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Toward a Gene Regulatory Network Model
for Evolving Chemotaxis Behavior

Neale Samways, Yaochu Jin, Xin Yao, and Bernhard Sendhoff

Abstract— Inspired from bacteria, a gene regulatory network
model for signal transduction is presented in this paper. After
describing experiments on stabilizing the population sizefor
sustained open-end evolution, we examine the ability of the
model to evolve gradient-following behavior resembling bacte-
rial chemotaxis. Under the conditions defined in this paper,an
overwhelming chemotaxis behavior does not seem to emerge.
Further experimentation suggests that chemotaxis is selectively
favored, however, it is shown that the gradient information,
which is critical for evolving chemotaxis, is heavily degraded
under the current regime. It is hypothesized that lack of
consistent gradient information results in the selection of non-
chemotaxis behavior. Future work on revising the model as well
as the environmental setups is discussed.

I. I NTRODUCTION

One challenging target in computational systems biology
is to understand the dynamics of gene regulatory networks,
which plays a central role in understanding natural evolution
and development [1]. To this end, various models of gene reg-
ulatory networks for signal transduction have been suggested.
These models attempt to investigate, mimic and utilize ge-
netic regulation in a computational framework inspired from
many classes of biological systems, particularly the most
comprehensively understood bacteria such asescherichia
coli. Simpler than multicellular and prokaryotic organisms,
bacteria surprisingly exhibit a range of complex behaviors,
one of which is chemotaxis. This behavior involves directed
movement up gradients of attractant (such as a nutrient) or
down gradients of repellent.

As bacterial behavior is heavily influenced by external
environmental conditions (including other bacteria), oneap-
proach for investigating genetic regulatory systems involves
the modeling of populations or complete ecologies within a
dynamic environment. Such models are often termed indi-
vidual based models (IbMs) [2], [3], where every individual
possesses its own set of state variables and parameters
allowing for dynamic behaviors [4]. In the following, we
discuss briefly a few biologically motivated IbM systems that
closely relate to our work.

COSMIC (COmputing System of Microbial InteraC-
tions) [2], [5], [6] is a computational model of bacterial
growth and evolution, predicated on phenomena known to
occur in bacterial cells. The goal of this system was to
evolve a controller capable of directing chemotaxis through
a genetic regulatory network. The gene regulatory network
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contains genes that can produce proteins (receptors) for
the detection of nutrient concentration therefore presenting
an input to the genetic mechanisms. The environment of
COSMIC permits cell movement as well as competition for
resources, enforcing an implicit fitness function across the
population. A uniform level of nutrient is initially present in
the environment, and upon ingestion and metabolism leads to
an increase in cell size and subsequent reproduction. During
the evolution, mutation in the form of sequence insertion and
deletion is performed. Experiment results show that COSMIC
can generate various behaviors, though it is unclear whether
chemotaxis has evolved [5].

Penner et al. [7], [8], [9] developed an IbM bacterial
ecosystem that comprises of individual bacterium encoded
on a DNA–like genome, inhabiting a simulated agar plate.
The agents produce proteins according to the genome, whilst
interactions between proteins and DNA give rise to a regula-
tory network. An artificial chemistry consisting of a rule-base
mediates genetic regulation and is central to the system. This
rule base is user–defined based on known reactions to occur
in e.coli and not evolved. Cellular behaviors are expressed
upon the creation of proteins, whilst interaction (subject
to the rules of the artificial chemistry) occurs between
modules of the bacteria and local environment. Contents of
the environment change as a result of interaction with the
bacteria and through decay and diffusion. Although lacking
in depth analysis, the results indicate the behavior of the
model is congruent within vivo experimentation and an
increased tumbling frequency upon depleted levels of nutrient
within the environment is observed. In a later stage of the
experiment, evolutionary mechanisms have been added to a
highly simplified model through the addition of mutation and
recombination operations acting on the artificial chemistry.
Bacteria circle and color patterns are evolved, though no
analysis has been done on whether chemotaxis evolves.

There are also other IbMs developed incorporating less
‘low–level’ biological details of regulation, such as learning
classifier systems. Both HERBY [10] and RUBAM [4]
involve populations of organisms and their adaptation to
environmental factors during evolutionary and organismal
lifetime. HERBY simulates an ecology in which agents move
and eat within a discretized grid world, whilst RUBAM
models bacteria using a fuzzy classifier system, and aims at
evolving chemotaxis. This system represents a much more
‘coarse-grained’ model than those presented above, and has
a focus on application to real world problems [2], [6].

The BACSIM model, as outlined in [11] is a simulation
of the growth and behavior of bacteria associated with



properties including substrate uptake, metabolism and re-
production. Although this model is capable of producing
qualitative population growth data consistent with that from
in vitro experiments, individual cells are not associated
with genetic material, or directly amenable to evolution. A
more biologically motivated systems for the evolution of
chemotaxis was developed by Soyer et al. [12]. Although the
model shows impressive results, its evolutionary framework
is notably artificial in that it uses an explicit fitness function
that captures essential features of chemotaxis.

As a whole, although various systems have been developed
offering some interesting results, no IbM incorporating a
biologically–inspired genetic regulation mechanism has suf-
ficiently shown success in evolving chemotaxis behavior.

The model outlined in this paper was developed with the
intention of investigating the way in which genetic control
develops through evolution with inspiration from natural
systems. The long-term goal of this research concerns the
testing of a hypothesis that genetic control networks become
increasingly influenced by internal conditions as evolution
proceeds.

The remainder of the paper is organized as follows.
Section II describes the main components and operations of
the proposed model. In Section III, experimental setups are
given. Section IV presents and discusses the results of two
experiments with the model, concentrating on managing a
stable population size and thus evolving chemotaxis behavior.
Section V summarizes the paper and suggests the future
work.

II. M ODEL DESCRIPTION

Like existing IbMs, the model suggested in this paper is
an abstraction ofin vivo bacteria such ase.coli, including
the gene regulation for signal transduction and behavioral
functions. At the core of the system, a population of indi-
viduals acts in a simple virtual environment, with particular
behaviors governed by an artificial genetic regulatory net-
work (GRN). In the following, a more detailed description
of the model is given.

A. The Environment

The environment in which the population exists is con-
sidered an abstract representation of an agar plate. For
simplicity, the entire space is divided into a grid, with
each location (site hereafter) maintaining an independent
concentration of nutrient. Although the world is discrete with
respect to nutrient, individuals are associated with a location
in two dimensional real space. The immediate environment
of an individual corresponds to the site to which its location
translates; a simple function maps a two-dimensional real
location to a site within the grid by rounding co–ordinates
down to an integer value. Boundary conditions for the world
are enforced through simple clamping of any individuals
attempting to cross a boundary, until directed away by
appropriate movement behavior.

Nutrient is added to the environment at regular time inter-
vals. During nutrient deployment, a randomly chosen site is

selected as the centroid and receives a maximum increment
in nutrient concentration. Details for nutrient deployment will
be given in Section III-A.

B. Genetic Representation

All individuals possess a genome comprising of virtual
DNA. The genome consists of a variable number of oper-
ons, each of which is composed of one promoter denoted
by P =< 0, 1, 0, 1 > and three genes. Each gene has two
codons encoding a protein, with each codon, i.e., a triplet of
basesb ∈ {0, 1, 2, 3} representing the four nucleotides, A, C
G, and T, coding an amino acid. In other words, six bases
together will code one protein.

Thus, the compliment of proteins an individual is capable
of producing is exclusive and determined by the gene content
of the genome. The mapping from gene sequence to protein
is fixed and redundant, such that the total compliment of
distinct proteins is 16. Among these 16 proteins, three are
associated with behavioral functions, while the remaining
play the role of transcription factors. Details of the encoded
functions will be discussed in Section II-E.

C. Gene Regulation through Bio-chemical Interactions

In this model, gene regulation is modeled through the
gene-protein and protein-protein interactions defined by an
interaction matrix.

Based on the expression level of the genes and influenced
by interactions between genes and proteins, each individual
has concentrations of chemicals that change over time. At
any given instant the internal states, i.e., the concentration of
the chemicals, can be represented with a vector as follows:

~Pt =
(

{[φ1], [φ2], . . . , [φn]}t

)

, (1)

where [φx] denotes the concentration of chemicalφx, n

is the total number of internal chemicals. In this work,
internal chemicals include the 16 encoded proteins plus one
additional protein indicating the stored energy.

Changes in internal state result from the modification
of chemical concentrations, occurring synchronously in a
process illustrated by Equations (2) and (3). In Equation (2)
the state at timet + 1 is calculated as the addition of a vector
of changes~Dt to the state vector at the previous time step.
In Equation (3), valuesQ1..., Qn represent the changes for
individual chemicals, determined by the mechanisms of the
GRN.

~Pt+1 = ~Pt + ~Dt, (2)
~Dt = 〈Q1, Q2, . . . , Qn〉 . (3)

The GRN of an individual results from the genes and
artificial chemistry. The chemistry describes possible binary
interactions between all chemicals, and is represented by
a two–dimensional matrixC. Each matrix elementcp,q

describes the effect of chemicalq on chemicalp. As the
effect of every chemical pair must be specified, the matrix
is necessarily square and of sizen × n. It is evident that



a row represents the effect of all chemicals on a single
chemical associated with the row. The set of permissable
interactions between any two given chemicals,q and p, is
given in Equation (4).

cp,q ∈

{

0,
1

1 + e−[φq]
,

1

1 + e[φq ]

}

, (4)

where: (p, q) ∈ Z, 1 ≤ (p, q) ≤ n.

The element0 indicates a null interaction, whilst the
other expressions describe a sigmoidal relation between
reactant concentration and change in product concentration.
The change in concentration of a single chemicala can be
determined by:

∀Qa ∈ ~D : Qa =

[

tanh

(

n
∑

i=1

ca,i

)

· α

]

+ δ, (5)

where,δ is the production rate without any interactions,α

represents the basal production level of a gene, ensuring a
fixed level of protein production in the absence of any non–
null interaction. Both increment and decrement in chemical
concentration are permitted, which simulates the activation
and repression of gene expression.

D. Genetic Variations

When the model is evolved, variations to the genome will
be performed. Three genetic operations are adopted in this
work, including single nucleotide polymorphism (SNP), gene
duplication, and gene deletion.

SNP involves a simple, random re–assignment of a base at
a given locus of the DNA. Where this mutation is determined
to occur, the new value of the mutating base is selected with
equal probability from the four bases. Genetic duplication
can occur once during reproduction, with a fixed pre–set
probability. When duplication occurs, a ‘duplication length’
is selected randomly between 1 and the length of the parental
DNA. Subsequently, a suitable splice locus is determined
at random such that the remainder of bases beyond this
locus is equal to or greater than the duplication length. A
string of bases of duplication length are spliced into the
offspring DNA at the splice locus. The spliced DNA is a
duplicate of the parental DNA beginning from the splice
locus. Effectively a chunk of DNA is repeated contiguously
within the offspring genome thus increasing its length by the
duplication length. Genetic deletion is notionally similar to
duplication, however a length of DNA of ‘deletion length’ is
expunged from the offspring DNA at a suitable splice locus.
The resulting offspring genome is therefore shorter than that
of the parent by a length equal to the deletion length. Owing
to the redundant nature of the DNA, it is possible for all types
of genetic variations to affect only ‘junk DNA’, therefore
having no effect on the phenotype.

As with the genome, the interaction matrix of a newly
generated individual is subject to probabilistic mutationtoo.
Each matrix element is mutated with a pre–defined, fixed

probability. When mutation occurs, the value of the element
in question is reassigned to any permitted value, with equal
probability. As a given individual may or may not possess
genes to produce the full compliment of proteins, it is
possible that certain mutations do not affect the behavior
of the individual. However, as a ramification of the role
of the interaction matrix, a single mutation can modify the
connectivity of the GRN, drastically modifying behavior.

E. Behavioral Actions and Action Selection

Each individual has a number of behavioral actions, in-
cluding sensing the gradient of nutrient, running, tumbling,
reproducing, and dying. Among them, sensing the nutri-
ent gradient is realized by modulating the concentration
of a ”sensing” protein representing the signaling pathway
between the environment and receptor, thus presenting as
an input to the gene regulatory network. The action of
reproducing and dying is determined by the internal energy
level of the individual, represented by the concentration of an
”energy indicating” protein. When the energy level is higher
than a prescribed threshold, a bacterium will reproduce an
offspring. The concentration of all chemicals, as well as the
internal energy, is divided equally between the parent and its
offspring. When the energy level goes to zero, the individual
dies. Note that the concentration of the energy indicating
protein is not directly influenced by the internal states.

The two motile behaviors are determined by the concen-
tration of two other proteins, one ”tumbling” protein, and one
”running” protein. The concentration of these two proteins
are directly determined by the expression level of the corre-
sponding genes. When the concentration level of the running
protein is larger than the threshold, the individual performs
the running behavior. Similarly, when the concentration level
of tumbling protein exceeds the predefined threshold, the
individual tumbles. If the concentration of both proteins is
above the threshold, the winner-take-all strategy is adopted.
On the other hand, no motile actions will be invoked if the
concentration of the motile proteins is below the threshold.

Each individual is associated with a heading value in
the range [0 − 2π), which is randomly assigned when the
individual is generated, describing its current orientation.
This value remains fixed unless a tumble behavior is invoked,
upon which a random re–assignment is made. When an
individual runs, it moves in the environment along the current
orientation for a fixed number of sites.

Consumption of a fixed amount of nutrient (environment
permitting) occurs automatically once per epoch for all
individuals. Where nutrient is consumed, a decrement is
made to the concentration of nutrient within the environment,
whilst an increment made to the concentration of the energy
indicating protein of the corresponding individual.

At the end of each epoch, the concentration of all proteins
will be updated depending on the existing concentration
and the interaction matrix. Based on the updated protein
concentration, corresponding behaviors will be performed.



TABLE I

EXPERIMENTAL PARAMETERS

Parameter Value

Maximum food intake (per epoch) 1.0

Nutrient to energy conversion rate 0.1

Life energy cost (per epoch) 0.0001

Run / tumble energy cost 0.003

Behavioral protein trigger threshold 25.0

Reproduction trigger threshold 25.0

Maximum movement range 1.5

III. E XPERIMENTAL SETUPS

To verify the functioning of the system, two sets of exper-
iments were undertaken. The goal of Experiment 1 (Exp. 1)
is to elucidate appropriate parameter ranges regarding food
deployment for attaining a stable population size. Experiment
2 (Exp. 2) was conducted in an evolutionary context, with
the aim of investigating necessary factors for the evolution
of chemotaxis behavior.

In both experiments, the environment is defined by a 500
by 500 grid, consisting of 250000 sites. The initial population
size is 50, and simulation terminates either when the popu-
lation size reaches zero, or when the number of completed
epochs reaches108. In Exp. 2, the probability for all three
genetic operations is0.03, and the probability mutating the
interaction matrix is0.004. For each of the experimental
conditions, 10 independent runs were undertaken. All other
parameter setups used in the experiments, unless otherwise
stated, are listed in Table I. While most parameters are self-
explaining, the maximum movement range means the number
of sites individuals move during the running behavior.

A. Exp. 1: Fixed, Hand–Coded Genomes

To evolve chemotaxis behavior, a stable population size
needs to be maintained. For this purpose, nutrient is deployed
according to a cone-like distribution, withNc the units of
food to be deployed on the centroid andNw (number of
sites) the radium of the food distribution. The location of the
centroid was chosen with equal probability within a square
of 200 × 200 sites concentric with the environment.

Experiments were conducted for obtaining parameter con-
figurations, includingNc, Nw, and the period of food de-
ployment, resulting in a stable and computationally tractable
population size. In this experiment, the initial population
was seeded with a hand–coded genome and zero interaction
matrix, thereby enforcing running and tumbling with equal
frequency.

B. Exp. 2: Evolution of Genome and Interaction Matrix

To investigate the possible emergence of chemotaxis,
further experiments were performed in which evolution was
permitted via mutation of the genome and interaction matrix.
Although evolutionary fitness is implicit, it was hypothesized
that individuals capable of following an increasing gradient
of nutrient would survive and reproduce at a greater rate

than those that could not. In this circumstance, chemotaxing
individuals would proliferate in the population.

The initial population comprised of individuals with a ran-
domly generated genome and interaction matrix. Genomes
of the initial individuals were created by generating random
strings from the elements of the DNA set with equal prob-
ability. Interaction matrices were synthesized in a similar
manner, however the probability of an element being non–
zero was set to0.3 to prevent massively interconnected
networks within the initial population.

IV. SIMULATION RESULTS

A. Ex 1: Stabilizing the Population Size

A variety of ad–hoc experiments were conducted, in which
the parameters pertaining to nutrient deployment were varied.
Runs illustrating an unstable population size are shown in
Fig. 1, which results from an infrequent nutrient deployments
coupled with higher energy costs for running and tumbling,
Furthermore, an energy cost0.1 units for reproduction is
employed.
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Fig. 1. Unstable populations arising from parameter settings: Energy for
running / tumble0.03, maximum movement range =1.0, food deployment
period =2000, maximum volume of food deployments =20.

Experimentation has shown that stability in population
size is mainly dependent on the energy cost for running
and tumbling, the energy threshold for reproduction, and
the volume and period of nutrient deployment. Our results
showed that the resting population size is proportional to
the product of the deployment period and volume. Where
this product is fixed, but the period varies, the amplitude in
oscillation is observed as being proportional to the period.

Fig. 2 shows the population size averaged over 10 runs
for seven different nutrient deployment periods, whereNc

is set to 0.4 units andNw is fixed to 25 sites. We see that
a computationally tractable and stable population size can
be obtained when the period of food deployment is roughly
between500 and2000. Note that when the food deployment
period is larger than 50, most of the 50 initial individuals live
on their initial energy and die after about 40,000 epoches.
because the initial energy is not sufficient for reproduction,
and the probability of finding nutrient with random work is
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Fig. 2. Changes of population size with the food deployment period.

low. Fig. 3 shows a stable population size when the food
deployment period is set to 500, i.e., food will be deployed
every 500 epoches. Although oscillation is apparent, a mean
population size of approximately 135 is observed.
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Fig. 3. Population Size across time for a population of hand–coded, random
walk individuals

In Fig. 4 the aggregate behaviors for the population are
given. This shows the number of individuals performing each
of the three possible behaviors at different epochs. Idling, in
which neither running or tumbling is performed, is the most
frequently exhibited behavior whilst running and tumbling
occur with an approximately equal frequency. For clarity,
Fig. 5 shows the instance of running and tumbling only.

The results of Exp. 1 (see Fig. 3) illustrate that a relatively
stable population size is obtained with the reported param-
eters. This shows the emergence of a population capable
of being sustained by the amount and period of nutrient
deployed under these conditions. The unguided movement
in the form of random walk results in a net gain in energy
capable of allowing the perpetuation of the population.

Individuals whose path takes them toward a high concen-
tration of nutrient reproduce prolifically as they approachthe
peak, as do their offspring. This results in a higher densityof
individuals around the peaks of nutrient deployment. Those
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Fig. 4. Aggregate behaviors across time for a population of hand–coded,
random walk individuals
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Fig. 5. Instance of running and tumbling across time for a population of
hand–coded, random walk individuals

individuals moving away from the peak simply run out of
energy and die.

The population size remains relatively constant over time
as a kind of homeostasis emerges. If the population size de-
creases, the amount of nutrient in the environment increases.
With the greater amount of nutrient distributed over a smaller
population, more reproduction can occur. The resultant larger
population cannot then be sustained by the available nutrient,
causing a corresponding decrease in the population size as
individuals run out of energy and die.

Fig. 4 shows idling to be the most commonly expressed
behavior in Exp. 1. During periods of idling, update of the
GRN occurs, however the concentrations of the functional
proteins are not sufficient to trigger a behavior. As evolution
is switched off in Exp. 1, the ratios of the behaviors remain
largely unchanged.

B. Exp. 2: Evolutionary Experiments

According to the experimental results in Exp. 1, a period
of 500 is used for Exp. 2. Note that in Exp. 1, all elements
of the interaction matrix are set to zero, whereas in this
experiment, the interaction matrix is initialized randomly
with a probability of0.3. Owing to this stochastic nature of



initialization, it may happen that the initial population does
not contain an adequate number of viable individuals, and
therefore terminated prematurely. If this was the case, the
run was repeated until a duration of10, 000, 000 epochs was
obtained.

The profile of population size when evolution is switched
on is given in Fig. 6. Toward the end of the run, a sta-
ble population size of approximately 50 is observed. A
comparison between the populations of Exp. 1 and Exp.
2 during the initial stages of each experiment is shown
in Fig. 9. The increase in size of the evolving population
can be seen to occur prior to corresponding increase in
the non–evolving population. The maximum and average
population size attained by the non–evolving population is
notably larger than that of the evolving population. This is
somewhat counter–intuitive, as it might be expected that an
evolved population would both acquire and expend energy
more efficiently.
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Fig. 7. Aggregate behaviors across time for an evolving population of
randomly initialized individuals

To investigate whether chemotaxis evolves, we compare
the average number of individuals in the population per-
forming running, tumbling and idling. Fig. 7 shows the
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aggregate behaviors for the population of Exp. 2. As the
run progresses, the relative number of idling individuals
decreases. The instance of running and tumbling individuals
remains comparatively constant throughout, with running
being slightly more frequent than tumbling, as shown in
Fig. 8.

In Exp. 2, the ratio of exhibited behaviors can be seen
to change over time. The most obvious difference is the de-
crease in instances of idling. Whilst this is seen to decrease,
the absolute number of running and tumbling individuals
remains comparatively constant, suggesting the population
to evolve toward more frequent movement. Fig. 8 indicates
tumbling to occur less frequently than running.

The change in behavior results in extended runs, with two
important ramifications. Firstly, the population becomes dis-
persed over a greater area of the environment. This allows for
a comparatively quicker discovery of nutrient, as any given
deployment is likely to be in the proximity an individual.
Similarly, the greater range of movement of an individual is
more likely to bring it in contact with a nutrient deployment
– the individual will be ‘covering more ground’.

Secondly, the increased movement will lead individuals



away from nutrient peaks. Although offspring are likely to
be born close to a nutrient deployment (as a result of the
reproduction mechanism), those configured to run dispropor-
tionally more than tumble will move away from their locus
of creation comparatively more quickly. The effect of this
rapid displacement is that individuals will move away from
the nutrient concentration, therefore accruing less energy.
Although nutrient will be consumed, a greater amount of
energy is expended on movement as the individuals travel a
greater distance within the environment.

Fig. 9 is helpful in indicating why this situation might
arise. At the start of any run, the initial population size
is small and therefore unable to cover the environment
efficiently. However, during this time, nutrient is deployed
regularly and accrues within the environment. Randomly ini-
tialized and evolved individuals exhibiting comparatively fre-
quent movement will travel a greater distance, increasing the
likelihood of encountering the previously deployed nutrient.
Therefore, in the evolving population, the first generations
are likely to comprise of comparatively frequently moving
individuals.

Based on the results of Exp. 1 and Exp. 2, it is inferred
that an overwhelming chemotaxis behavior has not emerged.
If individuals were able to follow the increasing nutrient
gradient (thus a higher percentage of individuals show a
running behavior), more nutrient would be ingested whilst
less energy would be expended on traversing areas of lower
nutrient concentration. This positive energy deficit wouldthe-
oretically sustain a larger population for any constant amount
of nutrient. In contrast, the population appears to evolve
toward a strategy of increased coverage of the environment.

C. Possible Reasons for the Non–Evolution of Chemotaxis

There are several plausible reasons why chemotaxis does
not appear to evolve. Firstly, evolution might be unable to
‘find’ the genetic configuration for chemotaxis. Should this
be the case, it is obvious that the evolving system will never
produce chemotaxing individuals.

Secondly, it is possible that the selection probability on
chemotaxing individuals is not large enough for proliferation.
Were this the case, although chemotaxing individuals could
arise they might die out before reproducing in sufficient
number to infiltrate the population.

It is unlikely that the apparent lack of chemotaxis results
from the first scenario. Our experimentation has shown
that a single interaction within the interaction matrix is
sufficient for chemotaxis (see below). Given the mutation
rates, population turnover and initial randomization of the
chemical interaction matrix, it is likely that this mutation
arises within the course of the runs.

To investigate the second possible reason, experiments
were conducted to assess whether chemotaxis would be
selected for above simple random walk. An initial pop-
ulation of 50 individuals was created, comprising of25
random walk individuals and25 chemotaxing individuals.
The chemotaxing individuals were configured such that a
single inhibitory connection was present between the external

nutrient signaling chemical and the tumble inducing protein.
All forms of mutation were disabled, and the conditions
were otherwise identical to that of the previously described
experiments.

The composition of the obtaining population over time is
shown in Fig. 10. Although the results represent a single sim-
ulation, further runs provided qualitatively identical results;
the random walk population invariably became extinct. This
result suggests that chemotaxis have a selective advantage.
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Thirdly, chemotaxis could be a sub–optimal strategy for
survival in certain conditions, in favor of some other pattern
of movement. For chemotaxis to be advantageous, gradient
information is necessary, yet it must be remembered that this
information is destroyed as individuals consume nutrient.To
investigate the effect of the activity of the population on the
nutrient environment, the spatial concentration of nutrient for
an experimental run was examined across time.

Figs. 11 and 12 illustrate the nutrient landscape at different
epochs. From these illustrations, the ruggedness of the nutri-
ent landscape is revealed. In consideration that the external
nutrient sensing system only detects whether an increase or
decrease in nutrient is encountered, it is obvious that the
gradient information is extremely noisy. This potentiallypre-
vents chemotaxing individuals from achieving a significantly
greater selection probability than those performing random
walk.

Considering the previously discussed situation in which
frequently moving individuals rapidly proliferate, it is un-
derstandable why chemotaxis would not evolve under these
conditions. A population of frequently moving, random walk
individuals will cover a comparatively large amount of the
environment. The ingestion by this population of any encoun-
tered nutrient will rapidly obfuscate any meaningful gradient
information. In the lack of gradient information, the ability
to chemotax becomes decreasingly beneficial.

V. CONCLUSIONS ANDFUTURE WORK

The experimental results show the system to be function-
ing on many levels. Under the configurations outlined, open
ended runs can be sustained, potentially allowing for ongoing
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Fig. 11. Nutrient density at epoch 1000. The x,y plane correspond
to the virtual world, whilst the z axis indicates the associated nutrient
concentration. Only the area in which nutrient deploymentsare made is
shown.
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Fig. 12. Nutrient density at epoch 1499. As with Fig. 11, an area of the
virtual world is shown.

evolution in future experiments. Unfortunately, evolution
does not appear to lead to the emergence of chemotaxis in the
present setup. Our further experiment results imply that this
may be attributed to the destruction of gradient information
by randomly moving individuals. This mismatch between the
expected results (the emergence of chemotaxis) and those
obtained indicate that developing an evolutionary system in
which the fitness function is implicit is nontrivial.

Having considered why chemotaxis does not appear to
evolve, the aim of immediate future work is to establish
whether the given explanations are accurate. To determine the
effect of the destruction of gradient information, the system
will be modified to incorporate a spatio–temporal diffusionof
nutrient. In addition to providing a scenario more congruent
with natural systems, it is anticipated that this will prevent
the observed ruggedness, giving individuals with the ability
to chemotax a significant advantage.

Secondly, a more rigorous metric for the determination of
whether chemotaxis is emerging is necessary. As the single
permissible method of gradient tracking in this scenario
involves a large stochastic element, it is a nontrivial assess-

ment. One plausible method would involve repeated compar-
ison between the behavior of an evolved (i.e. experimental)
individual and a control individual in the form of pure
random walk. In simple form, this would require measuring
the mean distance between an individual and the peak of
a nutrient gradient across time. Given suitably repeated
measurement, where chemotaxis is apparent the experimental
group should show a significantly lower mean distance from
the nutrient peak. Under the settings used within the exper-
iments outlined above, this task would become confounded
as a result of the nutrient being consumed by the population.
The distribution of nutrient can become rapidly multi–modal,
with a large number of local minima. To counter this, it is
possible to utilize a single deployment of nutrient, ignoring
the effect of consumption on the environment. As the focus
of the experiment concerns a single individual, reproduction
can be deactivated therefore avoiding a perpetually growing
population size.
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