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ABSTRACT

Almost all current speech recognition systems fail to integrate learn-
ing into the recognition process. Here we propose a system which is
able to recognize and learn the structure of speech online in a uni-
fied framework. To do so we’ve extended HMM-based filler-free
keyword spotting with acoustic model acquisition (AMA). To eval-
uate the inherent dynamics of the combined acquisition-recognition
process we propose measures of model activity, model correlation
and speech coverage. Based on these criteria the emerging acoustic
model is embedded into a regulating framework which was designed
to maximize model activation sparseness and speech coverage. First
experiments on a speech corpus containing isolated words lead to a
coverage of 92% for a training confusion ratio of 0.69 and an aver-
aged model correlation of 6.4%.

Index Terms— One, two, three, four, five

1. INTRODUCTION

The holy grail of speech recognition research is to build systems
which automatically acquire the structure and meaning of spoken
language. But to this day common automatic speech recognition
(ASR) frameworks are designed to detect predefined words using a
predefined grammar. To make it even worse, no online learning at
all is possible with such systems: the underlying models are trained
offline using an annotated speech database and remain fixed during
recognition. But although it is clear that human-like speech process-
ing involves learning also during recognition, not too much effort
were spent to develop online-learning systems.

Here a new approach to learn the acoustical structure of speech
based on incrementally trained Hidden Markov word models is pro-
posed. The idea of this work is to combine simple unsupervised and
supervised speech segmentation methods to bootstrap a model-based
language representation. Essential to this approach is the regulative
feedback loop which controls the acquisition behavior.

Recently some authors claimed to work in the direction of unsu-
pervised AMA (ie. [1], [2], [3]). But most of these works describe
only methods for acoustic model (AM) bootstrapping using a small
set of annotated speech data: An initial AM is trained supervised
with this annotated training sample and is employed to label a larger
set of untranscribed speech. These automatically labeled utterances
are used to reestimate the model parameters. Sometimes this process
is used iteratively to further increase AM goodness. As stated in [4]
lightly supervised AMA seems to be a more appropriate name for

such approaches.

Related to our work are the CELL framework proposed in [5]
and the incremental HMM training method for syllable-like units
described in [6]. The former defines a framework for multi-modal
learning where object labels and semantic categories are learned si-
multaneously. It lacks of an implementation and evaluation of a top-
down feedback loop necessary to ensure a meaningful lexicon. Be-
sides that, its speech processing back end is an ANN-based phoneme
recognizer, which was shown to be less powerful for speech recog-
nition than context-depending HMMs (cf. [7]). The approach of [6],
which groups similar segments to define syllable models, lacks of
the possibility to train models in a time-incremental manner.

The remainder of this work is organized as follows. In section 2
we describe the implemented speech acquisition architecture. We in-
troduce the special kind of MAP-training used to estimate the word
models. Subsequently section 3 presents measures which are suit-
able to reflect the current state of an acoustic model and defines how
to integrate these into a unified regulation framework for speech ac-
quisition. Results are presented in section 4 and discussed subse-
quently in section 5.

2. SYSTEM ARCHITECTURE

As depicted in figure 1 incoming speech is analyzed in a twofold way
to detect segments using an energy based voice activity tracker and
a keyword spotting system which setups on the word models con-
tained in the acoustic model. Word model acquisition is triggered
by voice activity segments of word length and is regulated based on
measures of AM completeness, orthogonality and stability.

At first no word models are contained in the acoustic model. In-
coming speech is analyzed solely by an unsupervised voice-activity-
based speech segmentation module. Inspired by the properties of
child directed speech uttered by adults to ease the word model boot-
strapping of their children, we assume the input speech to occasion-
ally contain isolated words. Segments of high voice activity are
tested whether they obey length constraints to ensure that only seg-
ments of word-length are used for model training. These segments
are used within the acquisition module to update existing word mod-
els or to create new ones.

To avoid the usually difficult choice of a filler model in the im-
plementation of the keyword spotter the approach proposed by [8]
was integrated. The different keyword models analyze the speech
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Fig. 1. The speech acquisition loop.

input independently in order to create segment hypotheses. Mel-
frequency cepstral coefficients along with normalized energy ex-
tended with their first and second-order derivatives were used to give
a 39-dimensional feature vector as input for the keyword spotter. All
word models were chosen to be Hidden Markov models with Bakis
topology containing 8 states. Each state modeled the feature space
with a Gaussian mixture model comprising 4 component densities.

Spotted segments are used to update regulative measures and
might be further employed within a multi-modal semantic learning
framework. As discussed in section 5 keyword spotting could also
be used to create training segments within continuous speech utter-
ances.

2.1. The Bootstrapping Process

The AM is empty at the beginning and becomes populated with word
models over time. Given an empty AM, incoming training segments
can be used to train a first word model. Because it can not be as-
sumed that all initial training segments contain the same word this
model should be thought as a general word model and not as a model
of a specific word.

The unsupervised clustering method to bootstrap the AM pro-
ceeds as follows: Let the acoustic model M contain at least one
word model. A new training segment X will be processed in a
twofold way. First the model λ∗ which is most likely to explain
the given segment is determined by

λ∗ = arg max
λ:M

P (X|λ) (1)

Thereby P (X|λ) denotes the data likelihood. For the second step
we assume the histogram of former training to be approximated by a
probability distribution with the density fλ∗(p). The corresponding

cumulative distribution function Fλ∗ is than used to map P (X|λ∗):

ν(λ∗, X) = Fλ∗(P (X|λ∗)) =

P (X|λ∗)Z
−∞

fλ∗(p)dp (2)

Two cases have to be considered (cf. figure 2):

1. ν(λ∗, X) ≥ θ : In this case the model λ∗ seems not to be an
appropriate model forX . But because λ∗ was found to be the
best model for X in the pool, a new model λnew is created
using the model parameters of λ∗ for initialization. To make
the new model to be different of λ∗ the segment X is utilized
to perform a first parameter update.

2. ν(λ∗, X) < θ : The model λ∗ seems to be appropriate to
model the current segment X , which therefore will be used
to improve/reestimate λ∗.

The selectable threshold θ used to test whether the current seg-
ment is likely to has been generated by the best word model. In this
case the model becomes updated, and otherwise a new model is de-
rived. After each processed segment fλupdate(p) is incrementally
updated with P (X|λupdate).

Given that a specific amount of training segments was used to
estimate the parameters of a word HMM, it is tagged as stable. Sub-
sequently it can be employed to derive new models within the de-
picted loop. Compared with supervised AMA the resulting acoustic
model will contain only word models which are actually required
to model the already processed speech utterances. Because the pro-
posed framework combines training and recognition into one inte-
grated framework, new words are modeled based on their appearance
in time.

2.2. Model training

To reduce computational costs for training, Viterbi-alignment was
applied to split training segments into state-dependent training sam-
ples. Doing so the estimation problem reduced to the adaption of the
state dependent output probability functions (OPDF). These OPDFs
were updated by using maximum a-posteriori-training (MAP) pro-
cedure to overcome the issue of few training data, to allow an incre-
mental training procedure and to integrate prior knowledge into the
speech modeling process (cf. [9]).

Additionally, to further increase the model quality MAP-trained
models are updated using the ML algorithm as soon as a defined
amount of training data becomes available (cf. [10]). Because of the
dominant effect of the state data likelihoods transition probabilities
were chosen to be fixed.

3. REGULATION

Regulation may take place at different processing stages. In contrast
to supervised AMA we can not rely on aligned labels here. There-
fore several measures are introduced which are intended to reflect
the current state of the acoustic model. Based on these properties,
methods for regulative feedback to control creation, updating and
pruning of models are introduced.

Model spotting coverage Γ(t) describes how well a speech sig-
nal can be modeled at time t given the current acoustic model. It is
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Fig. 2. Adaptive threshold selection for model splitting. Given low
coverage the splitting threshold θ is increased to ease the creation of
new models.

defined as the ratio of speech covered by at least one of the detected
keyword-segments to the overall amount of speech.

Model coactivity describes how sparse the overall spotting ac-
tivity is, i.e. how many of the models are generating segment hy-
potheses for in a given time. The more of them are active the more
redundant is AM. Ideally one model is active at a time. It is mea-
sured pairwise in terms of correlated keyword spotting activity. For
two models i and j the model coactivity is denoted with η(λi, λj , t).

Pool stability ψ(t) is defined as the ratio of stable models to the
non stable models.

This triplet defines a concrete implementation of the regulariza-
tion terms commonly used for unsupervised learning tasks: com-
pleteness Γ, orthogonality η and stability ψ. To compute Γ and η a
history interval needs to be defined.

Based on these terms the acquisition problem can be reformu-
lated as an optimization problem to provide a unified framework for
speech acquisition:

Γ + ψ − |η‖ → max! (3)

Thereby | • | denotes a common matrix norm.

3.1. Regulation heuristics

Given the method of section 2.1 it is clear that the number of word
models in the unsupervised trained AM will grow monotonously
over time. It is therefore crucial to limit the size of the AM either by
pruning models or by regulating the splitting process.

(I) A first method to limit the pool growth is chosen to be based
on pool stability. New models are created only if

ψ(t) > Γ(t) (4)

Otherwise the best pool model is updated. Using this heuristic the
creation of new models is eased if speech coverage is low. Vice versa
the rule prevents to create new models if the current AM is already
able to model the speech input sufficiently.

(II) Whereas the default acquisition loop assumes ν(λ∗, X) to
be greater than a fixed threshold it might be more appropriate to use

an adaptive threshold. Such a threshold can be chosen by:

θ = θ0 · (1 + β · ψ) (5)

This regulation (cf. figure 2) is inspired by the idea to ease the
creation of new models if the AM is in sufficiently stable. Low sta-
bility prevents the creation of new models, to allow existing models
to reach a stable state by acquiring additional training data.

β and θ0 are constants to be defined. If ψ ≈ 1 the θ is chosen to
be the default splitting threshold θ0. Otherwise the stability weight
β defines the increasing effect of ψ.

(III) Independent of the control of model acquisition, models
which represent the same acoustical entity will occasionally emerge.
Therefore a pruning criterion is necessary to remove such redundant
models from the AM. Given an pruning sensitivity α ∈ [0, 1] a prun-
ing rule can be defined by

η(λi, λj) > (1− α · Γ) ⇒ Delete model λi (6)

Thereby a model is pruned if the model coactivity exceeds a coverage-
adapted threshold. Given low coverage values, the adaption rule
avoids pruning in order to allow a continuing model adaption.

4. RESULTS

The speech acquisition system was evaluated on subsets of a single-
speaker speech database containing subsets including 10 (20min), 20
(40min) and 30 (60min) mainly mono-syllabic uniformly distributed
isolated words (0.7 words/second). These speech subsets of different
complexity were chosen in order to evaluate the properties of the
regulating framework. By Using only one speech set it would not
have come clear, whether regulation takes places as expected or the
system parameterization only accounts for the emerging model pool.

Additionally continuous speech utterances embedding between
0 and 5 of these words into out-of-vocabulary speech were used for
evaluation purposes. Because we focus on acquisition and regula-
tion, and not on environment- and speaker- robustness, all speech
data was generated by a single speaker in a noise free environment.

4.1. Performance Measures

To ensure the training of meaningful models it is necessary to eval-
uate the system behavior when assigning training segments to mod-
els. This is only possible using additional supervised information.
Given supervised labels training confusion matrices Tconf (t) were
being computed (cf. [11]) by combining the training histograms of
all models. Subsequently the matrix trace was maximized over all
column permutations.

As opposed to supervised machine learning tasks the number of
models M does not necessarily equal the number of classes C in
hierarchical clustering methods like the one proposed in section 2.1.
Therefore, to ensure a meaningful trace maximization the classifi-
cation matrix was extended with dummy columns if there were less
AM models than labels.

To ease comparative evaluations between different system pa-
rameterizations as well as to provide a mean for training process vi-
sualization training kappa κt and overall training accuracy pt were
computed (cf. [11]). Additionally, to evaluate the detection perfor-
mance of the emerging AM, we computed Dconf , κd and pd based
on the keyword detection activities.
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(a) Training confusion Tconf of the final AM. Because of the ap-
plied trace maximization the relation between models and labels is
evident. Because of missing regulation an overhead of 5 additional
models is contained in the model pool.
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(b) Detection confusion Dconf of the final AM. Because Dconf

lacks of the orthogonality amount found for Tconf it seems reason-
able to conclude that the acquired word models are sufficient to clas-
sify input speech but not sufficient to be used as keyword spotting
models.
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(c) Speech Coverage Γ and mean detection c. Already after a
short training period 95% of all input segments become detected
acquired models, which are embedded in the keyword spotter. Be-
sides a slight decay the acquired speech models are continuously
able to detect most of the input words
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(d) Pool stability ψ. Because only stable model are used to derive
new models the model pools is completely stable in the moment the
first moment is tagged as stable.

Fig. 3. Results for isolated word acquisition

4.2. Isolated words

Firstly, the basic acquisition loop of section 2.1 combined with reg-
ulation type (I) was evaluated. Previous experiments showed that
without any pool stability ψ regulation too many models are created
leading to a corrupted AM because of the lack of sufficiently large
training samples for each model. Figure 4.2 visualizes the acquisi-
tion process and the properties of final acoustic model. The system
was parameterized with θ = 0.05 and processed the complete 10
words evaluation set. The acquisition system performed in 0.4x real-
time using a single-core CPU with a frame-latency of 5.4ms±2ms.

The final AM contains 15 models which is an overrepresenta-
tion of the 10 classes to learn. Compared with the training confusion
matrix in 3(a) the detection confusion matrix in figure 3(b) lacks
of the low orthogonality. To overcome the latter problem all final
models were embedded into a search graph using a flat grammar.
Doing so, effects due to a possibly erroneous implementation of the
keyword spotter are canceled out and competition between different
word models becomes inherently integrated by using Viterbi decod-
ing for recognition.

By assigning labels to appropriate models based on the orthogo-

nality information gained from Tconf common word error rates (WER)
are applicable to reflect the quality of the acoustic model. Detections
of non-assigned supernumerary models were treated as detection er-
rors hereby.

WERs based on an additional training set comprising 5 minutes
of 10 isolated uniformly distributed words were computed every 60
seconds using the current model pool. The results are depicted in
figure 4. Starting from 100% WER (because of an initial empty
AM) the system approaches ???% when the acquisition process was
interrupted. Compared with high detection confusion observed in
figure 3(b) the final WER of ???% indicates that the AM quality is
quite high and therefore rather the used keyword spotter still needs
improvements.

Additionally model coactivity is summarized by a Gaussian with
mean µη(t) of all η(i, j, t) its and variance σ2

η(t) and visualized as
density shape within figure 4. Every time a new model is created
σ2

η increases because the new model and the model it was derived
of show the same detection activity as long as the former has not
processed enough training samples.
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Fig. 4. WER and summerized model coactivity during the acquisi-
tion process. ση is visualized as tube around the model coactivity
mean µη

4.3. Regulation

To further convergence speed as well as model quality the combined
regulation by the evaluation setup of the previous subsection was ex-
tended with adaptive splitting threshold regulation (cf. III). Figure
4.3 depicts the results in terms of unsupervised measures, confusion-
ality and WER.

... . A less sensitive choice of α (cf. eq.6) will lead to more
specific word models to be contained in the acoustic model, which
entails o higher degree of over-segmentation.

5. DISCUSSION

We proposed a method for word recognition merged with unsuper-
vised AMA by combining ideas of unsupervised and supervised speech
processing. So far the approach relies on speech which contains iso-
lated words for acquisition. The key concepts of the approach in-
clude a regulation scheme which ensures high model activity sparse-
ness as well as low model correlation. Additionally the number of
models was bounded by using model pruning based on model corre-
lation. We could show that our current system is able to learn a stable
set of word models independently of the number of words to model.
Because the approach is based on time-continuous keyword spotting
and time-incremental training the method is suited to be used for on-
line speech acquisition systems.

Here we restricted model acquisition to use voice activity seg-
ments only. Although this step was necessary to get a deeper insight
into ongoing processes during unsupervised word model acquisition,
the use of segments generated by word models itself for training is
going to be the next step towards unsupervised speech acquisition.
Given that the system won’t rely on isolated words as input for train-
ing anymore. Assuming the input to possess properties of child di-
rected speech the approach might be able to model some aspects of
the early speech acquisition process of children.

Speech acquisition makes sense only in the context of other sen-
sorial modalities. For example visual precepts might provide labels
in order to ground the acquired acoustical word models. Given the
current performance of the proposed approach it seams reasonably
to assume that integration of contextual information could greatly
improve the system performance.
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(a) Model coverage Γ and Pool stability ψ for regulation by (I) and
(II) using θ0 = 0.05 and β = 0.2
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Fig. 5. Results for coverage adapted splitting thresholds


