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Abstract. Dynamic neural fields (DNFs) offer a rich
spectrum of dynamic properties like hysteresis, spatiotem-
poral information integration, and coexistence of mul-
tiple attractors. These properties make DNFs more and
more popular in implementations of sensorimotor loops
for autonomous systems. Applications often imply that
DNFs should have only one compact region of firing neu-
rons (activity bubble), whereas the rest of the field should
not fire (e.g., if the field represents motor commands).
In this article we prove the conditions of activity bubble
uniqueness in the case of locally symmetric input bubbles.
The qualitative condition on inhomogeneous inputs used
in earlier work on DNFs is transfered to a quantitative
condition of a balance between the internal dynamics and
the input. The mathematical analysis is carried out for the
two-dimensional case with methods that can be extended
to more than two dimensions. The article concludes with
an example of how our theoretical results facilitate the
practical use of DNFs.

1 Introduction

In recent years dynamic neural fields (DNFs) have been
successfully applied to robot control (Backer et al. 2001;
Engels and Schöner 1995) as well as to modeling and
understanding the brain (Schneider and Erlhagen 2001;
Trappenberg et al. 2001; Giese 1999). In robotics the
parameters of DNFs are either determined by evolution-
ary and learning algorithms or chosen heuristically. In
brain modeling the parameters are mostly chosen accord-
ing to the available neurophysiological experimental data.
The influence of the parameter choice on the field dynam-
ics is only roughly estimated. However, the application’s
semantics often put restrictions on a DNF’s behavior.
For example, it can be required that the activity bub-
ble in the DNF be unique. This is the case for path
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planning in robot navigation tasks (Giese 1999), for atten-
tion control in the case of single object tracking (Backer
et al. 2001), and for dynamic link matching (Konen et al.
1994). We use the methods developed in the fundamental
works on DNFs (Amari 1977; Taylor 1999) to answer
the single most important question for such applications:
How does one choose the DNF parameters for the given
inhomogeneous input so that the stationary solution of
the DNF equation has a single region of active neu-
rons?

This question can be formulated in a more general way:
How does one preserve the balance between input- and
self-driven dynamics? Indeed, on the one hand the impact
of the input should be sufficiently large to generate an
excitation in the DNF. On the other hand, the competi-
tion between excited regions provided by internal dynam-
ics should take care that only one excited region is left
after convergence to a stable attractor. In earlier theoreti-
cal works (Amari 1977; Taylor 1999) an input “with small
inhomogeneity” is considered as one that does not disturb
the internal dynamics. We would like to give a quantitative
estimation for this qualitative definition.

A closely related problem is discussed in Hahnloser and
Seung (2001) for the case of recurrent linear threshold (LT)
networks . The authors provide a stability analysis and
give a general characterization of neuron sets allowed to
be stably coactivated at the fixed point. The description of
these sets depends solely on the connection weights matrix
and not on the input. For DNFs it is essentially different.
Due to the piecewise linearity of LT networks, the local
linearization is constant, whereas this is not the case for
DNFs with a threshold transfer function (see also (Wers-
ing et al. 2001). Our results will highlight this by showing
the dependency of the stability on the actual profile of the
input.

As our work is based on the DNF theory of Amari
(1977) and Taylor (1999), we first restate their results
(Sect. 2.1). Then we make an analysis of the field
dynamics for the case of locally radial-symmetric in-
put (Sect. 2.2). In Sect. 3 we show how the theory can
be used in practice. Finally, we discuss the results in
Sect. 4.
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2 Analysis of activity bubble dynamics

2.1 Dynamic neural field

The DNF was proposed by Amari (1977) in the late 1970s
to model pattern formation in the cortex. He described
the neural tissue not as a set of discrete neurons, but as
a continuous medium. Let us denote by u(x, t) ∈ R, x ∈
R2, t ∈R the state of the DNF. It satisfies the equation

{
τ ∂u(x,t)

∂t
=−u(x,t)+∫

w(x,x′)f (u(x′,t))dx′+h+s(x,t)

u(x, t0)=u0(x),
(1)

where τ > 0 is a relaxation constant, h is a rest level,
w(x,x′) are connection weights, and s(x, t) is an external
input. The function f (u) is an activation function that
maps u to the interval [0,1] and is monotonically nonde-
creasing: f :u ∈ R → [0,1].

Without the integral term, (1) would describe a simple
exponential decay driven by the input s(x). The integral
term in (1) introduces interaction within regions of posi-
tive activity f (u)>0. We call such regions excited regions.
Reducing the field dynamics to the dynamics of the bound-
aries of these excited regions was the method proposed by
Amari (1977) in his pioneer work on DNFs. Amari stud-
ied the DNF equation in the one-dimensional case. Taylor
(1999) generalized the results of Amari to the two-dimen-
sional case. In this section we restate some important re-
sults.

The method of excited regions was developed under the
following assumptions:

1. The activation function is a step function with zero
threshold:

f (u)=
{

1, if u>0 ,

0, else .

This assumption is made for simplicity. The dynamics
of the field would be qualitatively the same for other
types of monotonically nondecreasing activation func-
tions with saturation (Amari 1977).

2. Connections between neurons depend only on the
Euclidean distance between the neurons:

w(x,x′)=w(x′,x)=W(‖x −x′‖) .

Let us consider first the case of a homogeneous input
only: s(x, t) ≡ 0. It was shown in Taylor (1999) that the
only possible shapes of the excited regions in this case are
disks, concentric rings, or the whole field. We are especially
interested in the case of disks. The radius R of the excited
disk

DR ={x∈R2 |f (u(x))>0}={x∈R2 | ‖x −x0‖<R}
is governed by the equation (Taylor 1999)

dR

dt
=−(G(R)+h)/(τv) , (2)

where G(R) is a neural interaction force:

G(R)=
∫

DR

W(‖x −x′‖)dx′, x ∈ ∂DR (3)

and v is the gradient of the neural field u normal to the
boundary of the excited disk ∂DR and is thus negative.

With this notation the equation for the radius of the
excited disk at the fixed point becomes

G(R)+h=0 . (4)

How many solutions this equation has and which of
them correspond to stable stationary solutions of the
DNF equation depends on the function G(R) and thus
on the connection weights W(‖x − x′‖). A weight func-
tion of Mexican Hat form is often used:

W(r)=E exp
(−r2/(2σ 2

E)
)− I exp

(−r2/(2σ 2
I )

)
, (5)

where E >0, σ 2
E >0 are the amplitude and variance of the

excitatory Gaussian and I > 0, σ 2
I > 0 are the amplitude

and variance of the inhibitory Gaussian. The inhibitory
Gaussian is normally set to be wider than the excitatory
Gaussian (σ 2

I >σ 2
E).

Figure 1 shows this function. From Fig. 2, which shows
the corresponding integral G(R), one can see that for the
considered type of excitatory-inhibitory connections four
situations are possible:

1. h is positive and there is no solution to (4)
(−h line below G(R) line, h3 <h).

2. h is positive and there is one solution to (4)
(−h line intersects G(R) line, h2 <h<h3).

3. h is negative and there are two solutions to (4)
(−h line intersects G(R) line twice, h1 <h<h2).

4. h is negative and there is no solution to (4)
(−h line above G(R) line, h<h1).

Here−h3 =min R>0G(R),h2 =0, and−h1 =max R>0G(R).
In the first case the field gets excited everywhere because
h is positive. In the second case the excited region of the

0 5 10 15 20 25

0

0.2

0.4

 W(R)

 R

Fig. 1. Excitatory-inhibitory connections. Function W(R) illustrates
the typical shape of excitatory (W > 0) and inhibitory (W < 0) con-
nection weights. The corresponding parameters for (5) are: E = 0.8,
I =0.35, σE =3.0, σI =5.0
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Fig. 2. Classification of excited region’s behavior depending on rest
level h. The excitation spreads across the complete field if −h is less
than the minimum of G(R) and disappears if −h is greater than
the maximum of G(R). The behavior in the middle region 0<−h<

max
R

(G(R)) depends on the initial radius of the excited region. If the
initial radius is too small, the excited region is unstable and disap-
pears

field has the form of rings, centered around the initial ex-
citation (Taylor 1999). In the last case the excitation dis-
appears completely. The third case is the most interesting
one. Depending on the initial state of the field, we can
get no excitation, excitation everywhere, or excited disks.
The radius of the disks converges to one of two possible
values. Which of these solutions is a stable one? As v is
negative, the solution is a stable attractor if the derivative
of the function G(R) is negative at the fixed point.1 The
resulting classification of field attractors for homogeneous
inputs is illustrated in Fig. 2.

In Amari (1977) and Taylor (1999) a small stationary
inhomogeneous input is also considered. It is proved that
an excited region moves in the direction of an increasing
input. It does not necessarily find the maximum, as it stops
as soon as the input values are the same on the boundary
of the excited region.

If the field has more than one excited region, they can be
treated separately. For the sake of completeness we repeat
here the analysis made in Amari (1977). Let us choose one
region and call it region A. We separate the total interac-
tion [integral term in (1)] into two parts: one coming from
the chosen excited region and another coming from all
other excited regions (for example, a region we call B).
The second part can be seen as an external input s(x):

s(x)=
∫

B
W(‖x −x′‖)dx′ .

Figure 3 shows the typical shape of this input as a func-
tion of the distance R between the center xB

0 of region B
and the considered location x: S(R)=S(‖x−xB

0 ‖)= s(x).
Based on this figure we can distinguish three different re-
gions:

1. R ∈ (0,RE): The input provided by interaction with re-
gion B increases as the distance R to the center of the
region B shrinks.

1 It is easy to show (Taylor 1999) that if W(R)∈C1(0,∞), then also
G(R)∈C1(0,∞).

0 5 10 15 20 25

0

0.2

0.4

 S(R)

RE RI

Fig. 3. Influence of the excited region as a function of the distance
between the considered location and the center of the excited region.
The curve is calculated for the connections presented in Fig. 1 and
the excited region of the radius R =5

2. R ∈ (RE,RI ): The input provided by interaction in-
creases with the distance R to the center of region B.

3. R ∈ (RI ,∞): The input provided by interaction stays
constant.

We already know that an excited region will move in the
direction of an increasing input. It means that in the first
case region A will move toward the center of region B.
Since the action of region A on B is reciprocal, the re-
gions will attract each other. Arguing in a similar way
we conclude that in the second case the regions will repel
each other. At a distance greater than RI , the regions can
coexist.

How can we ensure that only one excited region exists?
Intuitively it is clear that every excited region [where u(x)
is positive] should prevent all remaining parts of the field
from becoming positive. This is the case if the area with
positive states sends a negative input to all distant areas.

Various proposals on how to achieve such a behavior
can be found in the literature. Amari and Arbib (1977)
describe a model consisting of a one-dimensional inhibi-
tory DNF v(x, t) and a two-dimensional excitatory DNF
u(x, y, t):


τu
∂u(x,y,t)

∂t
=−u(x, y, t)+hu+s(x, y, t)

+∫
wu(x −x ′, y −y ′)f (u(x ′, y ′, t))dx ′dy ′

− ∫
wv(x −x ′)g(v(x ′, t))dx ′

τv
∂v(x,t)

∂t
=−v(x, t)+ ∫

f (u(x, y ′, t))dy ′ +hv

u(x, y, t0) =u0(x, y)

v(x, t0) =v0(x)

, (6)

where wu(x, y) is a weighting function of excitatory con-
nections within the excitatory field and wv(x) is a weight-
ing function of connections from the inhibitory field to
the excitatory field. Function g(x) is a linear-threshold
function:

g(u)=
{
u, if u>0 ,

0, else .

For the rest we use the same notations as for sys-
tem (1): function f (u) is an activation function, τu, τv are



422/00537/4

0 5 10 15 20 25

0

0.4

 W(R)

R

Fig. 4. Example of global inhibition connections

relaxation constants, hu, hv are rest levels, and s(x, y, t) is
an external input.

Another possibility to introduce inhibition is to use one
DNF with connections w(x, y) of the global inhibition
type: positive at a short distance and negative at a far dis-
tance, as shown in Fig. 4.

In the limit τv � τu, hv ≈ 0, system (6) and the DNF
with global inhibition connections have the same cooper-
ation-competition behavior of excited regions.

Can the uniqueness of the excited region be proved
mathematically? In Amari and Arbib (1977) it was done
after the connections from the inhibitory field to the excit-
atory one were simplified to a homogeneous inhibition
(wv(x)≡wv) and system (6) was reduced to the system of
two one-dimensional DNFs. Another simplification was
done by assuming that the input consisted of identical
bubbles.

In Konen et al. (1994) a model with global inhibition
connections was analyzed. The authors presented a proof
for the one-dimensional case in the absence of an inhomo-
geneous input. The proof uses a Lyapunov functional and
gets very complex in the higher-dimensional case.

This concludes our review of previous work. In the next
section we present our proof of uniqueness conditions,
which is valid for high-dimensional cases and input con-
sisting of different (in radius and shape) symmetric local
bubbles.

2.2 Uniqueness of activity bubble

Let us consider a connection function of a global inhibi-
tion type:

W(‖x −x′‖)=WE(‖x −x′‖)− I ,

where the function WE has a finite support (WE(R) ≡
0, forR≥Rmax) and I is the global inhibition level (I >0).
It is often assumed that the weighting function WE is non-
negative so that we can call WE the excitatory part of the
connections. This condition (WE(R)≥0) is not necessary
for the following analysis.

For this type of connection the input provided from an
excited disk DR to its own boundary becomes:

G(R) =
∫

DR

WE(‖x −x′‖)dx′ − IπR2

= GE(R)− IπR2, x ∈ ∂DR . (7)
It was shown in Taylor (1999) that GE(R) ∈ C1(0,∞) if
WE(R)∈C1(0,∞).

Assume now that the excitation in the field is produced
by n symmetric nonoverlapping stationary input bubbles.
This assumption makes sense because in brain modeling
the input to a DNF is usually either an output of another
DNF or a data representation in the form of activity bub-
bles. The profile of each bubble is locally described by
the function Si(R), R =‖x −xi‖, where xi is the center of
the ith bubble and Si(R) has a finite support: Si(R) ≡
0, forR ≥ Rmax

i . We assume that the input bubbles are
not overlapping. With these notations the inhomogeneous
stationary input to the DNF is s(x)=∑n

i=1 Si(‖x − xi‖).
For this particular input it is possible to reduce the field
dynamics to the dynamics of the boundaries of excited
disks in a way similar to the one proposed in Amari (1977)
and Taylor (1999) for the homogeneous input.

If the bubbles are close to each other, then excited re-
gions will merge to one region due to cooperation (Fig. 3).
Let us suppose that the input bubbles are far from each
other. Then the input of the ith excited disk to the bound-
ary of all other excited disks is −IπR2

i . Using (2) we obtain
the system of equations that describes the excited disks’
dynamics
Ṙ1 =−(G1(R1)+S1(R1)+h−IπR2

2 · · ·−IπR2
n)/(τv1) ,

...

Ṙn =−(G1(Rn)+Sn(Rn)+h−IπR2
1 · · ·−IπR2

n−1)/(τvn),

(8)
with initial conditions Ri(0)=0 , i =1, . . . , n. At the fixed
point the radii Ri of excited disks satisfy the system of
equations

GE(Ri)+Si(Ri)= Iπ

n∑
j=1

Rj
2 −h , i =1, . . . , n , (9)

where we replaced Gi(Ri) with (7). In the appendix we give
the proof of the following theorem:

Theorem 1 Let GE(R) and Si(R), i = 1, . . . , n have con-
tinuous derivatives for R ∈ (0,∞). Let R= (R1, . . . ,Rn) be
a fixed point with multiple excitation (n>1 and Ri >0). If
the inequality

G′
E(Ri)+S ′

i (Ri)<0 (10)

holds for all radii Ri , then this multiple excitation is stable.
If the inequality

G′
E(Ri)+S ′

i (Ri)>0 (11)

holds at least for two radii Rk, Rl , then this multiple excita-
tion is unstable.

Conditions (10) and (11) can be seen as conditions of a
balance between the influence of the input (expressed by
the slope of the bubble profile S ′

i) and the internal dynam-
ics (measured by the growth of positive neural interaction
G′

E). Condition (11) rewritten as
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−S ′
i (Ri)<G′

E(Ri) (12)

gives a quantitative bound on how inhomogeneous the
input is allowed to be if we want to preserve the unique-
ness of activity bubbles in DNFs. This quantitative bound
can be better handled in practice than the descriptions
of small inhomogeneities of the form “‖s(x)‖�−h” or
“ s(x)= εs̃(x) with small ε,” which have been used until
now (Konen et al. 1994; Amari 1977).

In the case of an arbitrary input we cannot make an
exact theoretical analysis. Still, we can argue in a simi-
lar way if the input can be approximated with symmetric
bubbles.

The extension to higher dimensions is straightforward.
Instead of an excited disk, we can consider an excited n-
dimensional sphere. Then we just need to exchange the
integral over the excited region in the definition of the
neural interaction G(R) by a higher-dimensional integral.

In the next section we show how the developed theory
can be used in practice.

3 Using a DNF as a selection operator

3.1 Appropriate parameter choice

In order to illustrate the practical use of Theorem 1, we
consider using a DNF as a selection operator. At the input
the DNF gets two identical Gaussian bubbles:

s(x)=S(‖x −x1‖)+S(‖x −x2‖),
with S(R)=A exp

(−R2/(2σ 2)
)
. The task of the DNF is

to select one of these input bubbles. This means that at
the fixed point we expect only one activity bubble left at
the location of one of the input bubbles. In order to break
the symmetry of the input, a small white Gaussian noise
is added to the input. If the condition of the theorem is
fulfilled, the fixed point with multiple activity bubbles is
unstable and a small noise is sufficient to make the DNF
converge to the fixed point with only one activity bubble.

Besides the uniqueness of the activity bubble we impose
the following restrictions:

– In the absence of an input there should be no activity
bubbles in the field.

– If an input is larger than a fixed activation threshold
Smin, then the field should get activated.

These requirements imply (Fig. 2) that

max
R

G(R)<−h≤Smin.

Thus we will get activity in the DNF only if the ampli-
tude A of input bubbles is larger than maxRG(R). On the
other hand, the amplitude of input bubbles is bounded by
the uniqueness condition −S ′(R)<G′

E(R). Together these
two restrictions define the appropriate range of the DNF
parameters for the given range of the input.

Let us fix the variance σ 2 of the input bubble at 9.0 and
let the amplitude vary from 0.0 to 1.5. We set the activa-
tion threshold in our example to Smin =0.7 and choose the
smallest possible rest level −h=Smin =0.7

To keep the calculations simple, we choose constant
connection weights in the DNF:

W(R)=
{
E, if R <Rmax ,

−I, else .

In this simple case the integral G(R) can be calculated
analytically:

G(R)=GE(R)− IπR2

GE(R)= (E + I )R2 [π +α(R) cos(α(R))− sin(α(R))]
G′

E(R)= (E + I )2R [π −α(R)− sin(α(R))] , (13)

where α is defined by

α(R)=
{

2 arccos (Rmax/(2R)) , if R >Rmax/2
0 , else .

The price for simplicity is the discontinuity of the deriv-
ative of GE(R) at the point R = Rmax/2. In practice we
could smooth the connection weights and thus the consid-
ered derivative without affecting much the resulting field
behavior. The following theoretical considerations are car-
ried out outside of the neighborhood of the discontinuity.

We fix the radius of the excitatory connections at
Rmax = 5 in order not to blur the input bubbles too
much. Taking into account the condition on the rest level
h (maxR G(R)<−h), we choose E = 0.025 and I = 0.03.
Now we must concern ourselves with the uniqueness con-
dition. Figure 5 shows the gradient of the curves GE(R)
and S(R). From this figure we see that theoretically two-
bubble solutions could be stable for the chosen parame-
ters.

We test now the impact of changing the amplitude A in
the simulation. As long as the amplitude is less than 0.7 we

0 2 4 6 8

0

1

R

G
′ E

 (
R

)

Fig. 5. Parameter tuning of the DNF for restoring the uniqueness
condition (Fig. 6 a–c). The solid line represents the slope of the cross
section of the input bubble −S ′(R) for amplitude A= 1.6 and var-
iance σ 2 = 9. Other lines show the growth of a positive interaction
force G′

E(R) for different parameter choices. The uniqueness condi-
tion for activity bubble −S ′(R)<G′

E(R) implies that all these lines
should lie above the solid line. 1 Dot-dashed line E =0.025, I =0.03,
Rmax = 5. The uniqueness condition is not fulfilled for a wide range
of R. 2 Dotted line E = 0.025, I = 0.05, Rmax = 5. The uniqueness
condition still fails on a large interval. However, due to the increase
of inhibition, the fixed points of system (8) do not fall into this inter-
val. Thus the uniqueness of an activity bubble is provided with this
choice of parameters (Fig. 6 a–c, case 3). 3 Dashed line E = 0.025,
I =0.03, Rmax =7. The uniqueness condition is fulfilled for all fixed
points (Fig. 6 a–c, case 4)
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Fig. 6 a–c. Violation of the uniqueness
condition. The input has two Gaussian
bubbles with variance σ 2 =9 and
amplitude S(0): 1) S(0)=1.0; 2), 3), 4)
S(0)=1.6. With the growth of the
amplitude the uniqueness condition
becomes violated (case 2). In order to
restore the uniqueness one can increase
the inhibitory part of connections
(case 3) or enlarge the radius of the
excitatory connections (case 4). a
Theoretical uniqueness condition. The
dashed line is GE(R)+S(R). The solid
line is G(R)+S(R). The dotted line is
GE(R)+S(R)−2IπR2. The intersection
of the dotted line with −h line determines
the radius R of the excited circle in the
system of two circles. If at this radius the
derivative of GE(R)+S(R) (dashed line)
is not positive, then the system of two
excited circles is stable. b The DNF at the
fixed point. c Excited regions in the DNF
at the fixed point

get no activity at all. In the range of the amplitude between
S(0)= 0.7 and S(0)= 1.2 we have a single active region,
and thus the DNF can be applied as a selection operator
(Fig. 6 a–c, case 1). As soon as condition (11) of Theorem 1
is no longer fulfilled we get two active regions (Fig. 6 a–
c, case 2). The intuitive remedy is to increase the inhibi-
tion I , which indeed helps (Fig. 6 a–c, case 3, I = 0.05).
A less intuitive possibility of parameter tuning is to aug-
ment the radius R of excitatory connections (Fig. 6 a–c,
case 4, R = 7). Figure 5 shows a comparison of the func-
tion G′

E(R) for these different choices of the DNF param-
eters. This figure shows how, with the help of Theorem 1,
we can estimate either the range of input where we have
the uniqueness of an activity bubble for given weight con-
nections or the appropriate connection weights for a given
input.

3.2 Dynamical properties of selection

Until now we have considered a stationary input to a
DNF. Next we show some important dynamical proper-
ties of DNFs that explain the advantage of using DNFs
as a selection operator. Let us suppose that the input and
the DNF are changing on different time scales, so that the
DNF has enough time to converge to the fixed point every
time the input changes. We do not conduct a full time anal-

ysis of bubble formation (Taylor 1999) but only follow the
change of the excited region’s location after convergence
of the DNF to the fixed point.

Our test is schematically explained in Fig. 7. Without
resetting the state of the neural field we supply five differ-
ent inputs and let the DNF converge to the fixed point

Fig. 7. Test of the DNF properties. The dash-dotted lines schemati-
cally represent the input. The solid lines represent the desired output
of the neural field. The dotted lines show the previous stable state
of the DNF, and the arrows indicate the direction of changes in the
DNF
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Fig. 8. Simulation results. 1
Competition. 2 Cooperation. 3
Correction. 4 Distractor. 5 Strong
distractor. For more details see text

every time. Situation 1: We start with the DNF that has
no active bubbles. However, one region is “preactivated.”
This means that the value of the DNF in this region is
slightly higher than in the rest of the field. As soon as two
identical input bubbles are introduced, the DNF becomes
active at the location of the bubble that is closer to the pre-
activated region. Thus in the “competition” of two input
bubbles the preactivated location wins. Situation 2: The
“cooperation” situation illustrates the ability of an exci-
tation to merge to one region if maxima of an input are
close to each other. Situation 3: The “correction” situa-
tion shows how an excited region follows the movement
of a local input maximum. Situation 4: The excited region
stays fixed despite changes in the input, which are far from
the actual excitation location (“distractor” situation). Sit-
uation 5: If the distractor is strong enough, the excitation
moves to a new maximum. Figure 8 presents the corre-
sponding simulation results.

The test described above illustrates properties of DNF
dynamics that are very useful for applications. These prop-
erties are:

– Conditioned selection (situation 1);
– Spatiotemporal integration (situations 1, 2, 3); and
– Hysteresis (situations 4 and 5).

These properties were used in the implementation of a gaze
direction control for an active robot head. The robot has
a neck with two degrees of freedom and a head with two
cameras. From the visual input of the camera a saliency
map of the viewed scene is generated (for more details
see Itti et al. 1998). By moving the head the robot should
direct its gaze toward the most salient object in the scene
and fixate this object for some time. This task means that
the robot must

– Correct the gaze direction if the movement of the head
has not been precise,

– Focus on one object despite distractors, and
– React to the changes in the environment.

A simple maximum operator used for the choice of the
most salient location would completely fail the first two
requirements. Indeed, if the visual scene changes (due to
head movement or due to distractors) the maximum of the
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Fig. 9. Practical test for using a DNF as a selection operator.
Left side: Saliency map is built with help of segmentation. Right
side: Saliency uses complex features (colors, orientations). In both
cases the DNF has only one region of active neurons after conver-
gence. This region can be used to control the direction of the robot
head

saliency can change its location from one salient object to
another.

Instead of a maximum operator we use a DNF as a
selection operator. We feed a saliency map into a DNF
with global lateral inhibition. After convergence of the
DNF to the stable state we can choose either the center
of gravity of an excited region or the location of the max-
imum excitation for the control of the robot’s gaze direc-
tion. If condition (11) of Theorem 1 is fulfilled, the DNF
has only one active region. Therefore, the choice is unam-
biguous. The dynamical properties of the DNF described
above provide both reaction and fixation.

Figure 9 presents the results for two versions of a
saliency map. On the left side of the figure the saliency
map has locally symmetric bubbles, as considered in The-
orem 1. They are generated by putting identical bubbles in
the regions where the objects are detected by segmentation
(black rectangles). As the condition of Theorem 1 is ful-
filled, we get only one excited region in the DNF after con-
vergence. The right side of Fig. 9 shows a commonly used
saliency map (Itti et al. 1998). In this case we also observe

the uniqueness of activity bubbles if the DNF parameters
were chosen under consideration of Theorem 1.

Figure 10 compares two selection mechanisms: one us-
ing a DNF and another using resetting of selective neurons
after every decision (Itti et al. 1998). Among the objects on
the table are two ducks that produce very similar saliency
blobs. What makes a gaze selection difficult is the fact that
from the position of the camera focusing on the big duck
the most salient point is located on the small duck, and
vice versa. For this reason all algorithms that are input-
driven only, like the one proposed in Itti et al. (1998), are
unable to make a catchup saccade and fixate an object sta-
bly. Indeed one can see that the gaze is oscillating between
the locations of the big and small duck. By contrast, the
algorithm using a DNF is able to produce catchup sac-
cades and fixations of objects.

4 Summary

In this paper we considered a DNF with global inhibition,
which is frequently used in biologically motivated control
applications. The stability analysis of DNF attractors led
to a quantitative condition of activity bubble uniqueness
in DNFs. This condition expresses a balance between the
internal dynamics and the influence of the input. Already
in the pioneer work on DNFs (Amari 1977) it was men-
tioned that “When the input is strong compared with the
mutual excitation and inhibition, it will dominate the solu-
tion.” We translated this statement into a more precise
mathematical language for the case of high-dimensional
DNFs with stationary locally symmetric input.

We validated our results in the simulations and applied
them to the implementation of gaze direction selection
for an active robot head. Due to the balance between the
internal dynamics and the input’s influence, the robot head
was sufficiently self-driven to fixate objects and sufficiently
input-driven to take changes in the scene into account.

Our findings are especially interesting for the applica-
tions using DNFs as a maximum selection operator. These
are the applications where such properties of selection like
hysteresis and spatiotemporal integration are desired [e.g.,
navigation (Giese 1999), attention (Backer et al. 2001)].
The uniqueness of an activity bubble is crucial for the un-
ambiguity of the selection, whereas the sufficient impact of
the input is needed in order to react to the strong changes
in the input. The proposed condition helps to find the
range of the input (resp. the appropriate DNF parame-
ters) where both features are provided.

Due to the high nonlinearity of the DNF dynamics a
theoretical analysis was conducted only for the case of sta-
tionary input with locally symmetric bubbles. However,
the proposed condition clarifies the theoretical question
of activity bubble uniqueness and eases the handling of
DNFs in practice.

Appendix: Analysis of Jacobian eigenvalues

In order to simplify the calculations, let us use the nota-
tions di =G′

E(Ri)+ S ′
i (Ri) and ai =−2πIRi . With these
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Fig. 10. Advantages of selection hysteresis. For visualization pur-
poses the center of the camera image is marked by a circle and fixa-
tions are marked by a square. Upper row: Algorithm using resetting
of neurons after every selection decision. The gaze direction is oscil-
lating between the location of the small and the big duck without

fixating them. Lower row: Algorithm using a DNF. After a catchup
saccade (steps 1–2) the gaze is fixating the small duck. After fixation
time is over, the big duck is selected. Unperturbed by the fact that
the maximal saliency is located at the small duck, a catchup saccade
is done (steps 10–11)

notations the Jacobian of system (8) at the fixed point is
given by the matrix

J =1/τ




− (d1 +a1) /v1 −a2/v1 . . . −an/v1

−a1/v2
. . .

...
...

. . . −an/vn−1
−a1/vn . . . − (dn +an) /vn


 .

The terms that include the derivative of 1/vi vanish at
the fixed point because they are multiplied by the terms
that are zero at the fixed point.

Let us estimate the eigenvalues of the Jacobian J .

det(J −λE) =
n∏

i=1

(
− 1

τvi

)

∗

∣∣∣∣∣∣∣∣∣

d1 +a1 +λτv1 a2 . . . an

a1
. . .

...
...

. . . an

a1 . . . dn +an +λτvn

∣∣∣∣∣∣∣∣∣
.

We set bi = di +λτvi and calculate the considered deter-
minant by induction:

Dn =

∣∣∣∣∣∣∣∣∣

b1 +a1 a2 . . . an

a1 b2 +a2
...

...
. . . an

a1 . . . bn +an

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

b1 0 . . . −bn−1 0

0 b2 0
...

...
...

. . . −bn−1 0
a1 a2 . . . an−1 +bn−1 an

0 . . . 0 −bn−1 bn

∣∣∣∣∣∣∣∣∣∣∣

= bn

∣∣∣∣∣∣∣∣∣

b1 0 . . . −bn−1

0 b2 0
...

...
. . . −bn−1

a1 a2 . . . an−1 +bn−1

∣∣∣∣∣∣∣∣∣

−an

∣∣∣∣∣∣∣∣∣

b1 0 . . . −bn−1

0 b2 0
...

...
. . . −bn−1

0 . . . 0 −bn−1

∣∣∣∣∣∣∣∣∣
= bnDn−1 +an

n−1∏
i=1

bi .

If we now suppose that

Dn−1 =
n−1∑
i=1

ai

n−1∏
j=1,j �=i

bj +
n−1∏
i=1

bi ,

then we get

Dn =
n∑

i=1

ai

n∏
j=1,j �=i

bj +
n∏

i=1

bi .

We now use this result for estimating the eigenvalues of
the Jacobian:

f (λ) = det(J −λE)=
n∏

k=1

(
− 1

τvk

)

∗

 n∑

i=1

ai

n∏
j=1,j �=i

(
dj +λτvj

)+
n∏

i=1

(di +λτvi)


 .

To shorten the last expression, we use the variables αi =
−ai/(τvi) and βi =−di/(τvi). Then we get the following
expression for the determinant f (λ):
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f (λ)=
n∑

i=1

αi

n∏
j=1,j �=i

(
βj −λ

)+
n∏

i=1

(βi −λ) . (14)

Without loss of generality we can assume that the values
βi are sorted in ascending order: βi ≤βi+1 , i = 1, . . . , n.
We will show next that every interval [βi, βi+1] contains a
zero crossing of the function f (λ) and thus an eigenvalue
of the Jacobian.

At the point λ = βi all terms in the sum (14) vanish
except for the ith term:

f (βi)=αi

n∏
j=1,j �=i

(
βj −βi

)
. (15)

Similarly,

f (βi+1)=αi+1

n∏
j=1,j �=i+1

(
βj −βi+1

)
. (16)

We recall that

αi =− ai

τvi

= 2πIRi

τvi

,

where vi is the gradient of neural field u normal to the
boundary of the ith excited circle and is thus negative for
all i. All radii Ri are positive. Hence, αi and αi+1 have the
same sign. Now we compare the signs of the other multi-
plicands in products (15) and (16). As all βi are ordered,
the terms βj −βi [(15)] and βj −βi+1 [(16)] have the same
sign for all j except j = i + 1 [(15)] and j = i (16). These
terms are either both zero (βi =βi+1) or have the opposite
signs. In the first case we have an explicit root of f (λ)=0:
λ=βi =βi+1. In the second case, the products in (15) and
(16) have opposite signs. This means that the continuous
function f (λ) changes its sign in the interval [βi, βi+1] and
thus has a zero crossing in this interval.

We showed that every interval [βi, βi+1] contains an
eigenvalue of the Jacobian. These are n − 1 eigenvalues.
The analysis of the sign of the function f (λ) shows that
the nth value belongs to the interval (−∞, β1] and there
are no eigenvalues in the interval (βn,∞). In order to com-
plete the analysis, we need to know whether βi are positive
or negative. We recall that

βi =− di

τvi

=−
(

G′
E(Ri)+ S ′

i (Ri)

τvi

)
,

where vi are negative for all i. Hence, if G′
E(Ri)+S ′(Ri)

are negative for all radii, then all βi are negative and all

eigenvalues are negative. If G′
E(Ri)+ S ′(Ri)> 0 holds at

least for two radii, then we have two positive βi . Therefore,
the Jacobian has at least one positive eigenvalue. Theo-
rem 1 is proved.
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