bidirectional associative memories. IEEE Transactions on Systems,
Man, and Cybernetics, 18:49–60, 1988.

[18] M.L. Minsky and S. Papert. Perceptrons: An introduction to computational
geometry. MIT Press, Cambridge, MA, 1969.

[19] G. Palm. On associative memories. Biological Cybernetics, 36:19–31, 1980.

[20] G. Palm. Computing with neural networks. Science, 235:1227–1228, 1987.

[21] G. Palm. Cell assemblies as a guideline for brain research. Concepts in
Neuroscience, 1:133–148, 1990.

[22] G. Palm. Memory capacities of local rules for synaptic modification. A
comparative review. Concepts in Neuroscience, 2:97–128, 1991.

[23] R.W. Prager and F. Fallside. The modified Kanerva model for automatic speech
recognition. Computer Speech and Language, 3:61–81, 1989.

13



[24] F. Schwenker, F.T. Sommer, and G. Palm. Iterative retrieval of sparsely coded
associative memory patterns. Neural Networks, 9:445–455, 1996.

[25] F.T. Sommer and G. Palm. Improved bidirectional retrieval of sparse patterns
stored by hebbian learning. Neural Networks, 12:281–297, 1999.

[26] K. Steinbuch. Die Lernmatrix. Kybernetik, 1:36–45, 1961.

[27] T. Wennekers and G. Palm. On the relation between neural modelling and
experimental neuroscience. Theory in Bioscience, 116:273–289, 1997.

[28] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins. Non-holographic
associative memory. Nature, 222:960–962, 1969.

14


