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Abstract

The basic idea of Lucas and Kanade is to constrain the
local motion measurement by assuming a constant velocity
within a spatial neighborhood. We reformulate this spa-
tial constraint in a probabilistic way assuming Gaussian
distributed uncertainty in spatial identification of velocity
measurements and extend this idea to scale and time di-
mensions. Thus, we are able to combine uncertain velocity
measurements observed at different image scales and posi-
tions over time. We arrive at a new recurrent optical flow
filter formulated in a Dynamic Bayesian Network applying
suitable factorisation assumptions and approximate infer-
ence techniques. The introduction of spatial uncertainty al-
lows for a dynamic and spatially adaptive tuning of the con-
straining neighborhood. Here, we realize this tuning depen-
dent on the local Structure Tensor of the intensity patterns
of the image sequence. We demonstrate that a probabilistic
combination of spatiotemporal integration and modulation
of a purely local integration area improves the Lucas and
Kanade estimation.

1. Introduction

The local and linear differential method of Lucas and
Kanade [9] is one of the most popular approaches for opti-
cal flow computation. Compared to global smoothness con-
straints used for example by Horn and Schunk [8], their lo-
cal explicit method is more accurate and more robust with
respect to errors in gradient measurements [2]. Neverthe-
less, the local approach suffers from the aperture problem
and the linearisation of the underlying constancy assump-
tion for image intensity. Lucas’ and Kanade’s basic idea to
assume that the optical flow field is spatially constant within
some neighborhood is in many cases not enough to resolve
motion ambiguities and does in particular not hold at motion
boundaries. Further on, the linearised intensity constancy
assumption is suitable only for small displacements.

In this paper, we reduce the above mentioned drawbacks
just by exploiting the local Lucas-Kanade constraint con-
sistently but without introducing further global smoothness
constraints. The main assumption of Lucas and Kanade is
that a number of pixels within a neighborhood move with
the same velocity. This implies that the movement of every
single pixel is influenced by the movement of its neighbor-
ing pixels. So one could argue that the movement of an
observed pixel is equated with the movement of an image
patch centered around this pixel. Since this is not true, one
could follow a slightly different implication and assume that
the position of a pixel is uncertain and so its velocity can
only be inferred by taking the neighborhood into account.
Either way, the question arises what is an appropriate size
of the neighborhood and which neighboring position influ-
ences the pixel velocity how strongly?

Usually, the neighborhood is weighted with a Gaussian
assuming a less likely contribution to the velocity esti-
mate of the center pixel for larger distances to the center
[2]. More elaborate approaches adapt the neighboring in-
fluence by taking the underlying structure into account [4],
[6] which improves the optical flow accuracy, especially at
motion boundaries.

Keeping in mind the above mentioned considerations we
start with a probabilistic interpretation of the Lucas-Kanade
approach inspired by the work of Simoncelliet al. [12]. We
propose agenerative modelthat allows to infer the velocity
of every pixel from the movement of image patches. Every
pixel within the patch is assigned a different uncertainty to
be able to adaptively adjust the neighborhood influence on
the velocity estimate. This leads to an observation likeli-
hood for optical flow estimation described in section 2.1.

Another important aspect of motion estimation is the fact
that motion is a dynamic feature of an image sequence.
Thus, the longer the spatiotemporal process is observed the
more precisely we can estimate and predict the motion con-
tained in an image sequence. This has motivated several
approaches [13], [3], [7] to recursively estimate the opti-
cal flow over time including a prediction model that defines



some temporal relation between pixel movements. Along
this line of argumentation, it seems straightforward to also
include a local constraint on the pixel movements within
some neighborhood in time.

Here, we realize this idea and extend the Lucas-Kanade
constraint to the time dimension. More precisely, we as-
sume that the pixel velocities within a spatiotemporal neigh-
borhood remain constant. This constraint is included via a
temporal transition that consists of factors which are depen-
dent on neighboring positions. The influence of these neigh-
boring positions is again allowed to be spatiotemporally
adaptive. In the same way, we account for the limitations of
the linear differential method and incorporate a probabilistic
coarse-to-fine strategy inspired by [11]. Our method prop-
agates motion information over scales via a scale-transition
consisting of factors which are adaptively dependent on the
movement of pixels from neighboring scales (for details see
section 2.2). Combining both transitions we obtain a new
recurrentscale-time filter(STF) for optical flow estimation
that incorporates the idea of the local Lucas-Kanade con-
straint to both dimensions, scale and time. This is formu-
lated in a Dynamic Bayesian Network (DBN) and described
in section 2.3.

To enhance optical flow performance at motion disconti-
nuities, we allow for adaptation of the neighborhood uncer-
tainty dependent on structural information. This is related
to discontinuity preserving anisotropic diffusion approaches
[4]. Here, the adaptation of the neighborhood influence is
realized with adaptive Gaussian kernels whereas the orien-
tation and the sharpness of the Gaussians are gained from
the structural information provided by the local Structure
Tensor of the underlying intensity pattern corresponding to
the neighborhood (see section 3).

In section 4 we compare different types of realizations
of the proposed STF with state-of-the-art algorithms that
achieve highest accuracy in optical flow computation, like
the CLG approach [5], to shortly discuss the advantages of
recurrent filtering techniques in contrast to variational ap-
proaches that do not propagate motion information via pre-
dictive models.

2 Probabilistic Recurrent Filter

To describe the filtering process a DBN as depicted in
Fig. 1 is proposed. We assume a generative model for the
observablesYtk of an image sequenceI1:T,1:K with T im-
ages at equidistant points in timet at K spatial resolution
scalesk with t′ = t + 1 andk′ = k + 1 being the next time
step and the next finer scale, respectively.

Here, the observableYtk = (∇I
tk, Itk

t ) ∈ R
3×Xk
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Figure 1. Dynamic Bayesian Network for re-
current motion estimation realizing a scale-
time filter (STF) that simultaneously propa-
gates beliefs along scales k and time t.

temporal derivativesItk
t ∈ R

Xk
×1 with entriesItk

t ,x ∈ R
1×1

at each pixel locationx ∈ N
Xk

of the image at a particular
time t and scalek. In the following, the gradient field is as-
sumed to be deterministic. Furthermore, we define a scalar
field patch of temporal derivatives centered aroundx as
I
tk
t ,x ∈ R

Xk
×1 (which should not be confused withItk

t ,x) and

a gradient field patch centered aroundx as∇I
tk
x

∈ R
2×Xk

.
Similarly, the hidden stateVtk ∈ R

2×Xk

is a flow field at
time slicet and scalek defined over the image rangeXk

with entriesvtk
x

∈ R
2×1 at each pixel locationx of the im-

age.
The probabilistic generative model is precisely defined

by the specification of theobservation likelihoodfor the
image derivatesYtk formulated in (1) and thetransition
probability for the flow fieldV

t′k′

at the new timestept′

at finer scalek′ specified in (2) given the flow fieldVt′k at
the same timet′ but coarser scalek and the flow fieldVtk′

from last timet but at the same scalek′.
For the observation likelihood and the flow field transi-

tion probability we assume that they factorise over the im-
age as follows

P (Ytk |Vtk) =
∏

x

ℓ(vtk
x ) , (1)

P (Vt′k′

|Vt′k,Vtk′

) =
∏

x

φk (v
t′k′

x ,Vt′k)×

φt (v
t′k′

x
,Vtk′

) . (2)
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Equation (2) explicitly expresses that the conditional depen-
denceP (vt′k′

x |Vt′k,Vtk′

) can be split in two pairwise po-
tentialsφk , φt , as explained in detail in section 2.2. This
will allow us to maintain only factored beliefs during infer-
ence, which makes the approach computationally practica-
ble.

2.1 Observation likelihood

We follow a similar argumentation as Simoncelliet al.
[12] to obtain theℓ(vtk

x
)-factors (1) of the observation like-

lihood. However, our likelihood results from a generative
model assuming that a scalar field patch of temporal deriva-
tivesI

tk
t ,x ∈ R

Xk
×1 centered aroundx is generated by the

velocity v
tk
x

∈ R
2×1 at positionx and the gradient field

patch(∇I
tk
x

)T ∈ R
Xk

×2 centered around the same posi-
tion x.

While introducing this model based onpatchesaround
positionx instead of only thepixel at positionx itself we
imply that the optical flow is locally constant in a sense sim-
ilar to the Lucas-Kanade constraint [9]. Additionally, we
assume i.i.d. additive Gaussian noisest , Sv on the temporal
derivatives and the flow field, respectively.

ℓ(vtk
x

) = N (−I
tk
t ,x | (∇I

tk
x

)T
v

tk
x

,Σtk
ℓ,x) , (3)

Σ
tk
ℓ,x =
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... σtk
ℓ,xx′

...

0 . . .
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, (4)

σtk
ℓ,xx′ =

(∇Itk
x′ )T

Sv∇Itk
x′ + st

fℓ(x′,x, t, k)
. (5)

In notation (3), the patches can be regarded as vectors and
the covariance matrixΣtk

ℓ,x is a diagonal with entriesσtk
ℓ,xx′

that depend on the positionx′ relative to the centerx, the
time t, the scalek, the flow field covarianceSv and the
variance on the temporal derivativesst. Here, fℓ takes
into account the spatial uncertainty of the velocity mea-
surement and can implement any kind of spatial weight-
ing, such as a binomial blurring filter proposed in [11]
or an anisotropic and inhomogenous Gaussian weighting
fℓ = N (x′|x,Σtk

I ,x) which we investigate in section 3.
In contrast to [11], we introduced timet as an additional

dimension and derived a more compact notation by putting
the spatial weighted averaging directly into the likelihood
formulation defining multivariate Gaussian distributionsfor
vectors that describe image patches centered around image
locations. Allowing for uncertaintiesΣtk

ℓ,x that are adaptive
in locationx, scalek and timet we are able to tune the
local motion measurements dynamically dependent on the
underlying structure of the intensity patterns as explained in
section 3.

2.2 Flow field transition probability

The flow field transition probability defined by equation
(2) consists of two pairwise potentials. The first potential
φt (v

t′k′

x
,Vtk′

) assumes that the flow field at every spatial
scalek transforms fromt → t′ according to itself. The
second potentialφk (vt′k′

x
,Vt′k) realizes a refinement from

coarser to finer scalek → k′ at every timet′ via interpola-
tion of the coarser flowVt′k.

To motivate the first transition factor we assume that the
origin of a local flow vectorvt′k′

x
at positionx at timet′ was

a previous flow vectorvtk′

x′ at some corresponding position
x
′ at timet,

v
t′k′

x
∼ N (vt′k′

x
|vtk′

x′ , σt ) , (6)

which says that the change in time of the flow field is white
with undirectional transition noise betweenV

tk′

andVt′k′

.
Now, asking what the corresponding positionx

′ in the pre-
vious image was, we assume that we can infer it from the
flow field itself as follows

x
′ ∼ ft (x

′,x − v
t′k′

x
) := N (x′|x − v

t′k′

x
,Σtk
t ,x) . (7)

In principleft can be any arbitrary function. Here, we de-
fine it as an inhomogeneous anisotropic Gaussian to be able
to steer the orientation and to adapt the strength of the un-
certainty in spatial identificationΣtk

t ,x between correspond-
ing positions in time (see section 3 for details). Note that
here we usevt′k′

x
to retrieve the previous corresponding

pointx′ which is a suitable approximation keeping in mind
that we have assumed directly beforehandv

t′k′

x ≈ v
tk′

x′ in
(6). Combining both factors (6) and (7) and integratingx

′

we get the first pairwise potential

φt (v
t′k′

x ,Vtk′

) =
∑

x′

N (x′|x− v
t′k′

x ,Σtk
t ,x)×

N (vt′k′

x |vtk′

x′ , σt ) , (8)

that imposes a spatial coherence constraint on the flow field
combined with a linear stochastic drift. Equivalent to (6)
for the second transition factor we assume that the origin
of a local flow vectorvt′k′

x
at positionx at finer scalek′

corresponds to a flow vectorvt′k
x′′ from coarser scalek at

some corresponding positionx′′,

v
t′k′

x ∼ N (vt′k′

x |vt′k
x′′ , σk ) , (9)

assuming white transition noiseσk . Since it is uncertain
how strong a positionx′′ at coarser scalek influences the
velocity estimate at positionx at finer scalek′, we assume
that we can infer it from the neighborhood similar to (7)

x
′′ ∼ fk (x

′′,x) := N (x′′|x,Σtk
k ,x) . (10)

3



For the same reasons as mentioned for the temporal transi-
tion factor (8) we choosefk to be also an adaptive Gaussian
kernel. Again, combining both factors (9) and (10) and in-
tegratingx′′ we get the second pairwise potential

φk (v
t′k′

x
,Vt′k) =

∑

x′′

N (x′′|x,Σtk
k ,x)×

N (vt′k′

x
|vt′k

x′′ , σk ) , (11)

that imposes a spatial smoothness constraint on the flow
field via adaptive spatial weighting of motion estimations
from coarser scale. The combination of both potentials (8)
and (11) results in the complete conditional flow field tran-
sition probability as given in (2).

We impose adaptive spatial constraints on every factor of
theV -transition. The transition factors (8) and (11) allow us
to unroll two different kinds of spatial constraints along the
temporal and the scale axes while adapting the uncertain-
ties for scale and time transition differently. This is done
by splitting not only the transition in two pairwise poten-
tials, one for the temporal- and one for the scale-transition,
but also every potential in itself in two factors, one for the
transition noise and the other one for an additional spatial
constraint. In this way, the coupling of the potentials (8)
and (11) realizes a combination of (A) scale-time prediction
and (B) an integration of motion information neighboring in
time, in space and in scale.

2.3 Approximate Inference

To gain a recurrent optical flow filtering we propose
an approximate inference based on belief propagation [15]
with factored Gaussian belief representations. The struc-
ture of the graphical model in Fig. 1 is similar to a Markov
Random field. To derive a forward filter suitable for on-
line applications we propose the following message passing
scheme. Let us assume, we isolate one time slice at timet
and neglect all past and future beliefs, then we would have
to propagate the messagesmk→k′ (see Fig. 1) from coarse
to fine and the messagesmk′→k from fine to coarse to com-
pute a posterior belief over the scale Markov chain. The
two-dimensional scale-time filter (STF) combines this with
forward passing of temporal messagesmt→t′ and the com-
putation of the likelihood messagesmY →v = ℓ(vt′k′

x ) at all
scalesk.

As a simplification we restrict ourselves to propagating
messages only in one directionk → k′ and neglect passing
back the messagemk′→k. The consequence of this is that
not all theV-nodes at timet have seen all the dataY1:t,1:K

but only all past data up to the current scaleY
1:t,1:k. This

increases computational efficiency and is a suitable approx-
imation since we are only interested in the flow field on
the finest scaleVt,K which is now the only node that sees

all the dataY1:t,1:K . Nevertheless, future implementations
will need to evaluate whether propagating also back will
improve the accuracy significantly.

More precisely, the factored observation likelihood and
the transition probability we introduced in (1) and (2) ensure
that the forward propagated joint belief

P (Vt,1:K |Y1:t,1:K) =
∏

x

P (vt,1:K
x

|Y1:t,1:K) (12)

will remain factored. In addition, we assume the belief over
V

tk andV
tk′

at time t to be factored which implies that
also the belief overVt′k andV

tk′

factorizes.

P (Vt′k,Vtk′

|Y1:t′,1:k′

\ Y
t′k′

) =

=P (Vt′k |Y1:t′,1:k)P (Vtk′

|Y1:t,1:k′

) (13)

=
∏

x

α(vt′k
x )α(vtk′

x ) ,

where we usedα’s as the notation for forward filtered be-
liefs and\ for excludingY

t′k′

from the set of measure-
mentsY1:t′,1:k′

. The STF forward filter can now be de-
fined by the computation of updated beliefs as the product
of incoming messages,

α(vtk
x ) ∝ mY →v(vtk

x
) mt→t′(v

tk
x

) mk→k′ (vtk
x

) , (14)

with

mt→t′(v
t′k′

x
) =

∫

Vtk′

φt (v
t′k′

x
,Vtk′

)α(Vtk′

)dVtk′

=
∑

x′

N (vt′k′

x
|x − x

′,Σtk
t ,x)× (15)

∫

vtk′

x
′

N (vt′k′

x |vtk′

x′ , σt )α(vtk′

x′ )dvtk′

x′ ,

mk→k′ (vt′k′

x ) =

∫

Vt′k

φk (v
t′k′

x ,Vt′k)α(Vt′k)dVt′k

=
∑

x′′

N (x′′|x,Σtk
k ,x)× (16)

∫

vt′k

x
′′

N (vt′k′

x
|vt′k

x′′ , σk )α(vt′k
x′′ )dvt′k

x′′ .

For reasons of computational complexity we introduce a last
approximative restriction. We want every factor of the pos-
terior probability (14) to be Gaussian distributed

α(vtk
x ) ∝ mY →v(vtk

x
) mt→t′(v

tk
x

) mk→k′ (vtk
x

)

:≈ N (vtk
x
|µtk

x
,Σtk

x
) . (17)
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We fulfill this constraint by making all single messages
Gaussian distributed1. This already holds for the observa-
tion likelihoodmY →v(vtk

x
). Inserting Gaussian distributed

beliefsα into the propagation equations (15, 16) leads to
two differentMixture of Gaussians(MoG’s) for the result-
ing messages

mt→t′(v
t′k′

x
) =

∑

x′

p̂t′k′

x′ N (vt′k′

x
|µ̂t′k′

x′ , Σ̂t′k′

x′ )

≈ N (vt′k′

x
|ωt′k′

x
,Ωt′k′

x
) , (18)

with

p̂t′k′

x′ = N (x − x
′|µtk′

x′ , Σ̌tk′

x′ ) , (19)

µ̂
t′k′

x′ = (σt + Σ
tk′

x′ )Λ̌tk′

x′ (x − x
′) + Σ

tk
t ,xΛ̌

tk′

x′ µ
tk′

x′ , (20)

Σ̂
t′k′

x′ = Σ
tk
t ,xΛ̌

tk′

x′ (σt + Σ
tk′

x′ ) , (21)

Σ̌
tk′

x′ =
[

Λ̌
tk′

x′

]

−1

= σt + Σ
tk
t ,x + Σ

tk′

x′ ,

and

mk→k′ (vt′k′

x
) =

∑

x′′

pt′k′

x′′ N (vt′k′

x
|µt′k

x′′ ,Σ
t′k′

x′′ )

≈ N (vt′k′

x
|πt′k′

x
,Πt′k′

x
) , (22)

with

pt′k′

x′′ = N (x′′|x,Σtk
k ,x) , Σ

t′k′

x′′ = σk + Σ
t′k
x′′ . (23)

In order to satisfy the Gaussian constraint formulated in
(17) the MoG’s are collapsed into single Gaussians (18,
22) again. This is derived by minimizing the Kullback-
Leibler Divergence between the given MoG’s and the as-
sumed Gaussians for the meansω

tk
x , πtk

x and the covari-
ancesΩtk

x
,Πtk

x
which results in closed-form solutions for

these parameters. The finalpredictive beliefα(vtk
x ) follows

from the product of these Gaussians

α(vtk
x ) =ℓ(vtk

x ) N (vtk
x |µ̃tk

x , Σ̃tk
x ) , (24)

Σ̃
tk
x

=Π
tk
x

[

Π
tk
x

+ Ω
tk
x

]

−1

Ω
tk
x

, (25)

µ̃
tk
x =Ω

tk
x

[

Π
tk
x + Ω

tk
x

]

−1

π
tk
x +

Π
tk
x

[

Π
tk
x + Ω

tk
x

]

−1

ω
tk
x . (26)

By applying the approximation steps (17, 18) and (22) we
guarantee the posterior (14) to be Gaussian which allows

1A more accurate technique (following assumed density filtering)
would be to first compute the new beliefα exactly as a MoGs and then col-
lapse it to a single Gaussian. However, this would mean extracosts. Future
research will need to investigate the tradeoff between computational cost
and accuracy for different collapsing methods.

for Kalman-filter like update equations since the observa-
tion is defined to factorize into Gaussian factors (3). The
final recurrent motion estimation is given by

α(vtk
x ) = N (vtk

x |µtk
x ,Σtk

x ) (27)

=N (−I
tk
t ,x | (∇I

tk
x

)T
v

tk
x

,Σtk
ℓ,x)×

N (vtk
x | µ̃tk

x , Σ̃tk
x ) , (28)

Σ
tk
x

=
[

Λ̃
tk
x

+ ∇I
tk
x

Λ
tk
ℓ,x(∇I

tk
x

)T
]

−1

, (29)

µ
tk
x

= µ̃
tk
x

− Σ
tk
x
∇I

tk
x

Λ
tk
ℓ,xĨ

tk
t ,x . (30)

For reasons explained in [11] the innovations process is ap-
proximated as the following

Ĩ
tk
t ,x ≈ ∂/∂tT

(

I
tk
x

, µ̃tk
x

)

, (31)

with T applying a backward warp plus bilinear interpola-
tion on the imageItk

x
using the predicted velocities̃µtk

x

from (26). What we gain is a general probabilistic scale-
time filter (STF) which is, in comparison to existent filtering
approaches [7], [11], [13], not a Kalman Filter realization
but a Dynamic Bayesian Network. If we have access to a
batch of data (or a recent window of data) and do not focus
on online-oriented pure forward filtering we can compute
smoothed posteriorsγ(vtk

x ) := P (vtk
x |Y1:T,1:k). There-

fore, we follow a Two-Filter realization for optical flow
smoothing as proposed in [14].

3 Adaptivity Information

Now that we have set up probabilistic filtering equations
(30, 29) for recurrent optical flow computation that con-
strain the estimation based on the extended Lucas-Kanade
assumption that the movement within a multidimensional
(x, k, t) neighborhood is constant, we continue to spec-
ify the neighborhood relations. As defined in section 2 we
want the integration of neighboring velocity estimates to
be adaptable in scalek, time t and locationx. Therefore,
the corresponding covariancesΣ

tk
I ,x, Σ

t′k
t ,x, Σ

tk′

k ,x of the dif-
ferent Gaussian kernels are adapted dependent on the local
structural information of the underlying intensity patches
I
tk
x within the neighborhood.

We assume that neighbors along the orientation of the lo-
cal structure are more likely to influence the velocity of the
center pixel than neighbors that are located beside the ori-
entation. For this reason, we increase the spatial uncertainty
for the location of the center pixel along the orientation of
the structure by increasing the uncertainty of the covariance
matricesΣtk

I ,x, Σ
t′k
t ,x, Σ

tk′

k ,x aligned with the orientation. On
the other hand, we reduce the spatial uncertainty orthogo-
nal to the orientation to strengthen the assumption that we
are more certain that the position of the pixel is somewhere
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along (as compared to orthogonally to) the structural con-
tour. To obtain the orientationθ of the local structure we
use the local Structure TensorH

tk averaged with a Gaus-
sianGh

H
tk = Gh ∗

(

(Itk
x )2 I

tk
x I

tk
y

I
tk
x I

tk
y (Itk

y )2

)

, (32)

perform an eigendecomposition for everyHtk
x

and
get the eigenvaluesλtk

1,x, λtk
2,x and the eigenvectors

(cos θtk
x , sin θtk

x )T , (− sin θtk
x , cos θtk

x )T for every scale
k, time t and positionx. Similar to an edge enhancing dif-
fusion tensorDtk

x [4] we calculate oriented covariances as
follows

Σ
tk
i,x := D

tk
x

= f(θtk
x

, g(λtk
1,x), κi,2) , (33)

g(λtk
1,x) =

κi,2

1 + (λtk
1,x/κi,1)4

, i ∈ {ℓ, k , t } . (34)

This leads to covariance matrices aligned with the under-
lying intensity structure and prefers to group velocity in-
formation alongmotion contoursand not acrossmotion dis-
continuitiesbecause in most cases it is true that motion con-
tours overlap with intensity contours.

4 Evaluation

We present some performance results based on the Mid-
dlebury benchmark for optical flow evaluation [1] to argue
the applicability of our probabilistic scale-time filter STF. In
all the experiments the parameters are chosen fixed2. The
uncertainty on the flow fieldΣv is chosen to be a diago-
nal matrix with entriessv. The kernel sizes for the spa-
tial derivatives are chosen to be5 × 5 and for the temporal
derivative3 × 3 with filter coefficients as proposed in [10].
The size of the adaptive spatial Gaussian filters is chosen
(2k +1)× (2k +1), dependent on the scalek and the Gaus-
sian smoothing kernel of the Structure TensorGh has a di-
agonal covariance matrix with standard deviation of2.5 at
a kernel size of5 × 5.

In table 1 we report some error statistics for thecloud-
less Yosemitesequence (see Fig. 2) using the same error
measures as proposed by [1]. As can be seen, we are able
to keep up with the accuracy of recent optical flow meth-
ods. The overall performance (see also Fig. 3 a)) of STF
with an average angular error (AAE) of1.52◦ outperforms
high accuracy optical flow techniques, like the popular CLG
method of Bruhn et al. [5]. Looking at the performance
only at the motion discontinuities shown in Fig. 3 b) the
AAE is with 3.07◦ still quite low. This argues for the spa-
tiotemporal adaptation of the uncertainties as described in

2
κℓ,1 = 10

3, κk ,1 = 2 · 10
3 , κt ,1 = 2 · 10

2 , κℓ,2 = 2.25, κk ,2 =

1.5, κt ,2 = 60, σk = 0.1, σt = 10
−12 , sv = st = 10

−3 .

STF

Im

GT

a) Army b) Grove c) Yosemite

Figure 2. Qualitative comparison between
ground truth (GT) and the STF method for dif-
ferent benchmark sequences (Im) a) Army b)
Grove and c) Yosemite from the Middlebury
database.

Sec. 3 which allows to keep the motion discontinuities pro-
nounced. Other methods like the Black and Anandan ap-
proach [3] that introduce robust statistics to reduce the er-
rors at motion boundaries because of motion outliers seem
to be less effective. Nevertheless, in untextured regions the
CLG method that includes the global optical flow constraint
of Horn and Schunk [8] gets better results with an AAE
of 1.46◦ compared to1.53◦ using STF which has no addi-
tional global constraint in the observation likelihood mea-
surement. The explanation for that is as follows: The STF
method is a probabilistic recurrent filter that takes into ac-
count neighboring measurements for optical flow predic-
tions to the next time frame. Therefore, it realizes a filling-
in process over time via a predictive prior but without a fur-
ther global smoothness constraint on the measurement. The
more data with constant image flow is processed over time
the larger is thepropagation rangeinto untextured regions.
Thus, for a small number of filter steps, such an incorpora-
tion of local smoothness propagating along image location
in time seems to be less effective than a direct incorporation
like obtained via the Horn and Schunk constraint.

Another interesting result is shown in Fig. 4. Here, the
performance for different graduations of the STF filter is
shown. (A) and (B) are the time lapses for a belief propaga-
tion filter only along scalewhich neglects the temporal mes-
sagesmt→t′ . In case (A) the spatial filters are not adapted
which is equivalent toκi,1 → ∞ and in case (B) they are
adapted like explained in Sec. 3. In case (C) the forward fil-
ter results are shown without uncertainty adaptation to the

6



technique
frame

number
angular
error all

angular
error disc

angular
error untext

Lucas & Kanade 2 6.41◦ 7.02◦ 10.8◦

LP Registration 2 4.51◦ 5.48◦ 3.95◦

Horn & Schunk 2 4.01◦ 5.41◦ 1.95◦

Dynamic MRF 2 3.63◦ 5.29◦ 4.62◦

Black & Anandan 2 2.61◦ 4.44◦ 2.15◦

2D CLG 2 1.76◦ 3.14◦ 1.46◦

STF 8 1.52◦ 3.07◦ 1.53◦

Table 1. Results of state-of-the-art methods
for the cloudless Yosemitesequence and our re-
sults for a batch of 8 frames applying adaptive
Two-Filter inference STF with 6 filter steps in
time t and 3 along scale k.

local structure and in (D) the forward filter results with un-
certainty adaptation can be seen. Both, the local adaptation
and the spatiotemporal prediction viamt→t′ improves the
performance.

Figure 5 clarifies that motion estimation is refined as
more data is aquired while propagating beliefs over scale as
well as forward (A) and backward (B) in time. Of course,
the best results are gained if future as well as past data
is taken into account to estimate the flow at current time,
like in the two-filter approach (C). Taking a closer look at
the time lapse of the AAE for the adaptive purely scale-
propagation filter (see Fig. 4 (B)) compared to the time
lapse of the AAE for the adaptive two-filter (see Fig. 5 (C))
it turns out that themean and the standard deviationstd
of the AAE for all frames are higher for the time-isolated
scale filtermean = 3.64, std = 0.29 compared to the
time-dependent two-filtermean = 2.18, std = 0.25. This
means, beside quite large variations of the AAE over time
because of changing errors at motion boundaries reflected
in changing observation likelihood measurements our STF
reduces the variance of the AAE over time. Such kind of
improvement is not possible for methods that are based on
an isolatedbatch of images which do not allow for estima-
tion changes because of new arriving evidence.

5 Conclusion

We have presented a new recurrent filter for optical flow
estimation (STF) which incrementally improves the estima-
tion accuracy based on scale-time predictions and adapts to
the structure of the observed scene. The performance of our
filter is superior compared to standard Lucas-Kanade and
comparable to combined local-global methods like CLG.
The consequent exploitation of the local Lucas-Kanade con-
straint by STF fills in untextured regions to a certain amount

a) b) c)

Figure 3. The white color marks a) all the
pixels b) only the discontinuities (disc) or c)
only the untextured (untext) regions which
are chosen for the results given in table 1.
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Figure 4. Time lapse of the average angular er-
ror for (A) the nonadaptive STF method over
scale (B) the STF method over scale (C) the
nonadaptive STF method and (D) the com-
plete adaptive forward STF method.

and keeps being very accurate at motion discontinuities.
The main advantage of the STF method lies in the online
applicability and the adaptation to movement changes sim-
ilar to object tracking approaches. In particular, the STF
filter realises a probabilistic tracking of the whole dense op-
tical flow field.
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