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Toward a Gene Regulatory Network Model
for Evolving Chemotaxis Behavior

Neale Samways, Yaochu Jin, Xin Yao, and Bernhard Sendhoff

Abstract— Inspired from bacteria, a gene regulatory network  contains genes that can produce proteins (receptors) for
model for signal transduction is presented in this paper. Afer  the detection of nutrient concentration therefore presgnt
describing experiments on stabilizing the population sizefor an input to the genetic mechanisms. The environment of

sustained open-end evolution, we examine the ability of the COSMIC it I t I tition f
model to evolve gradient-following behavior resembling bate- permits cell movement as well as competition for

rial chemotaxis. Under the conditions defined in this paperan ~ resources, enforcing an implicit fitness function across th
overwhelming chemotaxis behavior does not seem to emerge. population. A uniform level of nutrient is initially preseim

Further experimentation suggests that chemotaxis is seléeely  the environment, and upon ingestion and metabolism leads to
favored, however, it is shown that the gradient information 4 jncrease in cell size and subsequent reproduction. §urin
which is critical for evolving chemotaxis, is heavily degraled - L . .
under the current regime. It is hypothesized that lack of the e_VOIU_t'on’ mutation in th? form of sequence insertiod an
consistent gradient information results in the selection bnon-  deletion is performed. Experiment results show that COSMIC
chemotaxis behavior. Future work on revising the model as we can generate various behaviors, though it is unclear whethe
as the environmental setups is discussed. chemotaxis has evolved [5].
Penner et al. [7], [8], [9] developed an IbM bacterial
ecosystem that comprises of individual bacterium encoded
One challenging target in computational systems biologgn a DNA-like genome, inhabiting a simulated agar plate.
is to understand the dynamics of gene regulatory networkshe agents produce proteins according to the genome, whilst
which plays a central role in understanding natural evoiuti interactions between proteins and DNA give rise to a regula-
and development [1]. To this end, various models of gene retpry network. An artificial chemistry consisting of a rulede
ulatory networks for signal transduction have been suggest mediates genetic regulation and is central to the systeis. Th
These models attempt to investigate, mimic and utilize geule base is user—defined based on known reactions to occur
netic regulation in a computational framework inspiredrro in e.coli and not evolved. Cellular behaviors are expressed
many classes of biological systems, particularly the mosipon the creation of proteins, whilst interaction (subject
comprehensively understood bacteria sucheasherichia to the rules of the artificial chemistry) occurs between
coli. Simpler than multicellular and prokaryotic organismsmodules of the bacteria and local environment. Contents of
bacteria surprisingly exhibit a range of complex behaviorshe environment change as a result of interaction with the
one of which is chemotaxis. This behavior involves directetiacteria and through decay and diffusion. Although lacking
movement up gradients of attractant (such as a nutrient) or depth analysis, the results indicate the behavior of the
down gradients of repellent. model is congruent withn vivo experimentation and an
As bacterial behavior is heavily influenced by externaincreased tumbling frequency upon depleted levels of enttri
environmental conditions (including other bacteria), @pe within the environment is observed. In a later stage of the
proach for investigating genetic regulatory systems w@sl experiment, evolutionary mechanisms have been added to a
the modeling of populations or complete ecologies within &ighly simplified model through the addition of mutation and
dynamic environment. Such models are often termed indiecombination operations acting on the artificial chemistr
vidual based models (IbMs) [2], [3], where every individuaBacteria circle and color patterns are evolved, though no
possesses its own set of state variables and parametanslysis has been done on whether chemotaxis evolves.
allowing for dynamic behaviors [4]. In the following, we There are also other IbMs developed incorporating less
discuss briefly a few biologically motivated IbM systemsttha'low—level’ biological details of regulation, such as laarg
closely relate to our work. classifier systems. Both HERBY [10] and RUBAM [4]
COSMIC (COmputing System of Microbial InteraC-involve populations of organisms and their adaptation to
tions) [2], [5], [6] is a computational model of bacterialenvironmental factors during evolutionary and organismal
growth and evolution, predicated on phenomena known idetime. HERBY simulates an ecology in which agents move
occur in bacterial cells. The goal of this system was tand eat within a discretized grid world, whilst RUBAM
evolve a controller capable of directing chemotaxis thtougmodels bacteria using a fuzzy classifier system, and aims at
a genetic regulatory network. The gene regulatory networkvolving chemotaxis. This system represents a much more
‘coarse-grained’ model than those presented above, and has
Neale Samways and Xin Yao are with the School of ComputemBeie g focus on application to real world problems [2], [6].
rL]Jnlverslty_of Birmingham, UK, B15 2TT. Yaochu Jin and Bernth&end- The BACSIM model, as outlined in [11] is a simulation
off are with Honda Research Institute Europe GmbH, Offehtam Main, ’
Germany. Email{yaochu.jin;bernhard.sendhp@honda-ri.de. of the growth and behavior of bacteria associated with

I. INTRODUCTION



properties including substrate uptake, metabolism and reelected as the centroid and receives a maximum increment
production. Although this model is capable of producingn nutrient concentration. Details for nutrient deployrheill
qualitative population growth data consistent with thatnir be given in Section IlI-A.

in vitro experiments, individual cells are not associated . _

with genetic material, or directly amenable to evolution. AB- G€netic Representation

more biologically motivated systems for the evolution of All individuals possess a genome comprising of virtual
chemotaxis was developed by Soyer et al. [12]. Although theNA. The genome consists of a variable number of oper-
model shows impressive results, its evolutionary framé&worons, each of which is composed of one promoter denoted
is notably artificial in that it uses an explicit fitness fuoot by P =< 0,1,0,1 > and three genes. Each gene has two
that captures essential features of chemotaxis. codons encoding a protein, with each codon, i.e., a trifflet o

As a whole, although various systems have been developeased € {0, 1,2, 3} representing the four nucleotides, A, C
offering some interesting results, no IbM incorporating 45, and T, coding an amino acid. In other words, six bases
biologically—inspired genetic regulation mechanism has s together will code one protein.
ficiently shown success in evolving chemotaxis behavior.  Thus, the compliment of proteins an individual is capable

The model outlined in this paper was developed with thef producing is exclusive and determined by the gene content
intention of investigating the way in which genetic controlof the genome. The mapping from gene sequence to protein
develops through evolution with inspiration from naturals fixed and redundant, such that the total compliment of
systems. The long-term goal of this research concerns thstinct proteins is 16. Among these 16 proteins, three are
testing of a hypothesis that genetic control networks beconassociated with behavioral functions, while the remaining
increasingly influenced by internal conditions as evolutioplay the role of transcription factors. Details of the enstd
proceeds. functions will be discussed in Section II-E.

The remainder of the paper is organized as follows.
Section Il describes the main components and operations%f
the proposed model. In Section Ill, experimental setups areln this model, gene regulation is modeled through the
given. Section IV presents and discusses the results of tgene-protein and protein-protein interactions defined by a
experiments with the model, concentrating on managing iateraction matrix.
stable population size and thus evolving chemotaxis behavi Based on the expression level of the genes and influenced
Section V summarizes the paper and suggests the futrg interactions between genes and proteins, each individua
work. has concentrations of chemicals that change over time. At

any given instant the internal states, i.e., the conceatraif
ll. MODEL DESCRIPTION the chemicals, can be represented with a vector as follows:

Like existing IbMs, the model suggested in this paper is -

an abstraction ofn vivo bacteria such as.coli, including P = ({[¢1]7 @2l [‘bn]}t)v )

the gene regulation for signal transduction anq behayio_r(;yhere [6,] denotes the concentration of chemical, n
functions. At the core of the system, a population of indijg the total number of internal chemicals. In this work,
viduals acts in a simple virtual environment, with parteul jtera| chemicals include the 16 encoded proteins plus one
behaviors governed by an artificial genetlg regulato_ry _neﬁdditional protein indicating the stored energy.

work (GRN). In the following, a more detailed description  changes in internal state result from the modification

of the model is given. of chemical concentrations, occurring synchronously in a
A. The Environment process illustrated by Equations (2) and (3). In Equation (2
the state at timeé + 1 is calculated as the addition of a vector

_The environment in which the_populatlon exists Is coNot changesﬁt to the state vector at the previous time step.
sidered an abstract representation of an agar plate. I%rEquation (3), value€); ... O, represent the changes for
simplicity, f[he er_mre space 1S d|\_/|de_d_|nto a_gnd, Wlthi dividual chemicals, determined by the mechanisms of the
each location (site hereafter) maintaining an mdependeg

Gene Regulation through Bio-chemical Interactions

concentration of nutrient. Although the world is discretiéw N.

respect to nutrient, individuals are associated with atlona

in two dimensional real space. The immediate environment P = P +D, 2)
of an individual corresponds to the site to which its locatio D = (Q1,Qs,....Qn). 3)

translates; a simple function maps a two-dimensional real
location to a site within the grid by rounding co—ordinates The GRN of an individual results from the genes and
down to an integer value. Boundary conditions for the worléartificial chemistry. The chemistry describes possibleabin
are enforced through simple clamping of any individualinteractions between all chemicals, and is represented by
attempting to cross a boundary, until directed away bs two-dimensional matrixC. Each matrix element, ,
appropriate movement behavior. describes the effect of chemicalon chemicalp. As the
Nutrient is added to the environment at regular time intereffect of every chemical pair must be specified, the matrix
vals. During nutrient deployment, a randomly chosen site is necessarily square and of sizex n. It is evident that



a row represents the effect of all chemicals on a singlerobability. When mutation occurs, the value of the element
chemical associated with the row. The set of permissabie question is reassigned to any permitted value, with equal
interactions between any two given chemicajsand p, is probability. As a given individual may or may not possess

given in Equation (4). genes to produce the full compliment of proteins, it is
possible that certain mutations do not affect the behavior

1 1 of the individual. However, as a ramification of the role

Cpg € {07 11 o—[#a’ 11 oléd] },( ) of the interaction matrix, a single mutation can modify the

connectivity of the GRN, drastically modifying behavior.

where: , c 7, 1< (p,q) <n. . . . .
(P, q) (P, ) E. Behavioral Actions and Action Selection

The element0 indicates a null interaction, whilst the o _ _ )
other expressions describe a sigmoidal relation betweenEach individual has a number of behavioral actions, in-
reactant concentration and change in product concentrati¢!uding sensing the gradient of nutrient, running, tumglin
The change in concentration of a single chemicalan be reproducing, and dying. Among them, sensing the nutri-
determined by: ent grad|ent is reall_zed by mocjulatmg the concentration

. gf a "sensr:ng“ pr_oteln represc(jentmg the sL?naIlng pathway
= etween the environment and receptor, thus presenting as
VQa€D:Qu = ltanh <Z C‘”) a0 ) an input to the gene regulatory ngtwork. Th% action gof
, i l,_l ) i reproducing and dying is determined by the internal energy
where, d is the production rate without any interactions, |eye| of the individual, represented by the concentratibar
represents the basal production level of a gene, ensuringéhergy indicating” protein. When the energy level is highe
fixed level of protein production in the absence of any nong,, 5 prescribed threshold, a bacterium will reproduce an
null interaction. Both increment and decrement in Chemic‘ﬂﬁspring. The concentration of all chemicals, as well & th
concentratlo_n are permitted, Wh.ICh simulates the actvati jtarnal energy, is divided equally between the parent &nd i
and repression of gene expression. offspring. When the energy level goes to zero, the individua

D. Genetic Variations dies. Note that the concentration of the energy indicating

When the model is evolved, variations to the genome WifProtein is not d_irectly inf!uenced by the _internal states.
be performed. Three genetic operations are adopted in this! € Wo motile behaviors are determined by the concen-
work, including single nucleotide polymorphism (SNP), gen (ration of two other proteins, one "tumbling” protein, anaeo
duplication, and gene deletion. "runn!ng“ protein. 'I_'he concentration of these two proteins
SNP involves a simple, random re—assignment of a base¢ directly determined by the expression level of the eorre
a given locus of the DNA. Where this mutation is determinegP°nding genes. When the concentration level of the running
to oceur, the new value of the mutating base is selected wifffOtein is larger than the threshold, the individual perfer

equal probability from the four bases. Genetic duplicatiof’® running behavior. Similarly, when the concentratiorele
can occur once during reproduction, with a fixed pre—s&f tumbling protein exceeds the predefined threshold, the

probability. When duplication occurs, a ‘duplication Ienig individual tumbles. If the concentration of both proteiss i

is selected randomly between 1 and the length of the paren@d®Ve the threshold, the winner-take-all strategy is athpt

DNA. Subsequently, a suitable splice locus is determinegn the other hand, no motile actions will be invoked if the

at random such that the remainder of bases beyond t|1ﬁgncentrati0n of the motile proteins is below the threshold
locus is equal to or greater than the duplication length. A Each individual is associated with a heading value in
string of bases of duplication length are spliced into théhe range § — 2r), which is randomly assigned when the
offspring DNA at the splice locus. The spliced DNA is aindividual is generated, describing its current oriewtati
duplicate of the parental DNA beginning from the spliceThiS value remains fixed unless a tumble behavior is invoked,
locus. Effectively a chunk of DNA is repeated contiguoushPon which a random re—assignment is made. When an
within the offspring genome thus increasing its length by thindividual runs, it moves in the environment along the catre
duplication length. Genetic deletion is notionally simita  Orientation for a fixed number of sites.
duplication, however a length of DNA of ‘deletion length’ is  Consumption of a fixed amount of nutrient (environment
expunged from the offspring DNA at a suitable splice locugpermitting) occurs automatically once per epoch for all
The resulting offspring genome is therefore shorter tham thindividuals. Where nutrient is consumed, a decrement is
of the parent by a length equal to the deletion length. Owinglade to the concentration of nutrient within the environtnen
to the redundant nature of the DNA, it is possible for all typewhilst an increment made to the concentration of the energy
of genetic variations to affect only ‘junk DNA, therefore indicating protein of the corresponding individual.
having no effect on the phenotype. At the end of each epoch, the concentration of all proteins
As with the genome, the interaction matrix of a newlywill be updated depending on the existing concentration
generated individual is subject to probabilistic mutation. and the interaction matrix. Based on the updated protein
Each matrix element is mutated with a pre—defined, fixedoncentration, corresponding behaviors will be performed




TABLE |

than those that could not. In this circumstance, chemogaxin
EXPERIMENTAL PARAMETERS

individuals would proliferate in the population.

Parameter | value | The initial population comprised of individuals with a ran-
Maximum food intake (per epoch) 1.0 domly generated genome and interaction matrix. Genomes
Nutrient to energy conversion ratg 0.1 of the initial individuals were created by generating ramdo
Life energy cost (per epoch) 0.0001 strings from the elements of the DNA set with equal prob-
Run / tumble energy cost 0.003 ability. Interaction matrices were synthesized in a simila
Behavioral protein trigger threshold 25.0 manner, however the probability of an element being non—
Reproduction trigger threshold 25.0 zero was set td).3 to prevent massively interconnected
Maximum movement range 15 networks within the initial population.

IV. SIMULATION RESULTS
A. Ex 1: Stabilizing the Population Size

A variety of ad—hoc experiments were conducted, in which

_ To verify the f(ljmcuinlng ?]f the slystfem, two sets of expery,e narameters pertaining to nutrient deployment weredari
iments were undertaken. The goal of Experiment 1 (Exp. uns illustrating an unstable population size are shown in

Is to elucidate appro_priate parameter ranges regardin@ fo?ig. 1, which results from an infrequent nutrient deploymsen
deployment for attaining a stable population size. Expenin coupled with higher energy costs for running and tumbling,

2 (Exp. 2) was conducted in an evolutionary context, Witk ihermore, an energy cotl units for reproduction is
the aim of investigating necessary factors for the evo'mnoemployed

of chemotaxis behavior.
In both experiments, the environment is defined by a 500
by 500 grid, consisting of 250000 sites. The initial popiolat 160
size is 50, and simulation terminates either when the popu-
lation size reaches zero, or when the number of completed
epochs reaches)®. In Exp. 2, the probability for all three 2o
genetic operations i8.03, and the probability mutating the
interaction matrix is0.004. For each of the experimental
conditions, 10 independent runs were undertaken. All others *[ , /[
parameter setups used in the experiments, unless otherwise L |
stated, are listed in Table I. While most parameters are self ’
explaining, the maximum movement range means the number
of sites individuals move during the running behavior. 2t

IIl. EXPERIMENTAL SETUPS

Population Size vs. Time

140 |

100

on Size

w0t |

A. Exp. 1: Fixed, Hand—Coded Genomes o

To evolve chemotaxis behavior, a stable population si
pop ZI-Elg. 1. Unstable populations arising from parameter sgdtirenergy for

needs FO be maintaine_d' FO!’ th_is p_urpose_, nutrient iS_ denloyrunning / tumble0.03, maximum movement range E0, food deployment
according to a cone-like distribution, witlV,. the units of period =2000, maximum volume of food deployments 26.

food to be deployed on the centroid add, (number of
sites) the radium of the food distribution. The locationlodt  Experimentation has shown that stability in population
centroid was chosen with equal probability within a squareize is mainly dependent on the energy cost for running
of 200 x 200 sites concentric with the environment. and tumbling, the energy threshold for reproduction, and

Experiments were conducted for obtaining parameter cothie volume and period of nutrient deployment. Our results
figurations, includingVN,, N,,, and the period of food de- showed that the resting population size is proportional to
ployment, resulting in a stable and computationally traleta the product of the deployment period and volume. Where
population size. In this experiment, the initial populatio this product is fixed, but the period varies, the amplitude in
was seeded with a hand—coded genome and zero interactizgtillation is observed as being proportional to the period
matrix, thereby enforcing running and tumbling with equal Fig. 2 shows the population size averaged over 10 runs
frequency. for seven different nutrient deployment periods, whére

) ] ] is set to 0.4 units andV,, is fixed to 25 sites. We see that

B. Exp. 2: Evolution of Genome and Interaction Matrix 5 computationally tractable and stable population size can

To investigate the possible emergence of chemotaxise obtained when the period of food deployment is roughly
further experiments were performed in which evolution wabetween500 and2000. Note that when the food deployment
permitted via mutation of the genome and interaction matripperiod is larger than 50, most of the 50 initial individuale|
Although evolutionary fitness is implicit, it was hypothesil  on their initial energy and die after about 40,000 epoches.
that individuals capable of following an increasing gradie because the initial energy is not sufficient for reproductio
of nutrient would survive and reproduce at a greater ratnd the probability of finding nutrient with random work is

L L L L L L L L L
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Epochs



Population Size vs. Time Aggregate Behaviour Vs. Time
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Fig. 2. Changes of population size with the food deploymesttogl. Fig. 4. Aggregate behaviors across time for a populationasidhcoded,

random walk individuals

Instance of Running / Tumbling Vs. Time

low. Fig. 3 shows a stable population size when the food .,
deployment period is set to 500, i.e., food will be deployed ol Tumble -
every 500 epoches. Although oscillation is apparent, a mean |
population size of approximately 135 is observed.
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Population Size Vs. Time
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% Fig. 5. Instance of running and tumbling across time for aupetpn of

w0h hand—coded, random walk individuals
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0 . . . . . . . individuals moving away from the peak simply run out of

n n
(] 10 20 30 40 50 60 70 80 90 100

100,000 Epochs energy and die.
Fig. 3. Population Size across time for a population of handed, random The population size remains relatively constant over time
walk individuals as a kind of homeostasis emerges. If the population size de-

) ) ) creases, the amount of nutrient in the environment inceease
In Fig. 4 the aggregate behaviors for the population argjih the greater amount of nutrient distributed over a serall
given. This show; the numb.er of |nd.|V|duaIs performmg eaCBopuIation, more reproduction can occur. The resultagesar
of the three possible behaviors at different epochs. Idiimg 45 jation cannot then be sustained by the available mafrie
which neither running or tumbling is performed, is the mostg;sing a corresponding decrease in the population size as
frequently exhibited behavior whilst running and tumbling,qividuals run out of energy and die.
occur with an ap_proximately equ_al frequency..For clarity, Fig. 4 shows idling to be the most commonly expressed
Fig. 5 shows the instance of running and tumbling only.  penavior in Exp. 1. During periods of idling, update of the
The results of Exp. 1 (see Fig. 3) illustrate that a relayivelGRN occurs, however the concentrations of the functional
stable population size is obtained with the reported paramoteins are not sufficient to trigger a behavior. As evoluti

eters. This shows the emergence of a population capalieswitched off in Exp. 1, the ratios of the behaviors remain
of being sustained by the amount and period of nutrienfgely unchanged.

deployed under these conditions. The unguided movement

in the form of random walk results in a net gain in energ- EXp. 2: Evolutionary Experiments

capable of allowing the perpetuation of the population. According to the experimental results in Exp. 1, a period
Individuals whose path takes them toward a high concewf 500 is used for Exp. 2. Note that in Exp. 1, all elements

tration of nutrient reproduce prolifically as they approétoh  of the interaction matrix are set to zero, whereas in this

peak, as do their offspring. This results in a higher dendity experiment, the interaction matrix is initialized randgml

individuals around the peaks of nutrient deployment. Thosegith a probability 0f0.3. Owing to this stochastic nature of



initialization, it may happen that the initial populationes . Instance of Running / Tumbling Vs. Time
not contain an adequate number of viable individuals, and S —
therefore terminated prematurely. If this was the case, the
run was repeated until a duration 4, 000, 000 epochs was
obtained.

The profile of population size when evolution is switched
on is given in Fig. 6. Toward the end of the run, a sta-
ble population size of approximately 50 is observed. A
comparison between the populations of Exp. 1 and Exp.
2 during the initial stages of each experiment is shown
in Fig. 9. The increase in size of the evolving population
can be seen to occur prior to corresponding increase in
the non—evolving population. The maximum and average e
population size attained by the non—evolving population is 100,000 Epochs
notably larger than that of the evolving population. This i€ig. 8.  Instance of running / tumbling across time for an ey
somewhat counter—intuitive, as it might be expected that dfjPulation of randomly initialized individuals
evolved population would both acquire and expend energy
more efficiently. 200

Sum Individuals

o

Population Size Vs. Time
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. ) ) ) ) ) ) ) ) ) Fig. 9. Comparison of population size for Exp. 1 and Exp. 2fiiat part
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Fig. 6. Population Size across time for an evolving popofatf randomly
initialized individuals . .
aggregate behaviors for the population of Exp. 2. As the
run progresses, the relative number of idling individuals

A . , decreases. The instance of running and tumbling indiviglual
ggregate Behaviour Vs. Time

180 — remains comparatively constant throughout, with running
oo | fs being slightly more frequent than tumbling, as shown in
wl Fig. 8.

In Exp. 2, the ratio of exhibited behaviors can be seen
120 to change over time. The most obvious difference is the de-
100 crease in instances of idling. Whilst this is seen to dee&eas

the absolute number of running and tumbling individuals
remains comparatively constant, suggesting the populatio
to evolve toward more frequent movement. Fig. 8 indicates
40 tumbling to occur less frequently than running.
2} The change in behavior results in extended runs, with two
e e important ramifications. Firstly, the population becomes d
o eetpeans persed over a greater area of the environment. This allows fo
Fig. 7. Aggregate behaviors across time for an evolving fatjon of a comparativ_ely_ quicker dis_covery of n_l"tr_ient' a_s any given
randomly initialized individuals deployment is likely to be in the proximity an individual.
Similarly, the greater range of movement of an individual is
To investigate whether chemotaxis evolves, we compargore likely to bring it in contact with a nutrient deployment
the average number of individuals in the population per- the individual will be ‘covering more ground'.
forming running, tumbling and idling. Fig. 7 shows the Secondly, the increased movement will lead individuals

80

Sum Individuals

60




away from nutrient peaks. Although offspring are likely tonutrient signaling chemical and the tumble inducing pratei
be born close to a nutrient deployment (as a result of th&ll forms of mutation were disabled, and the conditions
reproduction mechanism), those configured to run disproparere otherwise identical to that of the previously desatibe
tionally more than tumble will move away from their locusexperiments.
of creation comparatively more quickly. The effect of this The composition of the obtaining population over time is
rapid displacement is that individuals will move away fronshown in Fig. 10. Although the results represent a single sim
the nutrient concentration, therefore accruing less gnergulation, further runs provided qualitatively identicabudts;
Although nutrient will be consumed, a greater amount afhe random walk population invariably became extinct. This
energy is expended on movement as the individuals travelresult suggests that chemotaxis have a selective advantage
greater distance within the environment.

Fig. 9 is helpful in indicating why this situation might , Population Composition Vs. Time

arise. At the start of any run, the initial population size Chemotaxis

Random Walk —--—

is small and therefore unable to cover the environment wor
efficiently. However, during this time, nutrient is deplaye
regularly and accrues within the environment. Randomly ini
tialized and evolved individuals exhibiting comparatiwée-
quent movement will travel a greater distance, increadieg t
likelihood of encountering the previously deployed nuitie
Therefore, in the evolving population, the first generation
are likely to comprise of comparatively frequently moving wl
individuals.
Based on the results of Exp. 1 and Exp. 2, it is inferred
that an overwhelming chemotaxis behavior has not emerged. s ST, ‘ ‘ ‘
If individuals were able to follow the increasing nutrient ’ ' ’ ' oooEpots ! ’ ’
gradient (thus a higher percentage of individuals show a Fig. 10. Selection Pressure
running behavior), more nutrient would be ingested whilst
less energy would be expended on traversing areas of lowerThirdly, chemotaxis could be a sub—optimal strategy for
nutrient concentration. This positive energy deficit wollle-  survival in certain conditions, in favor of some other patte
oretically sustain a larger population for any constantamio of movement. For chemotaxis to be advantageous, gradient
of nutrient. In contrast, the population appears to evolviaformation is necessary, yet it must be remembered thst thi
toward a strategy of increased coverage of the environmeittformation is destroyed as individuals consume nutrigat.
C. Possible Reasons for the Non—Evolution of Chemotaxilsnve.Stlgate t_he effect of the agtlwty of the p_opulatlon be t
hutrient environment, the spatial concentration of natrfer
There are several plausible reasons why chemotaxis dogs experimental run was examined across time.
not appear to evolve. Firstly, evolution might be unable to Figs. 11 and 12 illustrate the nutrient landscape at differe
find’ the genetic configuration for chemotaxis. Should thisspochs. From these illustrations, the ruggedness of thée nut
be the case, it is obvious that the evolving system will neveint |andscape is revealed. In consideration that the eatern
produce chemotaxing individuals. nutrient sensing system only detects whether an increase or
Secondly, it is possible that the selection probability ogjecrease in nutrient is encountered, it is obvious that the
ChemOtaXing individuals is not |arge enough for prollfﬂ)‘at gradient information is extreme|y noisy_ This potentiqjm_
Were this the case, although chemotaxing individuals coulgbnts chemotaxing individuals from achieving a signifitant
arise they might die out before reproducing in sufficien§reater selection probability than those performing rando
number to infilirate the population. walk.
Itis unlikely that the apparent lack of chemotaxis results Considering the previously discussed situation in which
from the first scenario. Our experimentation has showfiequently moving individuals rapidly proliferate, it isn
that a single interaction within the interaction matrix isgerstandable why chemotaxis would not evolve under these
sufficient for chemotaxis (see below). Given the mutatiogonditions. A population of frequently moving, random walk
rates, population turnover and initial randomization of thindividuals will cover a comparatively large amount of the
chemical interaction matrix, it is likely that this mutatio enyironment. The ingestion by this population of any eneoun
arises within the course of the runs. tered nutrient will rapidly obfuscate any meaningful geai

To investigate the second possible reason, experimefgormation. In the lack of gradient information, the atyili
were conducted to assess whether chemotaxis would Rechemotax becomes decreasingly beneficial.

selected for above simple random walk. An initial pop-

ulation of 50 individuals was created, comprising @b V. CONCLUSIONS ANDFUTURE WORK

random walk individuals an@5 chemotaxing individuals.  The experimental results show the system to be function-
The chemotaxing individuals were configured such that img on many levels. Under the configurations outlined, open
single inhibitory connection was present between the eater ended runs can be sustained, potentially allowing for amgjoi

Sum Individuals
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Fig. 11. Nutrient density at epoch 1000. The x,y plane cpoed
to the virtual world, whilst the z axis indicates the asstmdanutrient
concentration. Only the area in which nutrient deploymemis made is
shown.
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Fig. 12. Nutrient density at epoch 1499. As with Fig. 11, agaaof the
virtual world is shown.

evolution in future experiments. Unfortunately, evoluatio
does not appear to lead to the emergence of chemotaxis in th2
present setup. Our further experiment results imply thist th
may be attributed to the destruction of gradient informratio[10]
by randomly moving individuals. This mismatch between the
expected results (the emergence of chemotaxis) and thqsg
obtained indicate that developing an evolutionary system i

which the fitness function is implicit is nontrivial.

Having considered why chemotaxis does not appear
evolve, the aim of immediate future work is to establish

ment. One plausible method would involve repeated compar-
ison between the behavior of an evolved (i.e. experimental)
individual and a control individual in the form of pure
random walk. In simple form, this would require measuring
the mean distance between an individual and the peak of
a nutrient gradient across time. Given suitably repeated
measurement, where chemotaxis is apparent the experimenta
group should show a significantly lower mean distance from
the nutrient peak. Under the settings used within the exper-
iments outlined above, this task would become confounded
as a result of the nutrient being consumed by the population.
The distribution of nutrient can become rapidly multi-mipda
with a large number of local minima. To counter this, it is
possible to utilize a single deployment of nutrient, igngri

the effect of consumption on the environment. As the focus
of the experiment concerns a single individual, reproaurcti
can be deactivated therefore avoiding a perpetually grpwin
population size.
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whether the given explanations are accurate. To deterinine t

effect of the destruction of gradient information, the syst
will be modified to incorporate a spatio—temporal diffusain
nutrient. In addition to providing a scenario more congtuen
with natural systems, it is anticipated that this will prete
the observed ruggedness, giving individuals with the ghili
to chemotax a significant advantage.

Secondly, a more rigorous metric for the determination of
whether chemotaxis is emerging is necessary. As the single
permissible method of gradient tracking in this scenario
involves a large stochastic element, it is a nontrivial asse



