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Listen to the Parrot: Demonstrating the Quality of Online Pitch and

Formant Extraction via Feature-based Resynthesis

Martin Heckmann, Claudius Gläser, Miguel Vaz, Tobias Rodemann, Frank Joublin, Christian Goerick

Abstract— We present a system for online extraction of the
fundamental frequency and the first four formant frequencies
from a speech signal. In order to evaluate the performance of
the extraction a resynthesis of the speech signal is performed.
The resynthesis is based on the extracted frequencies and
the energy of the input signal at the formant locations. The
extraction of the fundamental frequency and the formants is
robust against room echoes and interfering noise. In order
to improve the robustness against background noise a noise
reduction was implemented. Tests in three rooms of different
size at varying distances to the system (up to 8m yielding an
SNR of approx. 0 dB) were performed.

I. INTRODUCTION

Due to the large and varying distances between the speaker

and the robot the interaction via speech with a humanoid

robot like ASIMO is difficult. Room echoes and low speech

to noise signal ratios severely impair the signal.

Despite the unfavorable behavior of technical systems,

humans perform marvelously well under such conditions

[1]. Designing a system based on findings on the functional

principles of the human auditory system may lead to a way

of overcoming the problems of state of the art systems.

In this paper we present an online system for pitch and

formant extraction inspired by results of auditory research.

Even tough the focus of the paper is the robust extraction of

the parameters we implemented a resynthesis of the speech

signal solely based on the extracted parameters in order

to asses the quality of the extraction of the parameters.

Consequently the system reminds one of a parrot which

repeats everything it hears. The three main parts of the

system, formant extraction, pitch extraction, and resynthesis

(compare Fig. 1), will be detailed in the corresponding

sections and be completed by the description of the additional

parts in Sec. V. Some examples and comments on the

performance will be given in Sec. VI.

II. FORMANT EXTRACTION

The formant extraction follows the algorithm described in

[2]. Before the formants can be tracked first some algorithms

to render them more dominant in the spectrogram have to be

employed.
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A. Formant enhancement

In a first step the signal is transformed into the spectral

domain. Instead of a Fourier transform we use a Gamma-

tone filter bank which models the response of the basilar

membrane in the human inner ear and is, therefore, adapted

to a biology-inspired system (compare Fig. 1). The signal’s

sampling frequency is 16 kHz. The filter bank has 100

channels ranging from 80 Hz to 5 kHz.

Next we calculate the amplitude envelope in each fre-

quency channel via rectification and low-pass filtering (com-

pare Fig. 2). On this envelope signal a noise suppression

based on Spectral Subtraction implementing a noise level

estimation via Minimum Recursive Averaging is applied [3].

Since formants are the resonance frequencies of the vocal

tract, their extraction can be improved by eliminating the

spectral influence of excitation and radiation contributing

to human speech production. It has been shown that this

influence can be adequately approximated by a first-order

low-pass filter [4] which is valid at least for modal or creaky

phonations being by far the most common ones [5]. For this

reason, we emphasized the spectral energy by +6 dB/oct.

Additionally, the emphasized spectrogram is smoothed

along the frequency axis using a Laplacian kernel adjusted

to the logarithmic arrangement of the Gammatone filter

banks channel center frequencies. By doing so, the harmonics

spread and peaks are formed at formant locations. A subse-

quent normalization of the filter responses to the maximum at

each sample as well as an application of a sigmoidal function

further enhances the spectral contrast (compare Fig. 3).

B. Formant tracking

The probabilistic tracking technique we developed is based

upon Bayes filters which provide an excellent framework

for handling noisy observations [6]. They represent the state

at time t by random variables xt. Thereby uncertainty is

introduced by a probabilistic distribution over xt, called

the belief Bel(xt) = p(xt|z1, . . . , zt). Their purpose is the

sequential estimation of such beliefs over the state space

conditioned on all information contained in the sensor data

zt [7].

Let Bel−(xt) denote the predicted belief at time t which

can be obtained via the application of the formants’ un-

derlying dynamics p(xt|xt−1). Then the belief at time t is

calculated by correcting the predicted belief according to

the preprocessed spectral energy distribution p(zt|xt) and

a normalization factor α. Thus, the standard Bayesian filter

recursion can be written as follows:
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Fig. 1. Overview of the system.
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Fig. 2. Envelope of the input signal.
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Fig. 3. Result of the formant enhancement.

Bel−(xt) =

∫
p(xt|xt−1) · Bel(xt−1) dxt−1 (1)

Bel(xt) = α · p(zt|xt) · Bel−(xt) (2)

Since standard Bayesian filtering is not an appropriate

technique for tracking multiple formants at the same time,

we adopted a mixture filtering approach recently introduced

in the computer vision community [8]. Thereby, the joint

distribution Bel(xt) is modeled through a non-parametric

mixture of M component beliefs Belm(xt) with associated

weights πm,t, so that each target is covered by exactly one

mixture component:

Bel(xt) =
M∑

m=1

πm,t · Belm(xt) (3)

Hence, by substituting the beliefs in Eq. (1) and (2) with

Eq. (3) the Bayesian filter recursion can be rewritten with

respect to the mixture modeling approach. Furthermore, since

we want to estimate formant locations on a discrete grid

defined by the channels of the Gammatone filter bank, a grid-

based approximation of the belief is chosen. Thus, assuming

that the filter bank is composed of N channels, the state

space at time t can be written as Xt = {x1,t, x2,t, . . . , xN,t}
which leads to the following Bayesian filter recursion:

Bel(xk,t) =

M∑

m=1

πm,t · Belm(xk,t) (4)

Bel−m(xk,t) =
N∑

l=1

pm(xk,t|xl,t−1)Belm(xl,t−1) (5)

Belm(xk,t) =
p(zt|xk,t)Bel−m(xk,t)∑N

l=1 p(zt|xl,t)Bel−m(xl,t)
(6)

πm,t =
πm,t−1

∑N

k=1 p(zt|xk,t)Bel−m(xk,t)∑M

n=1 πn,t−1

∑N

l=1 p(zt|xl,t)Bel−n (xl,t)
(7)

The formulas obtained are quite elegant, since mixture

components evolve independently over time. But conse-

quently, belief degenerations (i.e. component distributions

becoming more and more diffuse) might occur and cause

loosing track of the formants. For this reason, another algo-

rithm which reclusters the beliefs at each time step is needed

to ensure the maintenance of multimodality. Assuming such a

function exists and returns sets R1,t, R2,t, . . . , RM,t dividing

the frequency range into contiguous formant-specific regions

at each time step t, then the belief can be recomputed, so

that the mixture approximations of (4) before and after the

reclustering procedure are equal in distribution:

π′

m,t =
∑

xk,t∈Rm

M∑

n=1

πn,t · Beln(xk,t) (8)

Bel′m(xk,t) =

{ ∑
M
n=1

πn,t·Beln(xk,t)

π′

m,t
, ∀xk,t ∈ Rm,t

0 , ∀xk,t 6∈ Rm,t

(9)

In this way, previously overlapping beliefs are separated

by rearranging their component affiliation depending on

associated mixture weights which results in a mixture of

consecutive but separated components.

For the necessary segmentation of the frequency range

into formant-specific non-overlapping regions we suggested

a dynamic programming approach [2]. More precisely, a

trellis was built up by which the former problem could be

reformulated as the problem of finding the most likely path

through the trellis, for which the Viterbi algorithm offers

an elegant solution. Since the suggested method relies on

the component beliefs at the actual timesteps, the frequency
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Fig. 4. Result of the Bayesian smoothing.

range is sequentially segmented in an adaptive and compu-

tationally efficient manner.

Therewith we are able to apply the Bayesian mixture

filtering for tracking the joint distribution of formants while

maintaining its multimodality. However, when operating in

noisy conditions, a subsequent backward pass on the already

obtained filtering distributions Belm(xk,t) is recommended

since it significantly enhances the noise robustness of the

algorithm. Bayesian smoothing provides such a mechanism.

It aims at recursively estimate a smoothed version B̂el(xk,t)
of the belief, thereby depending on both past and future

observations [9]:

B̂el(xk,t) = p(xk,t|z1, z2, . . . , zt, . . . , zT−1, zT ) (10)

B̂el
−

m(xk,t) =

N∑

l=1

B̂elm(xl,t+1) · pm(xl,t+1|xk,t) (11)

B̂elm(xk,t =
Belm(xk,t) · B̂el

−

m(xk,t)
∑N

l=1 Belm(xl,t) · B̂el
−

m(xl,t)
(12)

The result of Bayesian filtering followed by a smoothing

is visualized in Fig. 4.

The final calculation of exact formant locations Fm(t)
can easily be done by picking the peaks of the smoothed

component beliefs such that the location of the m-th formant

equals the peak location in the smoothed distribution of

component m:

Fm(t) = arg max
xk,t

[
B̂elm(xk,t)

]
(13)

The main advantages of this probabilistic tracking scheme

are the estimation of the joint distribution of formants

allowing to adaptively resolve ambiguities and the adaptive

segmentation of the frequency range into formant-specific

regions which takes the interaction of formants into account.

Lastly, due to mixture components evolving independently

over time, models of the formants underlying dynamics

pm(xk,t|xl,t−1) as well as a priori distributions of formant

frequencies pm(xk,0) can be chosen for each formant in-

dividually. Furthermore, they can be adapted to different

conditions such as gender, voicing, or context. Here we used

gender-dependent probability density functions (pdfs) which

can be immediately switched according to the decision of a

gender detection system. We assumed that the pdfs can be

appropriately modeled by a normal distribution as is shown

in Eq. (14) and (15).

pm(xk,0) ∝ N (f(xk), µm, σ
(m)
1 ) (14)

pm(xk,t|xl,t−1) ∝ N (f(xk), f(xl), σ
(m)
2 ) · pm(xk,0) (15)

Here f(xk) denotes the center frequency of the k-th filter

channel. But in contrast to our proposal in [2] we added a

mean tendency to pm(xk,t|xl,t−1) which is reasonable since

the probability that a formant performs a rising slope is much

higher when the formant is actually located at a low than a

high frequency. Additionally an enhanced normalization on

an extended grid was used for calculating the probabilities.

These mechanisms further improved the precision of our

method.

III. PITCH EXTRACTION

In our pitch extraction algorithm we combine information

residing in the temporal and spectral representation to a more

robust algorithm. One part of the algorithm captures the

temporal aspects via Zero Crossing Distances (ZCD) and the

other the spectral aspects via a comb filter (see [10] for more

details).

The output of the Gammatone filter bank is the input to the

pitch extraction algorithm (compare Fig. 1). For each filter

bank channel we calculate the distances between adjacent

zero crossings. This distance, more precisely its inverse,

codes the frequency of the signal. The zero crossings are

similar to the phase locked firing of the neurons in the

auditory system, the spike always occurs when the signal

rises from negative to positive (if rising zero crossings are

used).

A. Zero Crossing Distance Histogram

Partials of a harmonic signal have zero crossings in

common. How many zero crossings they share depends

directly on their harmonic order relative to the fundamen-

tal frequency. For example the first order harmonic shares

each second zero crossing with the fundamental. Hence the

distance between two zero crossings of the fundamental

reappears as the distance between three zero crossings of

the first harmonic and so forth. We want to refer to these

distances between multiple zero crossings as higher order

zero crossing distances.

As a consequence of the reoccurrence of zero crossing

distances of the fundamental in the harmonics, a histogram

of all distances shows a peak at the fundamental frequency

(similar to a so called all order interspike histogram of the

phase locked firing of the neurons in the auditory system

[11]). As not only the distances corresponding to the funda-

mental frequency but also those of the harmonics reoccur, the

histogram shows many spurious side peaks corresponding to

the harmonics and sub-harmonics of the true fundamental

frequency. Sub-harmonics also occur because, for instance,

the second order ZCD of the true fundamental frequency is

also the first order distance of the first sub-harmonic (1
2f0).
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B. Comb Filter

The activity in the individual channels of the Gammatone

filter bank codes the spectral information needed for pattern

matching based pitch models. We set up a comb filter for all

possible fundamental frequencies with teeth at the harmonics

1 . . . 7. The range of possible fundamental frequencies is

defined by the resolution of the zero crossing distances and

hence by the sampling rate. At a sampling rate of 16 kHz a

fundamental frequency of 100 Hz corresponds to 160 sam-

ples. The next possible fundamental frequency corresponds

to 159 samples, 100.63 Hz respectively. In a scan through all

possible fundamental frequencies beginning with the lowest

expected fundamental frequency up to the highest one the

corresponding comb filters are set up. For each of these

comb filters the allocation of the teeth with harmonics of

the current fundamental can be checked at each instant in

time. The ”filter response” of the comb filter is calculated

based on the found allocation pattern. The better the found

pattern matches the expected pattern, the higher the response.

C. Combining zero crossing distances and comb filtering

In order to determine the allocation of the teeth in the

comb filter with harmonics one common way is to use the

energy in the band underlying the respective tooth. Here, we

deploy the zero crossing distances previously calculated. The

Gammatone filter bank has a limited frequency resolution

due to a necessary trade off between filter bandwidth and

settling time. A decrease in bandwidth and hence an increase

in resolution comes at the cost of higher settling time which

makes it impossible to analyze transient signals as speech.

The ZCDs measure the instantaneous frequency in the time

domain and hence are subject to this limitation to a lesser

extend.

For each tooth of the comb filter the ZCD with the order

corresponding to the harmonic order of the tooth is compared

to the ZCD expected for the current fundamental frequency

hypothesis. If the deviation between the expected and the

measured distance is smaller than a predefined threshold t∆
the tooth is said to be allocated by the expected harmonic.

In the experiments reported later t∆ = 4%.

D. Inhibition of Side Peaks

The creation of an allocation table for the comb filters

allows to check the found allocation against expected ones.

Most of the errors in the histogram are produced at locations

at multiples of the true fundamental frequency. When setting

up allocation patterns for multiples of the current fundamen-

tal frequency hypothesis and checking them against the found

allocation pattern, it is possible to inhibit the ones causing the

errors (see [10] for more details). Fig. 5 shows the histogram

after applying this inhibition mechanism.

E. Pitch Tracking

In order to extract the pitch we apply a tracking algorithm

on the final pitch histogram. The pitch tracking algorithm is

identical to the formant tracking with the exception that only

1 component is used. After Bayesian filtering and smoothing,
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Fig. 5. Zero crossing distance histogram with inhibition of side peaks.

Sinus
+

Harmonics 
F0

X

voicing

signal

carrier

signal

Gammatone

Filter Bank

F4F3F2F1

A4

A3

A2

A1
synthesis

modulator

(timbre)

Fig. 6. Resynthesized formants.

the maximum at each sample in time is picked. Finally, the

value is converted from a distance measure to frequency.

IV. RESYNTHESIS

Based on the extracted 9 parameters, the fundamental

frequency and the first four formants including their energy,

we resynthesize the original speech signal. For this purpose

we use a technique similar to a classic channel vocoder [12]

(compare Fig. 6). A channel vocoder assumes that speech

can be split in a source signal and a time varying filter.

This is an abstraction of the human vocal folds and the

vocal tract. In our case the source signal is a sinusoid plus

corresponding harmonics, with fundamental frequency equal

to that extracted from the input speech. It is exclusively

voiced in nature, since there is no extraction of frication

parameters.

Unlike the classic channel vocoder, the modulator (filter) is

derived only indirectly from the input speech. The channels’

values are represented via a mixture of four Gaussians,

each centered at one of the extracted formant frequencies.

The height of each of these Gaussians is borrowed from

a representation very similar to that used for the formant

enhancement. The sole difference is the use of Gaussian

kernels for the smoothing along the frequency axis instead

of Mexican hat shaped filters in the formant case. The

reason is that the Mexican hat filters enhance the separation

between the different formants whereas here we only want

to extract the energy in each frequency bin independent on

the fundamental frequency. The Gaussians’ heights are con-

sequently determined by sampling this final representation at

the positions of the formants. The width of each Gaussian is
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Fig. 7. Resynthesized formants.
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Fig. 8. Envelope of the result of the resynthesis.

predefined. The resulting spectrogram can be seen in Fig. 7.

The final step is to combine the harmonic source signal

and the spectral envelope represented by the Gaussians at

the formant locations. Therefore, the source signal goes

through a channel decomposition via a Gammatone filter

bank identical to the one used for the analysis of the input

signal. As a consequence, the representation of the source

signal and the envelope are identical and can be combined

via a simple channel-wise multiplication. In Fig. 8 the final

envelope of the resynthesized signal is depicted.

V. ONLINE INTEGRATION

For the implementation we used our software design,

execution, and monitoring framework for real-time applica-

tions ToolBOS [13]. This software infrastructure allows us to

design applications in a modular way and flexibly distribute

them on multiple computers.

The system runs on one computer with an Intel Quad Core

processor (Q6600 @ 2.4 GHz). A second, identical computer

is used for the visualization of the internal states of the

system (e.g. pitch and formant tracks). The speech signal

is acquired via a DPA 4060-BM lavalier microphone which

is mounted inside of a silicon pinnae with human like shape

on a replica of ASIMO’s head (compare Fig.9).

VI. RESULTS

It is difficult to assess the quality of an online system. In

order to make the scenario realistic it is advisable to speak to

the system instead of using prerecorded sentences. However,

in this case there is no ground truth available and hence

the correctness of the extraction can not be judged easily.

We previously evaluated the performance of the extraction

TABLE I

COMPARISON BETWEEN MFCCS AND FORMANTS ON THE MALE AND

FEMALE PART OF TIDIGITS (IN PERCENT ABSOLUTE WORD ERROR

RATES).

clean babble 6 dB car 6 dB white 6 dB
MFCC 0.5 43.8 4.4 75.9

Formants 11.1 37.1 27.9 35.6

algorithms individually. In [10] we showed that our pitch

extraction algorithm is very robust against background noise

and that the resulting histograms contain substantially less

noise than those produced via the autocorrelation. We have

not tested our tracking by itself but we demonstrated that the

combination of our formant enhancement and our tracking

leads to significantly better results on clean [2] and noisy

data [14] than state of the art algorithms.

In an additional offline test we trained an HMM with

the formant tracks extracted by our system on the subset

of TIDigits containing only male and female speakers (no

children) [15]. This yielded 8623 utterances in the training

set and 8700 utterances in the test set. The HMMs were

modeled with HTK and the parameter settings were identical

to the Aurora-2 framework [16] (apart from using 16 kHz

instead of 8 kHz). We also calculated deltas and double deltas

for the formants and the MFCCs. In addition to that we also

added the log energy to the formant tracks to have some

kind of energy information. As can be seen from Tab. I the

recognition based on the formants alone is far inferior to

using MFCC features on clean speech. However, when adding

noise the recognition based on the formants catches up. Only

for car noise, a noise type the MFCCs cope very well with,

they remain clearly superior.

In order to evaluate the extraction performance of the

complete system we use the intelligibility of the resynthe-

sized speech signal. Errors in the extraction will lead to the

generation of unnatural sounds or deviating pitch trajectories.

The results can be evaluated via the accompanying video

where we talk to the system in two different scenarios. First,

close to the microphone and then at a distance of about 8 m

(limited by the room size). The speech signal of the speaker

in the video is the one captured by the system. In Fig. 9

an image from the video is depicted. As can be seen the

intelligibility is very good in the case where we talk close

to the microphone and only drops a little bit when talking

from far. When judging the intelligibility of the resynthesized

signal it has to be taken into account that we do not model

unvoiced parts of speech and rather resynthesize all segments

as voiced.

So far we tested the system in 3 different rooms with

different echo constants τ60:

• τ60 ≈ 625 ms, size ≈ 3 x 5 x 3 m

• τ60 ≈ 810 ms, size ≈ 12 x 11 x 2.8 m

• τ60 ≈ 975 ms, size ≈ 12 x 10 x 3.1 m .

In all rooms we were talking close as well as far from

the microphone. Due to the additional noise sources present

(computers, air conditions, beamer) we had SNR levels of
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Fig. 9. Test of the system in a room with τ60 ≈ 810ms at a distance of
8 m and an SNR of 0 dB.

≈ 15 . . . 0 dB. The SNR levels were estimated based on

recordings of the stationary noise signal and the speech signal

plus noise. In all cases tested the intelligibility was good.

The second scenario in the accompanying video is the most

difficult scenario we tested (long distance to the microphone

and rather low SNR), consequently the other results were as

good or better as this scenario.

The comparison of the spectra of the original speech signal

(compare Fig. 2) and the result of the resynthesis (compare

Fig. 8) also gives a hint on the extraction quality. As can

be seen the important aspects of the original signal are kept

despite the fact that only 9 parameters were used for the

resynthesis and frication is not modeled. The signal in Fig. 2

was recorded in the smallest room with a distance of ≈ 1 m
to the microphone.

VII. DISCUSSION

We presented an online system which integrates pitch and

formant extraction. Evaluation of the system based on visual

inspection of the extracted tracks and resynthesis of the

original speech signal based on the 9 extracted parameters

( f0, F1 . . . F4 and corresponding energies) revealed that

it is very robust against changes in the distance between

microphone and speaker and the noise level. Even at a

distance of 8 m and an SNR of 0 dB the resynthesized

signal was only slightly degraded in comparison to a similar

signal uttered directly in front of the system. In our view

this robustness emerges from the combination of the robust

pitch and formant extraction (compare [10], [2]), the efficient

Bayesian tracking algorithm and the adaptive noise reduction

which is very efficient for the noise encountered in our setup,

namely office environments with more or less constant fan

noise.

The previously performed offline test on the pitch and

formant tracking confirmed these results. However, an ad-

ditional offline speech recognition experiment revealed that

the formant tracks do not carry sufficient information for

speech recognition. MFCC features performed significantly

better. Only for high noise levels the formant tracks showed

better robustness. In our view this poor performance of

the formant tracks is to a large extend due to the coarse

modelling of plosives and fricatives and the insensitivity

to voicing. In contrast to the used HMM model humans

seem to be able to compensate for this information loss

as the resynthesized sentences are also well comprehensible

under difficult conditions. However, the robustness of our

features in the presence of noise proved superior to that

of MFCCs. Therefore, we are confident that the features

based on formant tracks can also obtain superior recognition

performance for low noise levels when a better modeling of

plosives and voicing is included.
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